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SIMULASI DAN UJIKAJI PENALAAN MASUKAN DAN EKZOS ENJIN 

AUTOMOTIF UNTUK PENAMBAHBAIKAN TORK PADA KELAJUAN 

RENDAH  

ABSTRAK 

 Enjin kereta penumpang moden telah "dikecilkan saiz" untuk penjimatan 

bahan api, maka memerlukan putaran enjin yang tinggi untuk mendapatkan prestasi 

yang baik. Pengguna lebih gemar memperoleh tork pada putaran enjin rendah untuk 

pemanduan yang lebih baik. Enjin yang dikaji mempunyai 4 injap pada setiap 

silinder, 1.6 liter kapasiti, 2 profil sesondol masukan dan 2 ruang masukan yang 

berlainan panjang. Ia telah dimodel dan disahkan dengan prestasi enjin (kuasa, tork, 

dan lain-lain); dan tekanan dari kebuk pembakaran, ruang masukan dan ruang ekzos 

untuk menentukan tahap keyakinan ramalan model tersebut. Model ini kemudiannya 

dioptimumkan torknya pada putaran enjin rendah dengan memanipulasi konfigurasi 

dan panjang ruang ekzos; diameter dan panjang ruang masukan. Didapati bahawa 

sistem ekzos asal adalah terlalu pendek dan memberikan pengecasan ekzos yang 

tidak sekata di antara silinder. Keputusan simulasi menunjukkan bahawa peningkatan 

2.7-5.6% dalam tork boleh direalisasikan dengan ruang ekzos yang panjang dan 

sistem ekzos yang mampu memberi pengecasan yang sekata di kalangan silinder. 

Peningkatan 2% tork boleh didapati dengan mengubah geometri ruang masukan 

kepada diameter yang lebih kecil. Enjin sasaran kemudiannya diubahsuai dengan 

ruang ekzos dan masukan. Keputusan menunjukkan peningkatan tork sebanyak 2.7-

4.5% pada kelajuan enjin yang lebih rendah dengan penalaan ruang ekzos. Kesan 

penalaan ruang masukan tidak ketara tetapi ia menunjukkan arah kecenderungan 

yang serupa seperti yang ditunjukkan oleh simulasi..  
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SIMULATION AND EXPERIMENTAL STUDIES OF INTAKE AND 

EXHAUST TUNING FOR AUTOMOTIVE ENGINE LOW-END TORQUE 

ENHANCEMENT 

ABSTRACT 

 Modern passenger car engines have been “down-sized” for improved fuel 

consumption, resulting in high speeds to obtain good performance. Consumers, 

however, are demanding improved low-end torque for improved drivability. The 

target engine; a 4 valve per cylinder, 1.6L engine with two intake cam profiles and 2 

intake runner lengths, was modeled and correlated with measured engine 

performance characteristics (power, torque, etc.); and pressure traces from 

combustion chamber, intake and exhaust manifolds to establish the confidence level 

in the model's prediction. The model was then optimised for low-end torque by 

manipulating exhaust manifold configuration, exhaust runner length, intake diameter 

and intake runner length. It was found that the original exhaust system is too short 

and gives uneven exhaust cross-charging among the cylinders. Simulation result 

indicated that a 2.7-5.6% improvement in torque could be realised with an evenly 

cross-charged and longer exhaust runner. A 2% torque improvement was predicted 

by changing the intake manifold geometry to smaller diameter. The target engine 

was subsequently modified with new set of exhaust manifold and intake runner. 

Result showed a torque improvement of 2.7-4.5% at lower engine speed over the 

base design by exhaust tuning. Effect of intake tuning was not significant but it 

showed a similar trend as indicated by simulation.  
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CHAPTER 1 INTRODUCTION 

1.1 Research Background 

 Internal combustion engine (ICE) technologies are likely to be the dominant 

power source for automobile for decades to come despite facing challenges from 

electric hybrids, electric powertrains, hydrogen fuel cell propulsion technology and 

etc. The higher cost and technological hurdles are the main reasons impeding the 

alternative systems to replace ICE for the time being (National Petroleum Council 

2012). Among these, the hybrid system is the most likely to slowly replace ICE-only 

systems; and even then it still uses ICE technology. 

