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PENAMBAHBAIKAN KUASA DISKRIMINASI DAN SERAKAN 
PEMBERAT DALAM ANALISIS PENYAMPULAN DATA 

BERBILANG KRITERIA 

ABSTRAK 

Kekurangan keupayaan mendiskriminasi dan kelemahan pengagihan pemberat kekal 

sebagai isu utama dalam Analisis Penyampulan Data (DEA). Semenjak model DEA 

berbilang kriteria (MCDEA) pertama yang dibentuk pada akhir tahun 1990an, hanya 

pendekatan pengaturcaraangol; yakni, GPDEA-CCR dan GPDEA-BCC telah 

diperkenalkan bagi menyelesaikan masalah berkenaan dalam konteks berbilang 

kriteria. Kajian ini mendapati bahawa model GPDEA adalah tidak sah dan 

seterusnya menunjukkan bahawa model DEA berbilang criteria dwi-objektif (BiO-

MCDEA) yang dicadangkan adalah lebih baik daripada model GPDEA dalam aspek 

kuasa mendiskriminasi dan pengagihan pemberat, di samping memerlukan kod 

komputasi yang sedikit. Sebagai tambahan, kajian ini mencadangkan suatu model 

susulan yang dikenali sebagai BiO-WeR yang membenarkan penggunaan sekatan 

pemberat tambahan (WeR) supaya nilai pemberat input-output dapat diagihkan 

dengan lebih saksama berbanding dengan pengagihan yang diperolehi pada 

permulaan penggunaan model BiO-MCDEA. Akhir sekali, konsep teori set kabur 

digunakan untuk mengambil kira ketidakpastian pemberat output yang berkaitan. 

Kajian ini kemudiannya melaksanakan model BiO-WeR dengan sekatan kabur 

terhadap pemberat output sebagai usaha untuk mengurangkan bilangan DMU yang 

cekap dan meningkatkan kuasa mendiskriminasi. Suatu aplikasi dalam kajian 

kebergantungan tenaga di antara 25 negara Kesatuan Eropah digunakan untuk 

menjelaskan keberkesanan dan menunjukkan cara perlaksanaan kaedah yang 

dicadangkan. 
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IMPROVEMENT OF DISCRIMINATION POWER AND 
WEIGHT DISPERSION IN MULTI-CRITERIA DATA 

ENVELOPMENT ANALYSIS 

ABSTRACT 

Lack of discrimination power and poor weight dispersion remain major issues in 

Data Envelopment Analysis (DEA). Since the initial multiple criteria DEA 

(MCDEA) model developed in the late 1990s, only goal programming approaches; 

that is, the GPDEA-CCR and GPDEA-BCC were introduced for solving the said 

problems in a multi-objective framework. This study finds GPDEA models to be 

invalid and demonstrates that the proposed bi-objective multiple criteria DEA (BiO-

MCDEA) outperforms the GPDEA models in the aspects of discrimination power 

and weight dispersion, as well as requiring less computational codes. In addition, this 

study proposed an extension model named as BiO-WeR that provides additional 

weight restrictions (WeR) in order to distribute the values of input-output weights 

more evenly than those obtained by the initial BiO-MCDEA model. Lastly, the 

concept of fuzzy set theory is used to account for the uncertainty in the 

corresponding output weights. This study then implements the BiO-WeR model with 

fuzzy restrictions on the output weights as a means to further reduce the number of 

efficient DMUs and improve the discrimination power. An application of energy 

dependency among 25 European Union member countries is further used to describe 

the efficacy and demonstrate the implementation of the proposed approaches. 
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CHAPTER 1 

INTRODUCTION 

Data envelopment analysis (DEA) was first proposed by Charnes, Cooper, and 

Rhodes (1978) and remained the leading technique for measuring and evaluating the 

relative efficiencies of a set of homogenous decision making units (DMUs) based on 

their respective multiple inputs and outputs. The inputs can consist of labour, 

materials, energy, machines, and other resources, while the by-product of outputs 

may consist of finished products, services, customer satisfaction, and other forms of 

outcomes.  

DEA has been the fastest growing discipline in the past three decades covering 

easily over a thousand papers in the Operations Research and Management Science 

discipline. There are a large number of DEA applications in environmental 

performance, especially at the national level. Many researchers began to provide a 

variation of one of the following carbon models and measures: CO2 emission 

intensity, CO2 emissions per capita, carbonization index, and energy intensity.  

A common value of relative efficiency when there are multiple inputs and 

outputs can be expressed as 

ܶℎ݁	݃݅݁ݓℎ݀݁ݐ	݉ݑݏ	݂݋	ݏݐݑ݌ݑ݋
ܶℎ݁	݃݅݁ݓℎ݀݁ݐ	݉ݑݏ	݂݋	ݏݐݑ݌݊݅ . 

