S-PERMUTABILITY, SEMIPERMUTABILITY, c-NORMALITY AND

c-PERMUTABILITY OF SUBGROUPS IN FINITE GROUPS

Doa’a Mustafa Al-Sharo

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

August 2014



ACKNOWLEDGEMENTS

I appreciate the support of many people who have contributed to this work. I would
like to sincerely thank my supervisor, Dr. Hajar Sulaiman for her help and support.
Her comments and suggestion were very helpful in completing this work. Her trust in
me and my ability as a graduate student is greatly appreciated. And a great many
thanks to Professor Dr. Khaled Ahmed Al-Sharo, for this work will not have been

completed without his help, his comments and his big support.

I would like also to acknowledge all the faculty members of the School of Mathe-

matical Sciences, at Universiti Sains Malaysia for their support and inspiration.

Finally, T would like to thank my husband Mutasem Al-Khaswneh who gave my
life a special meaning and had encouraged me throughout my study. This thesis would
not have been possible without his support. Needless to mention my daughters Arwa
and my new baby Bushra who were a great help in keeping me awake many nights

studying.

I would like to thank my father, mother, for their help, support, patience and

"duaa" for me.

Lastly, I would like to thank my brothers; Dr.Mohamad, Eng.Ahmad, sisters;
Dr.Ayat, Eng.Alaa, Eng.Esraa, Wesam, and my extended family for their encourage-

ment during my study.

1



TABLE OF CONTENTS

Acknowledgements ii
Table of Contents iii
List of Figures vii
List of Symbols and Notations viii
Abstrak xii
Abstract xiv

CHAPTER 1 INTRODUCTION

1.1 Introduction 1
1.2 Background and Literature Review 1
1.3 Problem Statement 6
1.4 Scope and Objectives of the Study 6
1.5 Research Methodology 8
1.6 Organization of the Thesis 11
1.7 Summary 12

CHAPTER 2 Preliminaries

2.1 Introduction 13

2.2 Preliminaries on Group Theory 14

11



2.3 Nilpotent and Solvable Groups

24 T-, PT-, and PST-Groups

2.5 C),-Condition and X ,-Groups

2.6 Normally Embedded and S-permutably Embedded Subgroups
2.7 Semipermutable Subgroups and BT'-groups

2.8 c-Normality of a Group

2.9 c-Permutable subgroups and C'PT-groups

2.10 Summary

CHAPTER 3 p-Subgroups and PST-Groups

3.1 Introduction

3.2 p-subgroups and S-permutably embedded subgroups
3.3 Some Results on PST-groups

3.4 Summary

CHAPTER 4 Semipermutable Subgroups and SP-Groups
4.1 Introduction

4.2 Semipermutable Subgroups and BT-Groups

4.3 Finite Groups in which Subnormal Subgroups are Semipermutable

4.4 Summary

CHAPTER 5 Groups in which c-Normality is a Transitive Relation

5.1 Introduction

v

20

26

32

34

37

42

44

46

48

49

52

95

56

o7

63

67

68



5.2 C'T-groups 68

5.3 On The Relation Between c-Normality and c-Permutablility 75

5.4 Summary 79

CHAPTER 6 Non-X-Groups and More Results on CT-Groups and C PT-

Groups

6.1 Introduction 80

6.2 C' PT-groups and Groups with all Subnormal Subgroups 81

c-Normal or c-Permutable

6.3 Non-C'T-Groups and Non-C' PT-Groups 87

6.4 Summary 89

CHAPTER 7- Conclusion and Future Work

7.1 Introduction 90
7.2 Summary of Contributions 91
7.3 Suggestions for Future Research 93
BIBLIOGRAPHY 94
APPENDICES

Appendix A: Group Ay 99
Appendix B: Group S3 101
Appendix C: Group S, 103
Appendix D: Group G 106



Appendix E: Group Gy

Appendix F: Group Gag

Appendix G: Introduction to GAP and Calculation G3,

List of Publications

List of Presentations

vi

109

112

114

119

120



LIST OF FIGURES

Figure 1.1(a) Flow chart of research relation and work methodology
between groups created from transitivity
Figure 1.1(b) Flow chart of research relation and work methodology

between subgroups

vii

10



N

12

List Of Symbols and Notations

not equal to

for all

there exist

If and only if

implication

belong to

not belong to

proper subset

subset of

is isomorphic to

group G

H is a subgroup of G

H is a normal subgroup of G

the join of subgroups H, K of G

the cyclic group generated by g

prime number.

the set of prime divisors of the group G

modulo

congruent

viil



a = b(mod n)

ptm

Aut(G)

G/H
(G:H)
|G|

HK

a congruent b modulo n
the prime number p does not divide m
the set of all automorphisms of a group G
the cyclic group of order n
the Klein 4-group
the dihedral group of order 2n
the symmetric group of a set with n letters
¢ is a map of set X into a set Y
A'is a subset of B
the factor group or quotient of G by H
the index of the subgroup H in the group G
the order of G
the set {hk|h € H, k € K}
the centralizer of H in G
the center of the group G
the normalizer of the group G
the commutator subgroup of G
the fitting subgroup of G
the generalized fitting subgroup of G
frattini subgroup

the conjugate of H by «

1X



H<.G

H Char G
Gr

Hg

Hpg

H c-norm G

H c-perm G

(9,h)