 During the time when fuel was cheap and car taxes were low, car 

manufacturers were not very concerned about engine efficiency, and as a result 

preferred bigger engines for more power. The development cost of bigger engines 

was less compared to doing research and development to improve the performance of 

smaller and more efficient engines (Baker 2002). However, due to fluctuations in 

fuel prices and higher taxes imposed on vehicle, many people opt to buy smaller and 

more efficient vehicles to reduce the transportation costs.  

 In Malaysia, present (year 2014) selling price of RON95 petrol cost RM2.10 

compared to RM 1.20 of RON97 petrol in year 2000. The Malaysian government 

also imposes higher tax rate on bigger vehicles to compensate for the impact of such 

vehicles on the environment. According to Table 1.1, annual road tax rates for 

vehicles with engine capacity higher than 1600cc are about double the road taxes of 

vehicles with engine capacity less than 1600cc. Excise duty for imported motor cars 

above 2500cc are also higher i.e. 105% compared to 75% for vehicle less than 

1800cc (Malaysia Automotive Association n.d.).  
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Table 1.1: Road tax rate of individually owned motocar in Peninsular Malaysia  

Engine capacity (cc) Road tax rate 

< 1,000 RM20  

1001 – 1200 RM55  

1201 – 1400 RM70  

1401 – 1600 RM90  

1601 – 1800 RM200.40 to RM280 

1801 – 2000 RM280.50 to RM380 

2001 – 2500 RM381 to RM880 

2501 – 3000 RM882.50 to RM2130 

3001 – 5000 RM2134.50 to RM11130 

Source: Jabatan Pengangkutan Jalan Malaysia 2009 
 

 Another challenge faced by vehicle manufacturers is the emission standard 

where the new vehicle models must not exceed the limit of the amount of pollutants 

that can be released into the environment. Engine downsizing is recognised to be one 

of the most effective ways to reduce CO2 emission and to meet the regulations 

(Pallotti et al. 2003) (Lecointe & Monnier 2003).  

 Engine downsizing is the reduction of engine capacity by using smaller 

displacement engine. Smaller engine will have lower fuel consumption hence 

reduced CO2 emission. Other than that, smaller engine will have lower pumping loss 

and friction loss which contribute to better engine efficiency (Pagot et al. 2006). 

However, output power of downsized engine needs to be remained for the 

satisfaction of consumer; hence air boosting technique such as supercharging or 

turbocharging is the solution to gain back the power. Engine downsizing can reduce 

emissions by 10% when compared to the base engine (Arif Basheer 2010).  

 Consumer requirements of low vehicle operating cost along with the need to 

comply with legal regulations will likely result in an increase in the sales of small, 
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efficient vehicles. Figure 1.1 shows that more than 60% of cars in Europe in year 

2009 were less than 1600cc and Frost & Sullivan predicted that the figure will go up 

to 80% by the year 2016. 

 

Figure 1.1: Share of gasoline engines' displacement ranges in liters (Arif Basheer 
2010). 

1.2 Low-End Torque 

 However, small engines require high speeds to obtain good performance. 

Most of them produce peak power at engine speeds above 6000rpm and peak torque 

at engine speeds above 4000rpm as shown in 0. Consumers are demanding better 

low-end torque as automotive SI engines run under low load and low speed under 

most of the driving conditions (França 2009). Consumers also request for improved 

drivability i.e. smoothness of power delivery during cruising and mild acceleration 

that fall into lower engine speed range. Based on the specifications of the target 

engine in this research (i.e. Campro CPS engine in Proton Exora), calculations based 

on the gear ratio show that the engine rotates at ≈2500-3250rpm when cruising at 

highway speeds as in Table 1.2. 
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Table 1.2: Proton Exora engine speed at corresponding vehicle speed  

Vehicle speed A/T engine speed M/T engine speed 

90km/h 2478rpm 2669rpm 

110km/h 3029rpm 3263rpm 
 

 The most efficient operating point for SI engines is at lower engine speed as 

shown in brake specific fuel consumption (BSFC) contour in Figure 1.2. The 

performance map shows that 2000-3000rpm part load is the most efficient operating 

point of a 4 cylinders SI engine. This is due to the lower piston speed which results 

in lower engine friction compared to high speed operation (Heywood 1988). Other 

than the major friction contribution by piston assembly, frictions from crankshaft, 

valve train and other accessories also decrease at lower engine speeds as shown in 

friction breakdown curves in Figure 1.3  

 

Figure 1.2: Performance map for 2 liter 4 cylinders SI engine (Heywood 1988). 
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Figure 1.3: Motored FMEP vs. engine speed of a  4 cylinders SI engine (Heywood 
1988). 