By using this notion, the efficiency measurement is generalized for a set of 

homogenous DMUs from a single-output and single-input to multiple-outputs and 

multiple-inputs. The DMU under evaluation (the target DMU) is designated as DMUo 

where o ranges over 1, 2, … ,݊.  
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1.1 DEA model 

Consider the relative efficiency of n DMUs which use m inputs (ݔ௜௝, ݅ = 1, … ,݉, ݆ =

1, … , ݊) to produce s outputs (ݕ௥௝ , ݎ = 1, … , ,ݏ ݆ = 1, … , ݊). By assuming that the 

inputs-outputs data are nonnegative and at least one input and one output are 

positive, we solve the following fractional programming problem for each DMU to 

achieve measures of the input weights (ݒ௜ , ݅ = 1, … ,݉) and the output weights 

௥ݑ) , ݎ = 1, … ,   .as variables (ݏ

ݔܽ݉ ௢ߠ =
ଵ௢ݕଵݑ + ଶ௢ݕଶݑ + ⋯+ ௦௢ݕ௦ݑ
ଵ௢ݔଵݒ + ଶ௢ݔଶݒ + ⋯+ ௠௢ݔ௠ݒ

 

subject to: 

ଵ௝ݕଵݑ + ଶ௝ݕଶݑ + ⋯+ ௦௝ݕ௦ݑ
ଵ௝ݔଵݒ + ଶ௝ݔଶݒ + ⋯+ ௠௝ݔ௠ݒ

≤ 1,					݆ = 1, … ,݊, 

,ଵݑ ,ଶݑ … , ௦ݑ ≥ 0, 

,ଵݒ ,ଶݒ … ௠ݒ, ≥ 0,                                                                                           (1.1) 

where 

௥௝ݕ =amount of output r assigned to DMUj 

௥ݑ =weight assigned to output r 

௜௝ݔ =amount of input i assigned to DMUj 

௜ݒ =weight assigned to intput i. 

In DEA model (1.1), we use the optimal value of the objective function to 

evaluate the efficiency value of DMUo, which is equal to  

∗௢ߠ =
ଵ௢ݕ∗ଵݑ + ଶ௢ݕ∗ଶݑ + ⋯+ ௦௢ݕ∗௦ݑ
ଵ௢ݔ∗ଵݒ + ଶ௢ݔ∗ଶݒ + ⋯+ ∗௠ݒ ௠௢ݔ

. 
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According to the transformation approach proposed by (Charnes & Cooper, 

1962), a “linear fractional programing problem” can be modified into an equivalent 

linear programming problem, thus Model (1.1) can be replaced by the following 

linear programming problem,  

ݔܽ݉ ௢ߠ = ଵ௢ݕଵݑ + ଶ௢ݕଶݑ + ⋯+  ௦௢ݕ௦ݑ

subject to: 

ଵ௢ݔଵݒ + ଶ௢ݔଶݒ + ⋯+ ௠௢ݔ௠ݒ = 1, 

ଵ௝ݕଵݑ + ଶ௝ݕଶݑ + ⋯+ ௦௝ݕ௦ݑ ≤ ଵ௝ݔଵݒ + ଶ௝ݔଶݒ + ⋯+ ݆					,௠௝ݔ௠ݒ = 1, … ,݊, 

,ଵݑ ,ଶݑ … , ௦ݑ ≥ 0, 

,ଵݒ ,ଶݒ … ௠ݒ, ≥ 0.                                                                                           (1.2) 

We note that the scores of efficiency are independent of the units, in which the 

inputs-outputs are measured, thus establishing these units to be the same for every 

DMU. 

1.2 Problem Statement 

DEA has been one of fastest growing discipline in performance evaluation methods 

since the past three decades. Although DEA offers many advantages relative to other 

statistical methods, there are some drawbacks such as lack of discrimination power 

and the unrealistic weight distribution, which are still considered to be major issues 

that limit the interpretation and confidence on the generalizability of DEA results.  

The problems above are more pronounced in environmental performance 

evaluation. Although DEA provides a readily available framework, it is not so 

straight forward as outputs in environmental efficiency models make up both 
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desirable and undesirable outputs. For instance, higher GDP index tend to come with 

higher CO2 emissions. This means that desirable outputs have to be sacrificed so that 

inputs can be reallocated for minimization of undesirable outputs (Hernandez-

Sancho, Picazo-Tadeo, &Reig-Martinez, 2000). 

Despite existing approaches such as assurance region (AR) procedure (Khalili, 

Camanho, Portela, & Alirezaee, 2010), cone ratio envelopment (Cao & Kong, 2010), 

super-efficiency model (Andersen & Petersen, 1993), and cross-efficiency evaluation 

technique (Wang & Chin, 2011) claiming to solve the drawbacks, they still possess 

the same problems. AR and cone ratio techniques are highly dependent on the 

measurement of the inputs-outputs units, which may lead to infeasible solutions. On 

the other hand, both the methods incorporate extra constraints to the DEA model; 

therefore, making it harder to solve the problem. The super-efficiency DEA model 

may obtain infeasible solutions for efficient DMUs; particularly, under variable 

returns to scale (VRS) model. With respect to cross-efficiency evaluation techniques, 

the non-uniqueness of DEA weights could provide a large number of multiple 

optimal solutions for DEA models. 