T-group

PT-group

PST-group

BT-group

BST-group

the commutator of the elements a and b

the set of Sylow p-subgroup of G

H is a subnormal subgroup in G

H is a minimal normal subgroup in GG

H is characteristic subgroup of GG

r-residual of GG

the core of H in G

the P-core of H in G

H is c-normal in G

H is c-permutable in G

the p-core of a finite group

the p/-core of a finite group

the greatest common divisor

a group in which the property of normality is transitive relation

a group in which the property of permutability is transitive

relation

a group in which the property Sylow permutability is transitive

relation

a group in which the property semipermutability is transitive

relation

a group in which the property S-semipermutability is transitive



S N-group

CT-group

C PT-group

SCn-group

SC'p-group

relation

a group in which every subnormal subgroup is seminormal

a group in which the property of c-normality is transitive relation

a group in which the property of c-permutability is transitive

relation

a group with all its all subnormal subgroups are c-normal

a group with all its subnormal subgroups are c-permutable

x1



KETERPILIHATURAN-S, KESEMITERPILIHATURAN,
KENORMALAN-c, DAN KETERPILTHATURAN-c KE ATAS

SUBKUMPULAN DALAM KUMPULAN TERHINGGA

ABSTRAK

Semua kumpulan dan subkumpulan yang dipertimbangkan dalam tesis ini
adalah terhingga. Dalam tesis ini, beberapa teori baru dan bukti berkaitan terhadap
kumpulan terpilihatur-S (juga dirujuk sebagai terpilihatur-Sylow), semiterpilihatur,
normal-c¢ dan terpilihatur-c dari suatu kumpulan terhingga G dibincangkan. Lebih
daripada satu topik difokuskan di sini, antaranya adalah, hubungan di antara kelas
subkumpulan terpilihatur-S terbenam dan kumpulan-PST, subkumpulan semiterpil-
ihatur, dan keadaan di mana subkumpulan normal-c dan subkumpulan terpilihatur-c
adalah transitif. Penemuan baru mendedahkan bahawa kumpulan- PST; iaitu kumpu-
lan yang mana keterpilihaturan-S adalah suatu hubungan transitif, bertindih den-
gan kelas kumpulan terselesaikan terhingga yang mana setiap subkumpulan-p adalah
terpilihatur-S terbenam. Beberapa fakta telah dibangunkan untuk membuktikan hasil
ini, khususnya, suatu bukti termudah diberi untuk membuktikan bahawa jika su-
atu subkumpulan adalah terpilihatur-S terbenam dalam suatu kumpulan maka ia
mestilah terpilihatur-S terbenam dalam semua subkumpulan yang mengandunginya.
Suatu hasil pendua juga telah ditunjukkan untuk kumpulan yang dipanggil sebagai
kumpulan-PST,. yang mana “c” menandakan syarat istimewa terhadap sisa nilpoten.
Penyelidikan ke atas kesemiterpilihaturan subkumpulan dan hubungan terhadap ke-
transitifan subkumpulan tersebut telah diterokai secara meluas dalam beberapa tahun

yang lepas. Apabila kesemiterpilihaturan dalam kumpulan G adalah suatu hubun-

gan transitif, G dipanggil sebagai kumpulan-BT. Apabila semua kumpulan subnormal
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dari G' adalah semiterpilihatur, G dipanggil sebagai kumpulan-SP. Telah pun ditun-
jukkan bahawa semua kumpulan-BT adalah kumpulan-SP. Walau bagaimanapun,
suatu kumpulan-SP tidak semestinya suatu kumpulan-B7T sebagaimana yang ditun-
jukkan dalam tesis ini. Bagi keadaan di mana kenormalan-c adalah suatu hubungan
transitif, suatu kelas kumpulan baru yang dipanggil kumpulan-C'T" diperkenalkan dan
beberapa sifat serta teorem yang berkaitan dengannya dibuktikan. Beberapa keputusan
baru berkaitan dengan kumpulan-C'PT, iaitu kumpulan yang mana keterpilihaturan-c
adalah suatu hubungan transitif, juga diberi. Tesis ini juga mengandungi bukti ba-
hawa wujud suatu subkumpulan terpilihatur-c yang bukan normal-c. Perincian baru
terhadap kumpulan dan subkumpulan berikut ditakrifkan dan dibuktikan di dalam
tesis ini iaitu: kumpulan-PST terhingga terselesaikan, subkumpulan terpilihatur-S
terbenam, kumpulan-BT, subkumpulan semiterpilihatur, subkumpulan seminormal,
kumpulan-CT terhingga terselesaikan, kumpulan-bukan-CT minimum, kumpulan-bukan-
C' PT minimum, kumpulan yang mana semua subkumpulan subnormalnya adalah normal-
¢ (dipanggil kumpulan-SCy) dan kumpulan yang mana semua subkumpulan subnor-

malnya adalah terpilihatur-c (dipanggil kumpulan-SCp).
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S-PERMUTABILITY, SEMIPERMUTABILITY, -NORMALITY AND