 Automotive engines with good low-end torque will have the advantage of: 

i. better drivability, i.e. smooth power delivery at cruising and acceleration  

ii. better torque at most common operating point 

iii. operating at better efficient point hence lower fuel consumption  

1.3 Problem Statement 

 Due to the increasing operating cost of personal transportation especially on 

bigger capacity vehicle, consumers tend to buy smaller capacity passenger cars. Car 

manufacturers tend to produce smaller vehicle for legal compliance. These have lead 

to the trend of owning small and efficient vehicles. Engine downsizing, i.e. smaller 

displacement engine along with turbocharger is the best solution.  

 However, turbocharging has the drawback on low-end torque and turbo lag 

(Pagot et al. 2006) (Pallotti et al. 2003). Small engines also have their peak 
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performance at high speeds while the consumers are demanding greater low-end 

torque for fuel economy and better drivability.  

 Low-end torque of the naturally aspirated small automotive engine will be 

focused in the research. It can serve the need of market and can be a good base 

engine for turbocharging that encounters turbo lag and less effective at low-end.  

1.4 Objectives 

The objectives of this research are as follow: 

i. To develop a validated engine model and perform parametric study to 

improve the low-end performance of a 4-stroke 4 cylinders spark ignition 

engine. 

ii. To modify the test engine for low-end torque enhancement and test the 

performance on a dynamometer. 

1.5 Scope of Research 

The scope of this research is as follows: 

i. Setting up a workable test cell with proper instrumentation systems such as 

dynamometer controller, data acquisition system, pressure sensor and etc. 

ii. Engine performance tests in order to have baseline data for analysis and to 

be used as input to the engine model. 

iii. Develop an engine model by using Ricardo WAVE 1-D engine and gas 

dynamics simulation software; and validate the model with experimental 

data. 
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iv. Using the engine model to analyse the low-end performance of the original 

engine and perform parametric study to improve the low-end torque of the 

engine. 

v. Modify the engine according to result of parametric study and test the final 

performance of modified engine on dynamometer. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Overview 

 This Chapter starts with few methods that could improve low end 

performance of a SI automotive engine. Then manifold tuning is discussed in detail 

which includes the background of manifold tuning, pressure wave's nature and its gas 

dynamic effect, followed by the principle of intake and exhaust tuning on four-stroke 

engine. 

2.2 Solutions for Low-End Torque 

 There are several ways to improve low-end performance of an automotive 

engine such as forced induction, valve timing and profile adjustment and manifold 

tuning. 

2.2.1 Forced Induction 

 Supercharging and turbocharging are power boosting techniques which 

supply compressed higher density air to the engine. The maximum power of an 

engine is limited by the amount of fuel which can be efficiently burnt in the engine. 

The amount of fuel is limited by the amount of air being inducted to the engine based 

on the engine management system's air fuel ratio setting.  By pressurising the inlet 

air, the mass flow rate of air increases and the corresponding fuel flow also increases. 

This leads to the increment of power output of the engine (Stone 1999). Eqn. (2.1) 

shows how the power, P of a 4-stroke engine is affected by inlet air density, ρa,i 

(Heywood 1988):  

P=
ηfηvNVdQHVρa,i(F/A)

2
 (2.1) 
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Where: 

ηf is fuel conversion efficiency 

ηv is volumetric efficiency 

Vd is displacement volume 

N is crankshaft rotational speed 

QHV is heating value of fuel 

F/A is fuel air ratio 

 In a supercharger, part of the engine output power is used to turn the 

compressor hence there will be fuel consumption penalty in the system. In a 

turbocharger, energy from exhaust stream is used to turn the turbine which is 

connected to a compressor through a common shaft to provide the compressed air. 