It can be concluded that the existing methods still possess the following 

problems: 

 Lack of discrimination among efficient DMUs, hence yielding many 

DMUs to be efficient,  

 The unrealistic and poor weight distribution which may reveal that some 

input or output weights to possess zero values, hence implying that some of 

the variables were not used in the evaluation judgment in achieving the 

final ranking, and 
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 The need to sacrifice desirable outputs in the presence of undesirable 

outputs when keeping input levels at a minimal range in the context of 

sustainability and environmental performance.  

1.3 Research Objectives 

The research objectives of this study are as follows: 

 To improve the existing methods such as multi-criteria DEA (MCDEA) 

model (Li & Reeves, 1999) and goal programming DEA (GPDEA) models 

(Bal, Örkcü, & Çelebioglu, 2010) in terms of discrimination power and 

weight dispersion. This is achieved by proposing approaches that distribute 

the values of input-output weights more evenly thus reducing the number 

of efficient DMUs,  

 To propose the use of weight restriction by providing the upper bounds and 

fuzzy restrictions on the weights in DEA models, and 

 To provide a solution for the above in the context of sustainability and 

environmental performance. 

1.4 Theoretical Contribution  

This thesis addresses the gaps in the MCDEA framework that was first proposed by 

Li and Reeves (1999). First, this research could provide an optimal solution to the 

problem, whereas the original authors (Li and Reeves, 1999) considered a series of 

solutions in interactive programming manner. In cases where a series of solutions are 

needed, the proposed bi-objective multiple criteria DEA (BiO-MCDEA) method 

could still handle weight adjustments to better discriminate the efficiency scores 
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among DMUs. This has wider implications to the theoretical aspect of mathematical 

programming, where there are too many multiple optimal solutions that are present 

when one structures a multiple objective program. Compared to the goal 

programming versions known as GPDEA models (Bal et al., 2010), the proposed 

method has a greater advantage in terms of weight dispersion and discriminant 

power. Thus, it provides other researchers seeking to address weight dispersion and 

discriminant power problems to revisit the MCDEA framework.   

Next, it can be shown that the proposed BiO-MCDEA performs better than the 

GPDEA model in terms of requiring lesser computational effort. The proposed 

method can be further extended by imposing restrictions on the input-output weights, 

and named as BiO-MCDEA model with weights restriction (BiO-WeR). The 

proposed BiO-WeR model is able to better discriminate the input-output weights 

among DMUs than the BiO-MCDEA model.  

To account for uncertainty, the BiO-WeR model can be integrated with the 

fuzzy concept. This study models the constraints of fuzzy restrictions corresponding 

to the output weights. By adding the constraints to the BiO-MCDEA model, a DEA 

model with fuzzy restrictions on the output weights is obtained and named as BiO-

FWeR model. By using α-cut set for the triangular fuzzy number associated to each 

output weight in BiO-FWeR model and solving the problem across different α-levels, 

different values of efficiency for each DMU can be obtained. The number of efficient 

DMUs can be decreased or increased by varying the value of α. Thus this is a good 

opportunity for the decision maker (DM) to decide on which value of α is the best for 

the scenario under his or her interpretation. In comparison to the BiO-MCDEA and 

BiO-WeR models, the proposed BiO-FWeR model is more informative and it can 

also provide a more balanced dispersion of input-output weights. 
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1.5 The Thesis Outline  

The rest of the thesis is organized in the following way. Chapter 2 gives a literature 

review on DEA and carbon emission efficiency evaluation. The DEA literature 

includes a description of the basic DEA models and the drawbacks of DEA such as 

lack of the discrimination power and poor weight distribution. Several documented 

approaches such as AR, cone ratio envelopment, super-efficiency model, and cross-

efficiency evaluation technique are further outlined in the literature to deal with the 

difficulties. It will also be noted that the recent approaches may suffer from some 

drawbacks in certain cases. Furthermore, a brief description of the MCDEA model 

(Li&Reeves, 1999) and the more recent GPDEA model (Bal et al., 2010) as a 

procedure for MCDEA is given. 

We then highlight the drawbacks of using GPDEA to represent MCDEA 

analysis in Chapter 3. We therefore introduced BiO-MCDEA model to improve the 

discrimination power of MCDEA.  

Chapter 4 presents BiO-WeR model as a way to improve the weights 

dispersion in BiO-MCDEA model. This is because we found that the proposed BiO-

MCDEA model in Chapter 3 produces poor input or output weights in some cases. 

In Chapter 5, the concepts of fuzzy numbers are used to define a triangular 

fuzzy number associated with the output weights in BiO-MCDEA model. In this 

Chapter, we first recall some basic definitions on fuzzy sets theory and introduce the 

main concepts needed for the remainder part of the chapter. Then the BiO-FWeR 

model is introduced to improve the weight dispersion and discrimination power of 

BiO-MCDEA model in Chapter 3. In comparison with BiO-WeR model, the 
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proposed BiO-FWeR model is more informative in terms of giving opportunity to the 

decision maker to decide on the best scenario under his or her interpretation. 