c-PERMUTABILITY OF SUBGROUPS IN FINITE GROUPS

ABSTRACT

All groups and subgroups considered in this thesis are finite. In this thesis,
some new theories and related proofs on S-permutable (also referred to as Sylow per-
mutable), semipermutable, c-normal and c-permutable subgroups of a finite group G
are discussed. More than one topic are focused here, some of which are, the relationship
between classes of S-permutable embedded subgroups and P.ST-groups, the semiper-
mutable subgroups, and the condition when c-normal and c-permutable subgroups are
transitive. New findings reveal that PST-groups, the class of groups in which S-
permutability is a transitive relation, coincides with the class of finite solvable groups
in which every p-subgroup is S-permutably embedded. Some facts were developed to
prove this result, in particular, a simplified proof is given to prove that if a subgroup
is S-permutably embedded in the group then it should be S-permutably embedded in
every subgroup that contains it. A dual result is also established for a group called
the PST,.-group where "c" denotes the special condition on the nilpotent residual.
Research on semipermutability of subgroups and their transitivity relationships have
been extensively explored in previous years. When semipermutability in a group G is
a transitive relation, G is called a BT-group. When all subnormal subgroups of G are
semipermutable, G is called an SP-group. It has been shown that all BT-groups are
S P-groups. However, an S P-group is not necessarily a BT-group as shown in the the-
sis. For the condition in which c-normality is a transitive relation, a new class of group
called CT-groups is introduced and some related properties and theorems to this group

are proved. Some new results related to C'PT-groups, which are groups in which c-

xiv



permutability is a transitive relation, are also given. This thesis also contains the proof
that there exists a c-permutable subgroup which is not c-normal. New characteriza-
tions of the following groups and subgroups are defined and proved in this thesis which
are: the finite solvable PST-groups, S-permutably embedded subgroups, BT-groups,
semipermutable subgroups, seminormal subgroups, finite solvable C'T-groups, mini-
mal non-C'T-groups, minimal non-C'PT-groups and groups with all its subnormal sub-
groups c-normal (called SCy—groups), and groups with all its subnormal subgroups c-

permutable (called SC,-groups).
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Chapter 1

INTRODUCTION

1.1 Introduction

This chapter gives an introduction to the study. It begins with some related
background theory and literature review which provides a comprehensive background
knowledge on permutable and semipermutable subgroups, the property of c-normality
and c-permutability of subgroups, as well as transitivity of such properties in rela-
tion to a finite group G. This is followed by the problem statement, the objec-
tives as well as the scope of the study, the research methodology and lastly the

thesis organization. All groups and subgroups described in this thesis are finite.

1.2 Background and Literature Review

This study consists of investigations on several concepts of subgroup properties in
a finite group G. One concept is permutability (which converts to S-permutability for
Sylow subgroups), semipermutability (which converts to S-semipermutability for Sylow
subgroups), c-permutability and c-normality. Then, to each of these properties, there

1



exists what is called a transitivity property where there are groups defined and given
special names when a subgroup property, for example permutability, is a transitive
relation in G. These properties, as well as the related transitivity, will be described

briefly in what follows.

The product HK of two subgroups H and K of a group G is not always a
subgroup of G. For example, if G = S3, then consider H = ((12)) and K = ((13)),
two subgroups of G. Then the product HK = {(123), (12),(13), e} is not a subgroup
of G. In fact, HK is a subgroup if and only if HK = KH and if this is the case then
H is said to permute with K. A permutable subgroup is a subgroup H of G that
permutes with every subgroup of G. A subgroup H of a group G is subnormal if there
is a finite chain of subgroups, each one normal in the next, beginning at H and ending

at G. Subnormality is also a concept that will be discussed in this thesis.

The notion of permutable subgroups was introduced when it was observed that
there are subgroups which are not normal but still commute with every subgroup of a
finite group G. Every normal subgroup is permutable, but the converse is not true. In
fact, there are groups in which every subgroup is permutable, but none were normal.
Permutable subgroups were initially termed quasinormal subgroups in 1939 by Ore
[23]. The study of permutable subgroups has resulted to many interesting properties
especially when G is a finite group. It was observed that every permutable subgroup
H of a finite group G is subnormal [23]. If a subgroup G' permutes with every Sylow
subgroup of G, then it is called an S-permutable (or Sylow-permutable) subgroup.
According to Agrawal[l], Kegel introduced the concept of S-permutability in 1962
and proved that an S-permutable subgroup is always subnormal . Deskins [15] further

extended this concept in 1963 and explained that S-permutable subgroups have similar



properties to permutable subgroups.

From permutability, a special condition is set to obtain subgroups which are
semipermutable. A subgroup H in G is semipermutable if it permutes with every
subgroup K of G with (|K|,|H|) = 1. Similar to the permutable concept, this can
be extended to S-semipermutability when Sylow subgroups are involved. Permutable
(resp. S-permutable) subgroups are semipermutable (resp. S-semipermutable) but the
converse is not true. In 2005, Zhang and Wang [36] used S-semipermutable subgroups

of prime power to determine the structure of finite groups [1].