Therefore turbocharging is more efficient because it uses the energy available in 

exhaust waste heat to run the turbine-compressor. However, transient response or 

turbo lag is one of the challenges in turbocharging as time is needed for the exhaust 

gas to accelerate the turbine to generate increased boost (Gurney 2001) (Hamilton et 

al. 2009).  A variable geometry turbocharger is a good solution for better low-speed 

torque and to reduce the turbo lag effect but there will be a challenge to introduce 

this in a low cost gasoline engine (Frost & Sullivan 2012).  

 These power boosting techniques are more challenging in spark ignition (SI) 

engines compared to compression ignition (CI) engines due to the wider air flow 

range (due to wider speed range and throttling) and require more careful control to 

prevent knock occurring (Stone 1999). Knock tendency is higher when high end-gas 

pressure and temperature exist in the combustion process. Tubocharging or 

supercharging a SI engine will increase the inlet air pressure and temperature which 

in turn gives higher end-gas pressure and temperature. Often, operating parameters 
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of a turbocharged SI engine are adjusted to reduce the knock impact. Lower 

compression ratio, richer air fuel ratio and retarded spark timing are common 

approaches to deal with knock problem but all these approaches will have a negative 

impact on fuel efficiency and prevents the full potential of boosting being realised in 

SI engines. Their usage is more common in diesel engines because they do not have 

knock issues (Heywood 1988). 

2.2.2 Valve Timing and Lift Profile 

 Valves and ports are the flow restrictions in intake and exhaust systems of a 

4-stroke engine. Therefore valve timing and lift profile play an important role in 

engine performance by regulating the air flow into and out from the cylinder in order 

to have better gas exchange process and maximise volumetric efficiency. However, it 

can only optimise the performance at particular engine speed and will compromise 

power over the rest of the speed range. Hence considerable effort has been devoted 

to develop variable valve timing (VVT) mechanisms to minimise the valve timing 

compromises (Stone 1999).  

 VVT mechanisms alter the valve events so that the engine can be tuned for 

different engine speed range. Common VVT mechanisms include valve event 

phasing (opening and closing events are moved equally) and switching between 2 

different cam profiles. Perodua Viva and Myvi DVVT systems feature the valve 

event phasing mechanisms on intake valves while Proton Campro CPS engine 

features switching mechanism between 2 different cam profiles on intake camshaft. 

The best VVT system would be the "camless engine" which uses electromagnetic, 

hydraulic, or pneumatic actuators to open the valves; hence any profile could be 

obtained at any speed range. However the camless system has its challenges such as 
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accuracy at high speed, weight and packaging issues, high cost, and unsafe operation 

in case of electrical problems.  

 The targeted engine in this research, Campro CPS engine features cam 

profile switching mechanism where low lift cam will switch to high lift cam at high 

engine speed (section 3.2). This allows us to modify the low lift cam profile to 

further improve low end torque. However, altering the cam profile was not 

considered in this research due to the high cost and availability of the service locally. 

2.2.3 Manifold Tuning 

 Engine performance can also be enhanced by gas dynamic effects in the 

manifolds, i.e. pressure wave charging method via pulse originating from valves 

opening and closing movements. When the valves open, a pressure wave (either 

compression or expansion) is generated and moves in the intake or exhaust manifold 

until it meets the other end or meets a junction; and is then reflected back. If the 

manifold length is tuned correctly, a reflected compression wave will arrive at the 

intake valves shortly before intake valves close (IVC), increasing the amount of air 

being inducted into cylinder. Correspondingly, an expansion wave arriving at 

exhaust valves during valve overlap period will create a positive scavenging gradient 

relative to intake manifold and aid in the expulsion of residual gas (Hiereth & 

Prenninger 2007). The length of the manifold will determine the engine speed which 

obtains the maximum benefits from the pulsating flow.  

 Campro CPS engine features VIM (variable length intake manifold) that 

takes advantage of the different reflection lengths to improve engine performance at 

different speed ranges. This allows us to improve low end performance by tuning the 

geometry of intake system of lower engine speed range. 
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2.3 Manifold Tuning Background 

 As the pressure wave action is defined by the periodic nature of intake and 

exhaust processes, the gas exchange process is extremely dependent on engine speed. 