Some numerical examples and an application of energy dependency among 25 

European Union (EU) member countries are given to describe the efficacy and 

demonstrate the implementation of each approach in Chapters 3 to 5. Concluding 

remarks and a discussion of the future research directions are given in Chapter 6.  
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CHAPTER 2 

LITERATURE REVIEW ON DEA 

2.1 Introduction 

This chapter provides a literature review on DEA and carbon emission efficiency 

evaluation. The literature review on DEA includes the basic DEA models, the 

drawbacks of DEA such as the lack of discrimination among efficient decision 

making units (DMUs) and unrealistic input-output weights, and several techniques 

which were addressed in the literature as strategies to increase the discrimination 

power of DMUs and solve problems arising from unrealistic weight distribution. 

Special attention is given to the MCDEA model (Li & Reeves, 1999) and GPDEA 

models (Bal et al., 2010) because they are the closest to the proposed method in this 

thesis. 

2.2 Basic DEA models 

Data envelopment analysis (DEA) was first proposed by Charnes et al. (1978) and 

remained the leading technique for measuring the relative efficiency of DMUs based 

on their respective multiple inputs and outputs. DEA has been the fastest growing 

discipline in the past three decades covering easily over a thousand papers in the 

Operations Research and Management Science discipline (Emrouznejad, Parker, & 

Tavares, 2008; Hatami-Marbini, Emrouznejad, &Tavana, 2011). The efficiency of a 

DMU is defined as a weighted sum of its outputs divided by the weighted sum of its 

inputs on a bounded ratio scale. 
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Consider we are interested to evaluate the relative efficiency of ݊ DMUs    

which use ݉ inputs to produce ݏoutput. The ݉-input-ݏ-output data can be expressed 

as ݔ௜௝(݅ = 1, … ,݉, ݆ = 1, … , ݊) andݕ௥௝(ݎ = 1, … , ,ݏ ݆ = 1, … , ݊). The envelopment 

form and dual (multiplier) form of input-oriented CCR model can be formulated as 

the following linear programming (LP) problems: 

The envelopment form of CCR model: 

 ௢ߠ	݊݅݉

subject to:                                                                

෍ߣ௝ݔ௜௝

௡

௝ୀଵ

≤ ௜௢ݔ௢ߠ , ݅ = 1, … ,݉, 

෍ߣ௝ݕ௥௝

௡

௝ୀଵ

≥ ௥௢ݕ , ݎ = 1, … ,  ,ݏ

௝ߣ ≥ 0, ݆ = 1, … , ݊.                                                                                         (2.1)                                          

The dual (multiplier) form of CCR model: 

௢ߠ	ݔܽ݉ = ෍ݑ௥ݕ௥௢

௦

௥ୀଵ

 

subject to: 

෍ݒ௜ݔ௜௢

௠

௜ୀଵ

= 1, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉,                                                                                 (2.2)   

where j is the DMU index, j=1,…, n; r is the output index, r=1,…, s; i is the input 

index, i= 1,..., m; ݕ௥௝ is the value of the rth output for the jth DMU, ݔ௜௝ is the value of 
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the ith input for the jth DMU, ݑ௥ is the weight given to the rth output; ݒ௜ is the weight 

given to the ith input, and ߠ௢ is the relative efficiency of DMUo, the DMU under 

evaluation. 

Definition 2.1. DMUo is efficient relative to the other units if the optimal value of the 

objective function (ߠ௢∗) is equal to one, otherwise if ߠ௢∗ < 1, DMUo is inefficient. 

Definition 2.2. Returns to scale (RTS) refers to increasing or decreasing efficiency 

based on size. The scale returns can be a variable, either increasing or decreasing, or 

constant. If a proportional increase in all the inputs results in a more or less than 

proportional increase in the single output, RTS will be increasing returns to scale 

(IRS) or decreasing returns to scale (DRS). Combining the two IRS and DRS ranges 

would necessitate variable returns to scale (VRS). Constant returns to scale (CRS) 

means that a proportional increase in the inputs consumed leads to a proportional 

increase in the outputs produced. 

The CCR model is widely known as the CRS model. However, BCC model 

was proposed by Banker, Charnes, & Cooper (1984) to extend the CCR model by 

accommodating for VRS. CRS tends to lower the relative efficiency scores while 

VRS tends to raise relative efficiency scores. The envelopment form and dual 

(multiplier) form of input-oriented BCC model can be formulated as the following 

LP problems: 

The envelopment form of BCC model: 

 ௢ߠ	݊݅݉

subject to:                                                                
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෍ߣ௝ݔ௜௝

௡

௝ୀଵ

≤ ௜௢ݔ௢ߠ , ݅ = 1, … ,݉, 

෍ߣ௝ݕ௥௝

௡

௝ୀଵ

≥ ௥௢ݕ , ݎ = 1, … ,  ,ݏ

෍ߣ௝

௡

௝ୀଵ

= 1, 

௝ߣ ≥ 0, ݆ = 1, … , ݊.                                                                                           (2.3)       

The dual (multiplier) form of BCC model: 

௢ߠ	ݔܽ݉ = ෍ݑ௥ݕ௥௢

௦

௥ୀଵ

− ܿ௢ 

subject to: 

෍ݒ௜ݔ௜௢

௠

௜ୀଵ

= 1, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

− ܿ௢ ≤ 0,			݆ = 1, … ,݊, 

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉, 

ܿ௢ free in sign,                                                                                                  (2.4) 

where ܿ௢ indicates returns to scale. ߠ௢ , ݎ)௥ݑ = 1, … , ݅)௜ݒ and (ݏ = 1, … ,݉) are 

defined as in the CCR model. 