Permutability is a transitive relation in a group G if for any two subgroups H
and K of G such that H is permutable in K and K is permutable in GG then it implies
that H is permutable in G. In this case, GG is called a PT-group. In 1964, Zacher,
defined and studied PT-groups. He also classified solvable PT-groups and proved that
these are groups with a normal abelian Hall subgroup L of G with odd order and G /L
is an Iwasawa group. He also proved that a solvable PT-group is supersolvable. When
semipermutability is a transitive relation in G (similarly, transitivity here means that
for any two subgroups H and K of G such that H is semipermutable in K and K is
semipermutable in G then it implies that H is semipermutable in (), then G is called
a BT-group. This was introduced by Wang et al. in [32], where they also classified
solvable BT-groups. Other characterizations of solvable BT-groups were established in
2010 by Al-Sharo et al. [3]. In this study, BT-groups are investigated in relation to S P-
groups. S P-groups is a special name given to a class of groups in which all subnormal
subgroups are semipermutable. From the definition, it is clear that a BT-group is an

S P-group. In this thesis, it shall be shown that the converse is not true.

In 1975, Agrawal [1] defined PST-groups. These are groups in which S-



permutability is a transitive relation (from now on, transitivity is presumed to be well-
understood). According to Agrawal, PST-groups are exactly those groups in which
all subnormal subgroups are S-permutable. In addition, he proved that if G; and G5
are two PST-groups and (|G1[,|G2|) = 1, then G = G; x G5 is also a PST-group.
Furthermore, Agrawal [1] showed that these are exactly the groups with a normal
abelian Hall subgroup L of G with odd order; where GG/L is nilpotent group; and the
element of GG acts by conjugation as power automorphism on L. He also proved that a
solvable PST-group is supersolvable. In this study, the link between the solvability of
PST-groups and the S-permutably embedded subgroups are established. The concept

of subgroup embedding will be described in the following chapters.

The concept of c-normality was introduced in 1996 by Wang [32], where a
subgroup H is defined to be c-normal in a group G if there exists a normal subgroup
N of G such that HN = G and H NN < Hg.Wang used the concept of c-normality to
prove some known theorems by replacing normal subgroups with c-normal subgroups.
Furthermore, he used c-normality in maximal subgroups to give some conditions for
the solvability and supersolvability. Now, groups in which c-normality are a transitive
relation have not been established. In this study, this class of groups are defined and

some facts and properties related to these groups are stated and proved.

c-Permutability is a concept that was defined and established by Al-Sharo and
Sulieman [4]. A subgroup H is c-permutable in a group G if there exists a permutable
subgroup P of GG such that HP = G and H N P < Hpg. Al-Sharo and Sulieman also
described transitivity of this property where they named the class of groups in which
c-permutability is transitive as C'PT-groups. Moreover, they proved new facts about

C' PT-groups on supersolvability and direct product and also described this group as



a normal abelian Hall subgroup L of odd order. They also proved that if G is a
C'PT-group then every subgroup of the group G/L is c-normal and that G acts by
conjugation as a power automorphism on L. In this study, some further properties of
C PT-groups are stated and proven. The link between c-normality and c-permutability

is also mentioned in this thesis.

Related to all these classes of groups, it is possible to define classes of groups that
do not satisfy the transitive relation but every proper subgroup it contains does. For
example, non-PST-groups are groups in which S-permutability is not transitive but all
proper subgroups in each group are PST-groups. The minimal non-PST and non-PT
groups were classified by Robinson in [26]. Later, Wang et al. [32] gave the structure of
the minimal non-BT-groups (resp. non-SBT-groups, where an SBT-group is a group
in which S-semipermutability is a transitive relation). In this thesis, two minimal
non-X-groups are established ( for the properties of X when c-normality is transitive
and when c-permutability is transitive) and some facts on these groups are stated and

proved.

Recall that S P-groups are groups in which all subnormal subgroups are semiper-
mutable. If all subnormal subgroups of a group G is S-semipermutable, then G is
called an S PS-group instead. Beidleman and Ragland [11] studied this class of groups
and showed that if GG is a solvable group, then G is a PST-group if and only if G is
an SPS-group. As with SP-groups and SPS-groups, other groups can be established
with regards to subnormal subgroups. In this thesis, two new classes of groups are
established; one in which all subnormal subgroups are c-normal and the other is in

which all subnormal subgroups are c-permutable.

Other than the known groups already mentioned, there are also T-groups, groups



in which normality is a transitive relation. Best and Taussaky [13] defined and studied
T-groups. In 1957, Gaschutz described solvable T-groups as groups in which nilpotent
residual is an abelian Hall subgroup L of odd order such that G/L is a Dedekind group
and G normalizes L [1]. It was also proved that a solvable T-group is supersolvable.
Since normality is not a concept that is concentrated in this study, then this class of
group will only be mentioned in Chapter 2, in the preliminaries. Other concepts such
as the X,-groups, seminormal subgroups and the Cj,-condition will be explained in

Chapter 2 also and in the following chapters where these groups are discussed.