Therefore it is possible to tune the engine manifold to have specific power 

characteristic as a function of speed. An example of manifold tuning is that a given 

2.0 liter natural aspirated engine might be used in a normal passenger car, a sports 

car, a multipurpose vehicle (MPV), and in a 4 wheel drive (4WD) vehicle each with 

a separate tuning. While new engines might not be designed very often, manifold 

redesign becomes important to cater for these different requirements from the only 

engine (Winterbone & Pearson 2001). 

 It has been long known that the manifold design has large effect on engine 

performance. However, induction tuning of a SI engine was severely constrained 

until the introduction of multipoint fuel injection system. Carburetted or single-point 

fuel injection system delivers fuel to the upstream of manifold; has high tendency to 

form fuel films along the manifold wall (Winterbone & Pearson 2001). Due to the 

geometric variation of each runner, air fuel ratio in each cylinder will vary. 

Multipoint fuel injection or port fuel injection system injects fuel to the intake port of 

each cylinder to precisely control the mixture strength delivered to the cylinders. 

With this technology, fuel no longer is transported from throttle body through the 

entire manifold. Manifold design can be optimised for air flow alone to create 

ramming or tuning effect without having the fuel flow constraint (Heywood 1988). 

 Manifold tuning for low end torque can have the advantage of having longer 

gear ratio in the transmission so that the engine operates at lower speed while 
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maintaining the same vehicle speed. With this, engine friction and pumping losses 

are lower and thus the engine operates with better fuel efficiency. 

2.4 Pressure Wave 

 Pressure waves are of either compression waves or expansion waves. Some 

of the literatures describe compression waves as compression pulses, exhaust pulses 

or ramming waves. Expansion waves are often called as rarefaction waves, suction 

pulses, sub-atmospheric pulses or intake pulses (Blair 1999). 

 Pressure wave's motion will be discussed in this section; followed by the 

reflection of pressure waves at junctions. The purpose of this is to give an overview 

of the nature of pressure wave's in engine manifold.  

2.4.1 Pressure Wave's Motion in Pipe 

 Figure 2.1(a) shows compression pressure wave that travels toward the right 

having pressure of pe which has magnitude higher than atmospheric pressure po. The 

compression wave propagates at the velocity of 𝛼e while the gas particles move in 

the same direction at velocity of ce. This situation is similar to the exhaust blowdown 

process at the moment when exhaust valves open. Exhaust blowdown creates a 

compression wave towards exhaust runner while the exhaust gas flows in the same 

direction. 
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Figure 2.1: Pressure waves propagation in pipe (Blair 1999).  

 Expansion pressure wave in Figure 2.1(b) at pressure pi (lower magnitude 

than po) propagates at velocity 𝛼i towards the right. The gas particles move at gas 

particle velocity of ci but in opposite direction of the wave propagation. This 

situation is similar to intake process when the intake valves open, piston downward 

motion create a suction wave to the intake runner then the plenum while the fresh air 

flows into the cylinder direction. 

2.4.2 Wave Propagation Velocity and Gas Particle Velocity 

 Absolute propagation velocity, 𝛼 of any point on a wave is the sum of local 

acoustic velocity, a and the local gas particle velocity, c: 

α=a+c (2.2) 

Assuming the process is isentropic,  

T
To

=�
p
po
�

γ-1
γ

=(P)
γ-1
γ  (2.3) 

P is pressure ratio, i.e. p/po. Then, 
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a
ao

=
�γRT

�γRTo
=�

T
To

=P
γ-1
2γ  (2.4) 

Earnshaw (1860) and Bannister (1958) (cited in Blair 1999) showed the gas particle 

velocity, c as:  

c=
2ao

γ-1
�P

γ-1
2γ -1� (2.5) 

By substituting eqn. (2.4) and eqn. (2.5) into eqn. (2.2),  

α=a+c=aoP
γ-1
2γ +

2ao

γ-1
�P

γ-1
2γ -1�=ao �P

γ-1
2γ �

γ+1
γ-1

� -
2

γ-1
� (2.6) 