2.3 Discrimination power and weight dispersion problems in DEA 

One of the drawbacks of DEA is the lack of discrimination among efficient DMUs, 

hence yielding many DMUs to be efficient. The problem is highlighted when the 

number of DMUs evaluated is significantly lesser than the number of inputs and 

outputs used in the evaluation. The post-hoc weights derived from a DEA analysis 
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may reveal that some inputs or outputs have zero values. This is counter-intuitive 

especially in a decision making exercise, where one expects to use all the inputs and 

output values that are rated for the DMUs. Hence, it further implies that some of the 

variables were not used in the evaluation judgment in achieving the final ranking. On 

the contrary, the unrealistic weight distribution for DEA also occurs when some 

DMUs are rated as efficient due to extremely large weights in a single output and/or 

extremely small weights in a single input.  

Thompson, Singleton Jr., Thrall, & Smith (1986) are among the first authors to 

propose the use of weight restriction to increase the discrimination power of DMUs. 

The issue was immediately picked up by many authors, including Dyson and 

Thanassoulis (1988), Charnes, Cooper, Huang, & Sun (1990), Thanassoulis and 

Allen (1998), and Saati (2008). Hence, several methods such as assurance region 

(AR) procedure and cone ratio envelopment were addressed in the literature as 

strategies to solve problems arising from unrealistic weight distribution. Other DEA 

models were also introduced in the literature to overcome the discriminant power 

problems, such as the super-efficiency model and cross-efficiency evaluation 

technique. 

Drawing from a multiple objective decision making framework, the multiple 

criteria (or multi-objective) DEA model was suggested as a means to overcome 

discriminant power and weight dispersion problems. 

2.3.1 Improving discrimination power in DEA 

Super-efficiency model was introduced as one of the techniques in the literature to 

overcome the discriminant power problems. Super-efficiency technique first 

proposed by Andersen & Petersen (1993) is well known as the AP model which 
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enables an extreme efficient DMUo to obtain an efficiency value greater than one by 

removing the ݋th constraint in the DEA models. The AP model based on multiplier 

form of CCR model can be formulated as follows: 

The Super-efficiency method of multiplier form of CCR model: 

௢ߠ	ݔܽ݉ = ෍ݑ௥ݕ௥௢

௦

௥ୀଵ

 

subject to: 

෍ݒ௜ݔ௜௢

௠

௜ୀଵ

= 1, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,					݆ = 1, … ,݊, ݆ ≠  ,݋

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉.                                                                                  (2.5) 

More details on the super-efficiency technique can be found in the following 

research (see Chen, 2005; Chen, Du, &Huo, 2013; Lee, Chu, & Zhu, 2011).The 

super-efficiency DEA model may obtain infeasible solutions for efficient DMUs; 

particularly, under VRS model. However, attempts had been made to solve the 

infeasibility problem in super efficiency methods. Chen (2005) proposed an approach 

in which both input-oriented and output-oriented super-efficiency models are used to 

fully characterize the super-efficiency model, thus claiming that the approach kept 

infeasibility to a rare occasion. However, Soleimani-damaneh, Jahanshahloo, 

&Foroughi (2006) presented some counter examples to negate Chen’s (2005) claims 

without any proposed alternative. Drawing from two main sources (i.e. Chen, 2005; 

Cook, Liang, Zha, & Zhu, 2008), Lee et al. (2011) later provided a solution by a two-

stage process catering to adjustments in input saving and output surpluses. Chen and 
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Liang (2011) subsequently formulated a one-model solution to the two-stage process. 

Lee and Zhu (2012) found that the solution can still be infeasible should some of the 

input variables have zero values. 

Cross-efficiency evaluation technique was also introduced as another technique 

in the literature to overcome the discriminant power problems. Cross-efficiency 

approach was first proposed by Sexton, Silkman, & Hogan (1986) and it is often 

computed in two phases. The first phase is to obtain the value of input weights and 

output weights using the CCR model (2.2). Suppose that ݑ௥௢∗ and ݒ௜௢∗  are the optimal 

values of the rth output and the ith input respectively for DMUo (DMU under 

evaluation). The next phase is to achieve the cross-efficiency of DMUt using the 

optimal weight values which were determined for DMUo in model (2.2) as 

௢௧ܧ = ∑ ∗௥௢ݑ ௥௝௦ݕ
௥ୀଵ ∑ ∗௜௢ݒ ௜௝௠ݔ

௜ୀଵ⁄ ,݋									,	 ݐ = 1, … , ݊.                                    (2.6) 