1.3 Problem Statement

Several classes of groups have been found in recent years relating to the per-
mutability (resp. S-permutability), semipermutability (resp. S-semipermutability)
and c-permutability. However, not all properties related to the groups have been com-
pletely explored. Further studies need to be done on the existing groups to be able to
state new theorems and establish new links. In addition, new classes of groups that
have not been found must be established and new related facts or theorems must be

stated and proved.

1.4  Scope and Objectives of the Study

The scope of this research is to prove further facts and theories related to the
permutability and semipermutability, as well as c-normality and c-permutability of

subgroups in a finite group G. This study also focuses in defining new classes of groups



and state and prove new theorems on these groups.

The following are the objectives of this study:

1. To discover some properties of Sylow p-subgroups and S-permutable subgroups.

2. To link between S-permutably embedded subgroups and the solvability of PST-

groups with and without a special condition on nilpotent residual.

3. To show that Dihedral groups are always BT-groups and BT-groups it is not

equivalent to S P-groups.

4. To define a new class of groups in which c-normality is transitive and for the
solvable case, prove some facts and theorems in relation to supersolvability, direct

product, nilpotent residual and other properties.
5. To show that c-permutable subgroups are not equivalent to c-normal subgroups.
6. To find and prove new theorems on C'PT-groups.

7. To establish two new groups: one in which all subnormal subgroups are c-normal
and the other in which all subnormal subgroups are c-permutable, and prove

some related properties.

8. To establish two minimal non-X-groups: one where X is the property of c-
normality being transitive and the other where X is the property of c-permutability

being transitive.

1.5 Research Methodology

The research starts by studying some known subgroups of a finite group such
as permutable, S-permutable, semipermutable, c-normal, c-permutable subgroups and

7



their properties. These concepts have been a subject of interest to many researchers.
This can been shown from results obtained from Al-Sharo et al. [4], Beidleman et al.
[11], Wang et al. [32], Beidleman et.al. [12], Agrawal [1], Ore [23] and some others.
These papers are referred to in solving the main problems in this study. The basic
definitions and the theorems in Chapter 2 are needed and will be used in much of the
discussion in the following chapters. Further results on some known groups will be
given and proven and some results will be used to prove other facts or theorems. In
addition to that, structure of some new groups established via transitivity properties,

minimal non-groups and other relation will be given with proof.

A summary of the research methodology is shown in Figure 1.1. The description of
the work methodology is divided into two major parts: (a) groups on transitivity and
(b) types of subgroups. "Proposed Group" indicates a new class of groups that will be

introduced in this thesis.



Groups on Transitivity

PSTREroup Proposed BTBgroup Proposed CPTEgroup
group group
Dihedral SPEgroup Proposed Nilpotent Direct proposed Wl Superso || Proposed [| X+ Proposed J Permutably
group group residual product group Ivable group grou groue embedded
Sehermutably Supersolvable
embedded
Supersolvable
NormalBylow Solvable
NormalBylow Solvable
NoniX,

(a)

Figure 1.1.a: Flow chart of research relation and work methodology between groups

created from transitivity.




Subgroups

Sylowa
subgroup

pEBubgroup

Semipermutable Seminormal

Conjugate

Ckhormal

Ckbermutable

Figure 1.1.b: Flow chart of research relation and work methodology between

(b)

subgroups
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1.6 Organization of the Thesis

This thesis is organized in seven chapters. Chapter 1 provides the introduction
of this thesis. It also explains the general background and literature review of the
study, the problem statement, the scope and objectives, the research methodology of

this work and the organization of this thesis.

Chapter 2 contains preliminaries and important concepts in group theory relevant
to the study. It also includes notations, terminologies and basic results that are needed
for the whole thesis, as well as some important definitions. This chapter also con-
tains descriptions on the T-groups and PT-groups and more detailed descriptions on
the PST-groups, S-permutably embedded subgroups, C'PT-groups, and other known

groups and related concepts.

Chapter 3 contains new results on p-subgroups, S-permutable subgroups, and
S-permutably embedded subgroups together with the proofs. New characterization
on PST-groups in relation to the S-permutably embedded subgroups are also estab-
lished with proofs. In addition, similar properties are shown for a new class of groups

equivalent to PST-groups but with an additional condition on the nilpotent residual.

In Chapter 4, new results are proven on semipermutable subgroups. This chapter
also includes a proof that the Dihedral group is always a BT-group. An example of
an SP-group with the smallest order, that is not a B7T-group is also shown in this

chapter.

Chapter 5 introduces a new class of groups where c-normality is a transitive
relation and provide examples to clarify these groups. Moreover, some theorems and
lemmas about these groups in relation to supersolvable subgroups, direct product and
nilpotent residual are stated and proven. This chapter also includes a counter example

11



to show that c-normal subgroups and c-permutable subgroups are not equivalent.

In Chapter 6, new results on C'PT-groups with X,-groups and S-permutably
embedded subgroups are established and proven. In addition to that, this chapter
also includes new concepts of groups in which all subnormal subgroups are c-normal,
groups in which all subnormal subgroups are c-permutable and non-X-groups for two
properties of X; one is the property where c-normality is transitive and the other is
the property where c-permutability is transitive. New theorems on these groups are

also stated and proved.

Chapter 7 summarizes the results of this study. This is followed by a number of

suggestions and open problems for future research.