Reference acoustic velocity, ao is defined as: 

ao=�γRTo (2.7) 

Let say the pressure wave travels in undisturbed air of standard atmospheric 

condition, i.e. 101.325kPa and 293K; the reference acoustic velocity, ao is: 

ao=�γRTo=√1.4×287×293 =343.1m/s (2.8) 

i. Compression Wave 

 For a compression wave of pressure ratio, P of 1.2 that travels in 

undisturbed air, the gas particle velocity, c and wave propagation velocity, 𝛼 are as 

below: 

c=
2ao

γ-1
�P

γ-1
2γ -1�=

2×343.1
1.4-1

�1.2
1.4-1
2×1.4-1�=45.3m/s (2.9) 

α=ao �P
γ-1
2γ �

γ+1
γ-1

� -
2

γ-1
�=343.1 �1.2

1.4-1
2×1.4 �

1.4+1
1.4-1

� -
2

1.4-1
�=397.4m/s (2.10) 
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The compression wave at velocity 397.4m/s is moving faster than reference acoustic 

velocity, ao while the air particle is moving at slower speed of 45.3m/s in the same 

direction.  

ii. Expansion Wave 

 For an expansion wave of pressure ratio, P of 0.8 that travels in undisturbed 

air, the gas particle velocity, c and wave propagation velocity, 𝛼 are as follows: 

c=
2ao

γ-1
�P

γ-1
2γ -1�=

2×343.1
1.4-1

�0.8
1.4-1
2×1.4-1�=-53.8m/s (2.11) 

α=ao �P
γ-1
2γ �

γ+1
γ-1

� -
2

γ-1
�=343.1 �0.8

1.4-1
2×1.4 �

1.4+1
1.4-1

� -
2

1.4-1
�=278.5m/s (2.12) 

The expansion wave at velocity 278.5m/s is moving slower than reference acoustic 

velocity, ao while the air particle is moving at slower speed of 53.8m/s at the 

opposite direction (- sign).  

2.5 Pressure Wave Reflection 

 Pressure waves reflect at boundaries of the inlet or exhaust duct such as 

open or closed end of a pipe, a sudden or gradual change in flow area and pipe 

branches. Any of these reflections would initiate a superposition process as the 

reflected waves move oppositely to the incident pressure waves. A simple example 

of pressure wave reflection is echo caused by sound reflection on a closed end 

surface. 

 This section will focus on the various reflection phenomena that might 

occur in an engine manifold due to changes in duct geometry. The purpose is to 

illustrate the wave reflection mechanism in internal combustion engines for better 

understanding. The discussions are far from complete description of the processes 
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and are based on simple equations with some assumption which might give 

inaccurate mass flow rate at certain cases but it serve as good overview of how the 

pressure waves reflect or change its form when encounter junctions. 

2.5.1 Pressure Wave Reflection at the Open End of a Pipe 

 The main feature of a simple open end boundary is that the pressure at pipe 

exit is equal to the atmospheric pressure, i.e. reference pressure, po. A pressure wave 

reflected at an open end is reversed thus an incident compression wave is reflected as 

an expansion wave at the open end of pipe, and vice versa (Winterbone & Nichols 

1985). The isometric distance-time pressure diagram in Figure 2.2 shows the 

reflection of an incident compression wave at the open pipe end results in a reflected 

expansion wave. 

 

Figure 2.2: Pressure wave reflection at open end (Winterbone & Nichols 1985). 

2.5.2 Pressure Wave Reflection at the Closed End of a Pipe 

 There is no flow transmitted at the closed end boundary, hence the velocity 

at the closed end is zero. The reflected wave at closed end boundary is the same and 

equal magnitude as incident wave. This is because there is no flow at the closed end 
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and the incident wave must be sent back. This is shown in Figure 2.3. The reflection 

of wave at b results in an increment of pressure, which is caused by the momentum 

reversal of the wave (Winterbone & Nichols 1985). 

 

Figure 2.3: Pressure wave reflection at closed end (Winterbone & Nichols 1985). 

2.5.3 Pressure Wave Reflection at Sudden Area Change 

 From gas dynamic standpoint, a sudden change in pipe area may be 

considered as a 1-dimensional problem. For a pressure wave that propagates through 

an area change within a duct, change in amplitude of the transmitted pulse and a 

reflection of wave occur. 