The values from (2.6) can be listed in a matrix, known as cross-evaluation 

matrix (see Table 2.1). To rank the DMUs using the cross-efficiency technique, the 

average of the cross-efficiency score is calculated as ܧത௢௧ = ଵ
௡
∑ ௢௧௡ܧ
௧ୀଵ , which is 

assigned to the cross-efficiency value for DMUo (o=1,…,n). For more details, the 

interested reader is referred to Anderson, Hollingsworth, &Inman (2002), Doyle & 

Green (1995), Green, Doyle, & Cook (1996), and Wang & Chin (2010, 2011). 
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With regards to cross-efficiency evaluation technique, the non-uniqueness of 

the DEA weights could provide a high degree of multiple optimal solutions for DEA 

models. Although recent improvements of cross-efficiency evaluation techniques 

were proposed (e.g. Angiz & Sajedi, 2012), the solution is computationally 

expensive with the need to solve a series of linear programming problems. The 

suggestion of imposing secondary goals to improve variability of cross efficiency 

scores still leaves the non-uniqueness problem looming (see Cook & Zhu, 2013).  

2.3.2 Strategies for solving problems arising from unrealistic weight 

distribution 

AR and cone ratio techniques were addressed in the literature as strategies to 

solve problems arising from unrealistic weight distribution; they are highly 

dependent on the measurement of the inputs-outputs units, which may lead to 

infeasible solutions. In other words, both the methods incorporate extra constraints to 

the model; thus, making it harder to solve the problem. We briefly outline both 

methods in this section. Special attention is further given to the common set of 

weights (CSW) approach proposed by Saati (2008). 

Table 2.1
Cross-evaluation matrix

DMU 1 DMU 2 . . . DMU n

DMU 1 E 11 E 12 . . . E 1n

DMU 2 E 21 E 22 . . . E 2n

    .      .      .      .
    .      .      .      .
    .      .      .      .
DMU n E n1 E n2 . . . E nn
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2.3.2.1 Cone ratio technique 

Unrealistic weight distribution is a major problem in DEA and it occurs when some 

DMUs are rated as efficient due to extreme or zero value of input and/or output 

weights. The cone ratio model was developed by Charnes et al. (1990) and Charnes, 

Cooper, Wei, & Huang (1989) which arose from the observation of the space of the 

input-output weights as a strategy to solve the problem of unrealistic weight 

dispersion. 

Suppose that	ܸ = ்ܣ where ,ߙ்ܣ = [ܽଵ, … ,ܽ௡]߳ℝ௠×௡ and ߙ = ൥
ଵߙ
⋮
௡ߙ
൩ ߳	ℝ௡×ଵ 

be the polyhedral cone for input weight	ݒ, where	ݒ = ൥
ଵݒ
⋮
௠ݒ
൩ 	߳	ℝ௠×ଵ. In the same 

manner, the polyhedral cone for output weight	ݑ, where ݑ = ൥
ଵݑ
⋮
௦ݑ
൩ 	߳	ℝ௦×ଵ can be 

defined as: ܷ = ்ܤ where ,ߚ்ܤ = [ܾଵ, … , ܾ௡]߳	ℝ௦×௡ and ߚ = ൥
ଵߚ
⋮
௡ߚ
൩ ߳	ℝ௡×ଵ. By 

adding the cone ratio restriction to CCR model (2.2), the CCR model can be 

transformed as 

௢ߠ	ݔܽ݉ =  ௢ݕ்ݑ

subject to: 

௢ݔ்ݒ = 1, 

்ܻݑ − ்ܺݒ ≤ 0,			 

   (2.7)                                                                                                  ,ܸ	߳	ݒ			,ܷ	߳	ݑ

where, ܺ = ܻ ,௠×௡(௜௝ݔ) = ௢்ݔ ,௦×௡(௥௝ݕ) = ଵ௢ݔ] , … , ௢்ݕ ௠௢], andݔ = ଵ௢ݕ] , … ,  .[௦௢ݕ

According to the above definition of ܷ and ܸ,  the LP model (2.7) can be 

written as following (in terms of ߙ and ߚ variables ): 
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The Cone Ratio of multiplier form of CCR model: 

௢ߠ	ݔܽ݉ =  (௢ݕܤ)்ߚ

subject to: 

(௢ݔܣ)்ߙ = 1, 

−(ܻܤ)்ߚ (ܺܣ)்ߙ ≤ 0,			 

ߙ ≥ ߚ			,	0 ≥ 	0.                                                                                              (2.8) 

In this case, the cone ratio model can be treated as a CCR model that evaluates 

the same DMUs with transformed data. However, the results must be transformed 

back into the original form in order to interpret the results and it would be considered 

a disadvantage. More details on the issue can be found in Cao&Kong (2010) and 

Charnes et al. (1990). 