1.7 Summary

This chapter briefly explained the background and literature review of the study.
Among others, it also stated the scope as well as the objectives of the study. Lastly, it

described the contents of each chapter.

12



Chapter 2

PRELIMINARIES

2.1 Introduction

In the previous chapter, a brief introduction on some known groups such as per-
mutable, semipermutable, c-normal and other groups were given. This chapter presents
some preliminaries needed throughout the thesis in addition to the theorems and defin-
itions that are needed in the explanation of results. This chapter begins with a review
of some preliminaries on group theory. Then it provides some elementaries on nilpo-
tent, solvable, and supersolvable groups and other groups in Section 2.3. In Section
2.4, some definitions and facts about T-, PT-, and PST-groups are given. Section 2.5
introduces some facts about X,-groups and C),-condition. The normally embedded and
S-permutably embedded subgroups are introduced in Section 2.6. In Section 2.7, semi-
permutable subgroups, BT-groups and SP-groups as well as some related theorems
are reviewed. Following that is Section 2.8, which introduces the c-normal subgroups.

The last section is about c-permutable subgroups and C' PT-groups.

13



2.2 Preliminaries on Group Theory

In order to study an abstract group, it will be helpful to compare the group with a spe-
cific known group. This comparison is carried out by a function called homomorphism.

In the following, the property of homomorphism is given.

Theorem 2.1 [19] Let ¢ : G — G be a group homomorphism. Then the following

holds:

!

(i) If H< G then ¢(H) <G .

!

(1) If K' <G then ¢ ' (K') < G.

/

(15i) If H < G then ¢(H) <G .

The following proposition is called the Zassenhaus - butterfly Lemma, which is one

of the important facts in group theory, since many theorems has been built on it.

Proposition 2.2 [19] (Zassenhaus — butterfly Lemma) Let H and K be sub-
groups of a group G and let H * and K* be normal subgroups of H and K respectively,
Then:

(i) H*(H N K*) is a normal subgroup of H*(H N K).

(i) K*(H* N K) is a normal subgroup of K*(H N K).

(iii) H*(H N K)/H*(H N K*) = K*(H 0 K)/K*(H* N K)

~ (HNK)/[(H* N K)(HN K.

The following definitions and theorems are some background knowledge needed
in this study.
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Definition 2.3 [22] A composition series of a group G is a normal series

1=Gy <G, 9Gy, 9 ... 4G, = G, such that G;11/G; is simple (and non-trivial)

for 1 <i < r-1, and the subgroup G;11/G; is called the composition factors.

Theorem 2.4 [19] (Jordan Holder -Theorem) Any two composition series of a

given group are equivalent. They have the same composition factors.

Definition 2.5 [19] A group G is said to be a p-group if every element in G has
order a power of the prime p. A subgroup of a group G s called a p-subgroup in G if

the subgroup itself is a p-group.

Remark 2.6 Let G be a finite group. Then G is a p-group if and only if |G| = p™

for some prime p.

Definition 2.7 [19] A Sylow p-subgroup of a group G is a maximal p-subgroup of G.

It is denoted the set of all Sylow p-subgroups of G by Sly,(G).

Definition 2.8 [19] Let H be a non-empty subset of group G and let g € G . The

conjugate of H in G is the set HY = {ghg™ : h € H}.

Definition 2.9 [21]Let H be a non-empty subset of group G, the normalizer of H

in G is the set No(H) ={zx € G: 2 'Hx = H}.

The normalizer of H is a subgroup containing H, and it is the largest subgroup of

GG in which H is normal.

Definition 2.10 [28/ A minimal normal subgroup N of G is a normal subgroup # 1
that contains no proper subgroup that is normal in G, and denoted by N < G. i.e The
only normal subgroup contained in N are N and 1.
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Definition 2.11 [21] If there is a finite chain of subgroups of the group G, each one
normal in the next, beginning at H and ending at G, then H is called subnormal in G

and denoted by H << G.

Not every subnormal subgroup is normal as in the following example.

Example 2.12 Let G = Dg=<r,s|r't=s*=1,rs =sr ! >

Note that < s ><1<1 Dg but < s >4 Ds.

The following proposition states some basic properties of subnormal subgroups.

Proposition 2.13 [21], [27]
(i) If A<< G and B <9< G then AN B <1< G and (A, B) << G.
(i)  Let ¢: G — G  be homomorphism if H <<1 G then ¢(H) <1<1 ¢(G).
(iti) IfH << G and K <G, then HN K <1< K.
(w) If H << G, G finite group and M is minimal normal subgroup of G then
M C Ng(H).
(v) Let K<H<KG,if K<< H , and H << G, then K <1< G.
(vi)  Let G a finite p-group, then every subgroup of G is subnormal in G.

(vii) If H<< G and K < G then HK <1< G.

The following proposition will be used in Example 3.5.

Proposition 2.14 [19] If G = Ax B then A= Ax{e} ~A<G.
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To determine the structure of a finite group, some special groups and subgroups
are usually considered, such as the commutators, the automorphisms, the characteristic
groups and the Sylow p-subgroups. Some facts and definitions about these subgroups

are given below.