 Figure 2.4 shows the sudden area change schematic diagram. Subscript "1" 

and "2" represent the upstream and downstream of area change; "i" is the incident 

pulse where "r" is the reflected pulse; and "s" is the superposition condition. 
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Figure 2.4: Sudden expansion and sudden contraction in pipe flow (Blair 1999). 

 Benson suggested a simple theoretical solution for such junctions. He 

assumed that the process is isentropic and the superposition pressure, ps at the 

junction is the same in both pipes i.e. ps1=ps2 (Benson 1982). Such assumption may 

have its limitation but Blair claimed that it is effective if the area ratio, Ar is in the 

range of 1/6 < Ar < 6. Based on Benson's simple "constant pressure" assumption, the 

reflected wave's pressure ratio, Pr are: 

Pr1=�
(1-Ar)Pi1

γ-1
2γ +2ArPi2

γ-1
2γ

1+Ar
�

2γ
γ-1

 (2.13) 

Pr2=�
2Pi1

γ-1
2γ -(1-Ar)Pi2

γ-1
2γ

1+Ar
�

2γ
γ-1

 (2.14) 

 Lets consider examples of sudden enlargement of Ar = 2 and sudden 

contraction of Ar = 1/2; incident wave at upstream is either compression wave of 

pressure ratio, Pi =1.2 or expansion wave of Pi = 0.8. The downstream incident wave 

is still air, hence Pi2 = 1. The gas involved is air and the specific heat ratio, 𝛾 = 1.4. 



20 

i. Compression Wave at Sudden Enlargement  

For a compression wave of pressure ratio 1.2 that propagate through a sudden 

enlargement of double the flow area, Ar = 2; the transmitted wave into downstream 

pipe 2 is in compression with reduced pressure ratio of Pr2 = 1.13. The reflected wave 

towards the upstream pipe 1 is an expansion wave at Pr1 = 0.94. 

ii. Expansion Wave at Sudden Enlargement  

For an expansion wave of pressure ratio 0.8 that propagate through a sudden 

enlargement of double the flow area, Ar = 2; the transmitted wave into downstream 

pipe 2 is in expansion with diminish pressure ratio of Pr2 = 0.862. The reflected wave 

towards the upstream pipe 1 is a compression wave at Pr1 = 1.076. 

iii. Compression Wave at Sudden Contraction  

For a compression wave of pressure ratio 1.2 that propagate through a sudden 

contraction of half the flow area, Ar = 1/2; the transmitted wave into downstream 

pipe 2 is in compression with increased pressure ratio of Pr2 = 1.274. The reflected 

wave towards the upstream pipe 1 is also compression wave at Pr1 = 1.063. 

iv. Expansion Wave at Sudden Contraction  

For an expansion wave of pressure ratio 0.8 that propagate through a sudden 

contraction of half the flow area, Ar = 1/2; the transmitted wave into downstream 

pipe 2 is in stronger rarefaction wave with pressure ratio of Pr2 = 0.741. The reflected 

wave towards the upstream pipe 1 is also a rarefaction wave but weaker magnitude, 

i.e. at Pr1 = 0.929. 
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 Benson theory is clearly too simple to be accurate in all circumstances but it 

is a very good guide to determine the magnitude of transmitted and reflected wave. A 

more theoretical approach that does not assume constant pressure at discontinuity of 

sudden area change and considers the flow at sudden expansion as non isentropic 

process as the expanding flow will leave turbulent vortices and give rise to particle 

flow separation. This approach is highly iterative and requires a computer to solve 

the equations. Blair has done a comparison between the constant pressure theory and 

the more complex theory. The results showed that the error between the air mass 

flow rate between these two theories is less than 10%, i.e. 0.3% error for sudden 

expansion and 9.1% for sudden contraction case (Blair 1999). 

2.5.4 Pressure Wave Reflection at Branches of Pipe  

 There are two approaches for multi-pipe junctions, i.e. constant pressure and 

the pressure loss approaches. Constant pressure assumption is acceptable for diesel 

engine simulations because of the lower flow velocity in diesel engine. For gasoline 

engines, gas flow velocity is higher and the pressure loss at the junction become 

significant as this is going to affect the engine volumetric efficiency (Winterbone & 

Pearson 2000).  