2.3.2.2 Assurance region (AR) method 

Poor weight dispersion is a major issue in DEA. The problem is highlighted when 

some DMUs are rated as efficient due to extremely large weights in a single output 

and/or extremely small weights in a single input. To overcome the issue, weight 

restriction techniques such as AR was first developed by Thompson et al. (1986), 

which consider an upper and lower bound for its weights. The AR restrictions are 

defined as follows: 

ܽ௥ݑ௧ ≤ ௥ݑ ≤ ܾ௥ݑ௧,					ݎ < ,ݐ ,ݎ ݐ = 1, … ,  ,ݏ

௞ݒ௜ߙ ≤ ௜ݒ ≤ ݅					,௞ݒ௜ߚ < ݇,										݅,݇ = 1, … ,݉.                                            (2.9)           
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where ܽ௥and ܾ௥are the lower and upper bounds on the ratios of output weights and 

 ௜ are the lower and upper bounds on the ratios of input weights, which areߚ ௜andߙ

provided by the decision maker (DM).  

Normally, one of the inputs (say x1) can be selected as an input numeraire and 

one of the outputs (say y1) can be selected as an output numeraire. Therefore, the 

above constraints (2.9) can be modified into the following form of AR constraints: 

ܽ௥ݑଵ ≤ ௥ݑ ≤ ܾ௥ݑଵ,							ݎ = 1, … ,  ,ݏ

ଵݒ௜ߙ ≤ ௜ݒ ≤ ݅							,ଵݒ௜ߚ = 1, … ,݉.                                                                 (2.10) 

By adding the above constraint to the CCR model (2.2), the model will be 

transformed into a CCR model which has bound relating to weights. This type of AR 

is known as assurance region I (ARI). It can be pointed out that ARI is a special case 

of cone ratio. 

Another class of AR, which is called assurance region II (ARII) considers the 

relationship between input and output weights, i.e., bounds are set on the ratios of 

output weights to input weights. In ARI method, there will always be at least one 

efficient DMU whereas; in ARII case there is no certainty it will result in at least one 

efficient DMU. For more details we refer the reader to Khalili, Canmanho, Portela, & 

Alirezaee (2010), Mecit & Alp (2013), Thompson, Langemeier, Lee, & Thrall 

(1990). 

2.3.2.3 Common set of weights (CSW) approach 

In the extreme cases, when no flexibility is allowed, a CSW is applied in the 

literature for the evaluation of all DMUs. However, there are some drawbacks to the 

method – for instance, applying a CSW for the assessment of all DMUs limits the 
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flexibility of DEA in assigning individual sets of weights to each of the participating 

DMUs. 

Saati (2008) developed a technique, in which he suggests to find a CSW across 

DMUs. In this method, upper levels of the weights are first determined based on the 

optimal solution of some LP problems. Then by solving a linear programming 

problem, a CSW is determined. To determine the upper bounds of the output 

weights, the following LP problem can be considered. 

 ௥ݑ	ݔܽ݉

subject to: 

෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 1,			݆ = 1, … ,݊, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉,                                                                                (2.11) 

where k ranges over 1, 2, … , ∑ and the constraintݏ ௜௢௠ݔ௜ݒ
௜ୀଵ ≤ 1, is a constraint which 

normalizes the factor weights and the maximum value of each factor weight is 

obtained in such a way that the efficiency of each DMU does not exceed 1(Saati, 

2008). 

In the same manner the upper bounds of the input weights are determined by 

solving the following LP problem. 

 ௟ݒ	ݔܽ݉

subject to: 

෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 1, ݆ = 1, … ,݊, 
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෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉,                                                                                 (2.12) 

where l ranges over	1, 2, … ,݉. 

Using the above models (2.11) and (2.12), the upper bounds of input-output 

weights are characterized by solving s+m LP problems. It can be noted that these 

problems are feasible and their optimal values are bounded and positive (Saati, 

2008). Furthermore, it was claimed by Satti (2008) that in the above models (2.11) 

and (2.12), ∑ ௥௝௦ݕ௥ݑ
௥ୀଵ ≤ 1 and ∑ ௜௝௠ݔ௜ݒ

௥ୀଵ ≤ 1 (j=1,…,n). Therefore, the values of 

upper bounds of output and input weights can be achieved as follows: 

∗௥ݑ = 1 ݔܽ݉
ଵஸ௝ஸ௡

൛ݕ௥௝ൟൗ ݎ)				, = 1, … ,  ,(ݏ

∗௜ݒ = 1 ⁄௜௝ൟݔଵஸ௝ஸ௡൛ݔܽ݉ ,				(݅ = 1, … ,݉).                                                       (2.13) 

By assuming bounds on factor weights, the CCR model (2.2) can be expressed 

as follows: 

The bounded CCR model: 

௢ߠ	ݔܽ݉ = ෍ݑ௥ݕ௥௢

௦

௥ୀଵ

 

subject to: 

෍ݒ௜ݔ௜௢

௠

௜ୀଵ

= 1, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

௥ܷ
௟ ≤ ௥ݑ ≤ ௥ܷ

௨ , ݎ = 1, … ,  ,ݏ
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௜ܸ
௟ ≤ ௜ݒ ≤ ௥ܸ

௨ , ݎ = 1, … ,݉,                                                                            (2.14) 

where ௥ܷ
௟ , ௥ܷ

௨, ௜ܸ
௟, and ௥ܸ

௨ are the lower and upper bounds of output and input 

weights respectively. 