Definition 2.15 [22] The commutator of the ordered pair of elements a, b in the group

G is the element a='b~tab . It is denoted by [a, b].

Definition 2.16 [22] The derived group (or commutator subgroup) of G is the sub-

group generated by all commutator elements in G . It is denoted by G .

ie G =[G ,G) = (a" b abla,b € G).

Definition 2.17 [17] An isomorphism from G to G is called an automorphism. The

set of all such automorphisms is denoted by Aut(G) .

Remark 2.18 Aut(G) is a subgroup of Sg.

Definition 2.19 [17] A subgroup H of a group G s called a characteristic of G
denoted by H Char G if every automorphism of G maps H to it self. i.e o(H) =

H,Yo € Aut(G).

Some examples on characteristic group will be illustrated in the next paragraphs.
Following that is a proposition containing equivalent statements regarding the Sylow

p-subgroups in relation to the characteristic group.

Example 2.20 (i) Z(G) Char G.
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(ii) ¢(G) = N{M : M is maximal subgroup in G}, then ¢(G) is characteristic

in G.

Proposition 2.21 [27]Let P € Syl,(G). Then the following are equivalent:

i) PG
(ii) P is a unique Sylow p-subgroup of G.
(iii) P Char G.
The p-core, and p'-core of finite groups are defined as:
Definition 2.22 [31] For a prime p, the p-core of a finite group is defined to be its

largest normal p-subgroup. It is the normal core of every Sylow p-subgroup of the group.

The p-core of G is often denoted O,(G).

Definition 2.23 [81] For a prime p, the p'-core is the largest normal subgroup of G

whose order is coprime to p and is denoted O, (G).

The following proposition is the Dedekind law and Dedekind definition.

Proposition 2.24 [21] Let H and K be subgroups of a group G and let H CU C G

where U is also a subgroup. Then HK NU = H(K NU).

Definition 2.25 [22/Dedekind group is a group G such that every subgroup of G is

normal.

Definition 2.26 [22] A simple group is a group in which no proper subgroup is nor-
mal.
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Abelian groups are examples of Dedekind groups. On the other hand, the

quaternion group (Jg is a non-abelian Dedekind group.

In group theory, the concept of a semidirect product is a generalization of a direct
product. Furthermore, there are two closely related concepts of semidirect product: an
inner semidirect product is a particular way in which a group can be constructed from
two subgroups, one of which is a normal subgroup, while an outer semidirect product
is a cartesian product as a set, but with a particular multiplication operation. Next is

the definition of semidirect product.

Theorem 2.27 [17] Let H and K be groups and let ¢ be a homomorphism from K
into Aut(H). Then e denote the left action of K on H determined by ¢. Let G be the
set of ordered pair (h, k)with h € H and k € K and define the following multiplication

onG:

(h1, k1) (he, ko) = (h1k1 ® ho, k1ks)

(1) This multiplication makes G into a group of order |G| = |H|| K|

(11) The set {(h,1)| h € H} and {(1,k)| k € K} are subgroups of G and the map

h — (h,1) forh € H and k — (1,k) for k € K are isomorphisms of these

subgroups with the groups H and K respectively: H = {(h,1)| h € H}
and K = {(1,k)| k € K}.
Identifying H and K with their isomorphic copies in G described in (ii) we have

(iii) H < G.

(w) HN K = 1.

(v) for allh € H and k € K, khk™" =k e« h = o(k)(h)
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Definition 2.28 [17] Let H and K be groups and let ¢ be a homomorphism from K
into Aut(H).The group described in Theorem 2.27 is called a semidirect product of H

and K with respect to ¢ and it is denoted by H x K.

Proposition 2.29 [17] Let H and K be a groups and let ¢ : K — Aut(H) be a

homomorphism. Then the following are equivalent:
(i) The identity (set ) map between H x K and H x K is a group homomorphism.
(i1) ¢ is the trivial homomorphism from K into Aut(H).

(iii)) K < H % K.

Next is an example on semidirect product.

Example 2.30 The symmetric group of order 6, Ss, is isomorphic to the semidirect

product Zz X Zs.

Definition 2.31 [25] An automorphism of a group G that leaves every subgroup in-

variant 1s called a power automorphism.

In the following section, some definition and theorems on nilpotent and solvable

groups are given, which will be used in the study.

2.3 Nilpotent and Solvable Groups

Nilpotent groups might be considered as a generalization of p-groups, also many
of the properties of finite p-groups are shared with the class of nilpotent groups. This
section lists some properties of nilpotent residual groups, Hall groups, supersolvable
and other classes of groups. These properties will be needed in the sections that follows.
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Definition 2.32 Let G be a group, and t be a class of group. Then yx-residual of G

1s defined by:

G=n{N<G:G/Ner}

Example 2.33 (i) Let x = a, be the class of abelian groups, and let G = S3, Then
the normal subgroups of Sz are {1, Az, Ss}, so S3/1 ~ S & a , S3/As = Z5 € a, and

53/53 ~1e a, with m{Ag, Sg} = A3, SO Sél = A3.

(i1) Let x =1 , be the class of nilpotent groups, and let G = S5, Then the normal
subgroups of Sz are : {1, A3, S3},s0 S3/1 ~ S3 ¢ n, S3/As ~ Zy € n,and S3/S3 ~ 1 € 1,
with N{ Az, S3} = Asz, so S = As.