 Similar with sudden area change, Benson suggested that the superposition 

pressure at all pipe ends of the branch is uniform, i.e. Ps1 = Ps2 = ... = Psn. The process 

is assumed to be isentropic (Benson 1982). A sketch of 3-way branch is shown in 

Figure 2.5. Any inward propagation of pressure wave towards the branch is regarded 

as "positive" and vice versa. 
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Figure 2.5: Pressure wave propagation at 3-way branch (Blair 1999). 

 Based on the assumption above, reflected wave's pressure, Pr are as below: 
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�
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Where: 

At is total area, i.e. A1 + A2 + A3 

Let's look at some simple examples of 3-way branch to understand how the pressure 

wave propagation at multi-pipe junction. For simplicity, all of the pipes are of equal 

area and the gases involved are air only. 

i. Compression Wave Arriving at one of the Pipes 
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An incident compression wave of pressure ratio, Pi1 = 1.2 originated from pipe 1 and 

the condition of the other 2 pipes undisturbed, i.e. Pi2 = Pi3 = 1. The outcome is 

similar to sudden expansion. Compression wave are transmitted to pipe 2 and 3 at 

pressure ratio, Pr2 = Pr3 = 1.13. Expansion wave of Pr1 = 0.94 is reflected back into 

pipe 1.  

ii. Compression Waves Arriving at Two of the Pipes 

Incident compression waves of pressure ratio, Pi1 = Pi2 = 1.2 from pipe 1 and pipe 2 

move toward the 3-way branch. The condition of the pipe 3 is undisturbed, i.e. Pi3 = 

1. The outcome is similar to sudden contraction. Compression wave is transmitted to 

pipe 3 at increased pressure ratio of Pr3 = 1.274. Reflected waves back into pipe 1 

and 2 are also compression waves but at weaker pressure ratio, Pr1 = Pr2 = 1.0632.  

 Constant pressure assumption does not account the angles between the pipes 

at the branch. Whenever there is a change in flow direction when moving through the 

branch, there must be some pressure loss with entropy gains (Fleck et al. 1998). 

Again, the complete solution that considers the pressure loss and entropy gain is 

highly iterative and requires the computer to solve the equation. According to Blair's 

(1999) comparison of these 2 approaches, the amplitudes of the reflected pressure 

waves are quite similar but more serious errors occur in the mass flow rate 

calculation. 

2.6 Intake Tuning 

 During the intake stroke, piston descends and creates a low pressure region 

in the cylinder. This generates an expansion wave that propagates to the intake pipe. 

When the expansion wave reaches the plenum; a bigger volume junction, it reflects 
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back to the inlet valves as compression wave as if pressure reflection at the sudden 

expansion junction. If the arriving of a compression wave at intake valves is at the 

short period before intake valve closing, IVC, the intake mass flow rate into the 

engine can be boosted. Intake pressure before IVC is the dominant effect in intake 

tuning (Sammut & Alkidas 2007). 

 Ohata and Ishida showed that the volumetric efficiency of an engine is 

highly influenced by the pressure at the inlet valve before the IVC (Ohata & Ishida 

1982). The volumetric efficiency, ηv  is approximated by: 

ηv=ηvo+Cpm (2.18) 

Where: 

ηvo the volumetric efficiency if pressure at the inlet valve is atmospheric 

C ramming coefficient 

pm mean pressure in the significant period, i.e. 50 degrees before IVC 

Therefore, the objective of intake tuning is to provide high pressure at IVC to 

improve the volumetric efficiency. 

 Vitek and Polasek (2002) claimed that it was confirmed that by computation 

as well as by measurement that it is better to have pressure peak at the end of the 

intake stroke. A computational result of optimal intake length (that give best output 

power) at each engine speed is shown in Figure 2.6. All the curves show peak 

pressure before IVC. Some of the pressure curves were noticed to have pressure back 

flow but yet still give the best output power. This shows that pressure peak before 

IVC is more significant than peak pressure at IVO. 