By considering the bounded DEA model (2.14), a CSW can be provided by 

representing the deviation from either bound as a fraction of the range between the 

upper and lower bounds. By assuming the same deviation from bounds across all 

DMUs, the following problem can be considered. 

 Δ	ݔܽ݉

subject to: 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

௥ܷ
௟ + Δ( ௥ܷ

௨ − ௥ܷ
௟) ≤ ௥ݑ ≤ ௥ܷ

௨ − Δ( ௥ܷ
௨ − ௥ܷ

௟), ݎ = 1, … ,  ,ݏ

௜ܸ
௟ + Δ൫ ௜ܸ

௨ − ௜ܸ
௟൯ ≤ ௜ݒ ≤ ௥ܷ

௨ − Δ൫ ௜ܸ
௨ − ௜ܸ

௟൯, ݎ = 1, … ,݉.                           (2.15) 

By setting the lower bounds of factor weights equal to zero ( ௥ܷ
௟ = ௜ܸ

௟ = 0) and 

applying expressions (2.13), model (2.15) can be transformed into 

 Δ	ݔܽ݉

subject to: 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

≤ 0,			݆ = 1, … ,݊, 

Δ ௥ܷ ≤ ௥ݑ ≤ (1 − Δ) ௥ܷ , ݎ = 1, … ,  ,ݏ

Δ ௜ܸ ≤ ௜ݒ ≤ (1 − Δ) ௜ܸ , ݎ = 1, … ,݉,                                                               (2.16) 

where ௥ܷ(ݎ = 1, … , ݅)and ௜ܸ(ݏ = 1, … ,݉) are computed by expressions (2.13). The 

problem (2.16) is feasible and its optimal value is bounded and positive (Saati, 

2008). 
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The efficiency value of DMUo can be obtained as follows: 

݂ܧ ௢݂ =
∑ ௥௢௦ݕ∗௥ݑ
௥ୀଵ
∑ ௜௢௠ݔ∗௜ݒ
௜ୀଵ

, 

whereݑ௥∗(ݎ = 1, … , ݅)∗௜ݒ and(ݏ = 1, … ,݉) are the optimal values of LP problem 

(2.16) for DMUo. 

2.3.3 Multi-criteria approach to DEA 

Drawing from a multiple objective decision making framework, the multiple criteria 

(or multi-objective) DEA model (Chen, Larbani, & Chang, 2009; Foroughi, 2011; Li 

& Reeves, 1999) can be used to improve discrimination power and also solving 

weight dispersion problems.  

Li and Reeves (1999) first proposed the multiple criteria DEA (MCDEA) 

model as a means to improve the discrimination power of the classical DEA model. 

They developed their proposed model based on the basic DEA model (2.2) and they 

first represented the DEA model (2.2) equivalently in the following deviation 

variable form: 

݉݅݊	݀௢ ௢ߠ	ݔܽ݉	ݎ݋)	 = ෍ݑ௥ݕ௥௢

௦

௥ୀଵ

) 

subject to: 

෍ݒ௜ݔ௜௢

௠

௜ୀଵ

= 1, 

෍ݑ௥ݕ௥௝

௦

௥ୀଵ

−෍ݒ௜ݔ௜௝

௠

௜ୀଵ

+ ௝݀ = 0,			݆ = 1, … ,݊, 

௥ݑ ≥ 0, ݎ = 1, … ,  ,ݏ

௜ݒ ≥ 0,									݅ = 1, … ,݉, 
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௝݀ ≥ 0, ݆ = 1, … , ݊,                                                                                         (2.17) 

where݀௢ is a deviation variable for DMUo and ௝݀ is a deviation variable for DMUj. 

The quantity ݀௢ in the objective function is bounded on an interval [0, 1) and is 

regarded as a measure of inefficiency. DMUo is efficient if ݀௢= 0 or, equivalently, 

   .௢ is the efficiency measure in a classical DEAߠ ௢= 1- ݀௢ whereߠ ௢= 1, thusߠ

In their solution procedure, Li and Reeves (1999) suggested an interaction 

approach for solving three objectives. The first objective or criterion considers the 

classical definition of relative efficiency, thus capturing the classical DEA solution 

within the set of MCDEA solutions. The other two objectives, Minimax and Minsum 

objectives provide a more restrictive or lax efficiency solutions, respectively. This 

implies that a wider solution is possible with MCDEA, so as to gain more reasonable 

input and output weights. 

In MCDEA, the three objectives are analyzed separately; one at a time, with no 

preference order set for those objectives. The solutions derived from each run are 

considered non-dominated in the multi-objective linear programming (MOLP) sense. 

Li and Reeves (1999) note that generally the Minimax criterion is more restrictive 

than the Minsum criterion, while the first criterion (i.e. Classical DEA objective) is 

considered to be the least restrictive of the three. Since the Minimax and Minsum 

criteria tend to provide less number of efficient DMUs as compared to the first 

criterion, it is said to provide better discrimination power than a classical DEA 

model. As such, the Minimax and Minsum criteria are helpful when the number of 

DMUs is not sufficiently larger than the number of inputs and outputs used for 

evaluation. 