(iii)Let t = n , be the class of nilpotent groups, and let G = Sy, Then the normal
subgroups of Sy are: {1,Vy, Ay, Sy},80 Sy/1 =~ Sy én, Sy/Vy= Zg € n,Sy/As = Zy €1,

and S4/S4 ~ 1 - 7, U)Zth ﬂ{‘/;l,A4, 54} = V;l, SO SZ = V;l

Remark 2.34 Nilpotent residual G" is the smallest normal subgroup of G such that

G/N s nilpotent.

The definition of normal p-complement and p-nilpotent will be given next. Both

definitions will be used in Chapter 6.

Definition 2.35 [35]/A normal p-complement of a finite group for a prime p is a
normal subgroup of order coprime to p and index a power of p. In other words the

group is a semidirect product of the normal p-complement and any Sylow p-subgroup.

Definition 2.36 [35]A group is called p-nilpotent if it has a normal complement.

Definition 2.37 [22] A subgroup whose order is relatively prime (coprime) to its index
is called a Hall subgroup, i.e H is a Hall subgroup of G if (G : H),|H|) = 1.
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Definition 2.38 [22] Let m be a set of primes, and m-number is an integer whose

prime divisor all belong to w . The complement of w in the set of all primes is denoted

!

by 7 .

The concept of m-number is used to define the Hall m-subgroups. Some preliminaries

about Hall subgroups are introduced next.

Definition 2.39 [22] Let 7 be the set of primes. A subgroup H of group G is called

Hall w-subgroup if the order of H is a m-number and (G : H) is a w -number .

Remark 2.40 If 1 = {p} then the Hall m-subgroups of a group G are the Sylow p-
subgroups. To see this, let |G| = p™m with p{ m. If P € Syl,(G) then |P| = P" which

. n . ’
is m = {p}-number and (G : P) = % =5 —m, m is ' -number.

The following example is for the previous remark.

Example 2.41 Let G =S4 , and let H be a subgroup of G with isomorphic to Vy i.e

H=xVy <5,

Now |H| =4, and (S4: H) = % = 6 with gcd(4,6) =2 # 1. So H is not a Hall

subgroup of Sy.
But |S;] = 23.3 and P € Syly(Sy) implies |P| = 23.

(Sy: P)= 2;—33 =3 and P € Syl,(G) so P is a Hall subgroup.

The class of solvable groups is a class which is larger than the nilpotent class and it
has many interesting properties. The definition and some basic properties of solvable

groups are listed below.
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Definition 2.42 [25] A group G is said to be solvable (or soluble) if it has a series

1 =Gy 4G, €... 9G, = G in which each factor G;11/G; is abelian.

Note that every abelian group is solvable.

Theorem 2.43 [17] Any subgroup H of a solvable group G is solvable.

Theorem 2.44 [17] (Burnside Theorem) If |G| = p®q® for some primes p and q,

then G is solvable.

The definition and basic properties of the class of supersolvable groups are listed

below.

Definition 2.45 [25] A group G is said to be supersolvable (or supersoluble ) if it

has a normal cyclic series, i.e. a series of normal subgroups whose factors are cyclic.

Note that every supersolvable group is solvable.

Theorem 2.46 [14] Supersolvable groups are closed under passage to subgroups, quo-

tients, and direct product.

Theorem 2.47 [5] Assume that G/H is supersolvable and all mazimal subgroups of

any Sylow subgroup of H is normal in G . Then G is supersolvable.

Theorem 2.48 [20]/Let G be a group of odd order. If all subgroups of G of prime

order are normal in G, then G is supersolvable.

Theorem 2.49 [14] Let G be a group with normal subgroups H and K. If G/H and

G/K are supersolvable then G/(H N K) is supersolvable.
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Theorem 2.50 [14] Let G be any group and N < G. If N is cyclic and G/N is

supersolvable then G is supersolvable.

Theorem 2.51 [20] Every finite p-group is supersolvable.

Theorem 2.52 [20] Ewvery finite nilpotent group is supersolvable.

Remark 2.53 For finite groups the following inclusion applies: Nilpotent C Super-

solvable C Solvable.

According to Ballester-Bolinches[10], Doerk determined the structure of minimal
non-supersolvable groups (a non-supersolvable group has the property that all of its

proper subgroups are supersolvable).

The following theorem is regarding the minimal non-supersolvable group.

Theorem 2.54 [10] Let G be a minimal non-supersolvable group, then G has a unique

normal Sylow subgroup P.

Next are definitions of Frattini group and Fitting group.

Definition 2.55 [20] The intersection of all mazximal subgroups of a group G is called

the Frattini subgroup of G denoted by ®(G),i1.e®(G) = N M.

max M

Theorem 2.56 [20] ®(G) is nilpotent for any group G.

Definition 2.57 [20]The Fitting subgroup of a group is defined as the unique largest

normal nilpotent subgroup of G denoted by Fit(G).

The next two theorems are on Fitting and Frattini subgroups of a group G and
following these some relations between these two concepts are given.
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