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MEMBRAN PENYENTUH GENTIAN BERONGGA POLIMER 

SUPERHIDROFOBIK BAGI PENYERAPAN CO2 

 

ABSTRAK 

Dalam beberapa tahun ini perubahan cuaca telah menjadi masalah global 

disebabkan kenaikan suhu permukaan bumi. Fenomena ini menjadi semakin teruk 

akibat aktiviti-aktiviti industri disebabkan kenaikan pengeluaran gas rumah hijau 

(terutamanya CO2). Pelbagai usaha telah dijalankan bagi memerangkap CO2 daripada 

aliran-aliran proses industri. Sistem penyerapan gas membran (MGAS) telah 

dicadangkan sebagai satu teknik alternatif untuk mengatasi kelemahan proses-proses 

penyerapan CO2 secara konvensional. Walaubagaimanapun, masih terdapat pelbagai 

cabaran dalam usaha untuk mengkomersilkan MGAS seperti kestabilan permukaan 

membran, kecekapan cecair penyerap dan keserasian antara cecair penyerap dan 

bahan membran. Untuk mengatasi masalah ini, satu lapisan superhidrofobik 

polietilena berketumpatan rendah (LDPE) berliang telah disalut pada permukaan luar 

polipropilena (PP) dan polyvinylidene fluorida (PVDF) membran gentian 

geronggang melalui kaedah pelarut bukan-pelarut. Parameter untuk menyediakan 

permukaan rata superhidrofobik (jenis bukan-pelarut, kandungan bukan-pelarut 

dalam larutan salutan dan kepekatan polimer) telah dikaji dan dioptimumkan. 

Daripada pemerhatian didapati bahawa bukan-pelarut seperti etanol menghasilkan 

permukaan polimer dengan sudut sentuhan air (WCA) yang tinggi berbanding metil 

etil keton apabila digunakan sebagai tambahan bukan-pelarut. Peningkatan 

kandungan etanol dalam larutan salutan sebanyak 50% (v/v) telah membawa kepada 

kenaikan WCA daripada 110±2.8° kepada 160±1.4°. Sifat hidrofobik lapisan salutan 

dianalisa dari segi kekasaran permukaan, struktur fizikal dan sudut sentuhan air. 
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Didapati bahawa WCA bagi permukaan PP dan PVDF membran gentian geronggang 

bersalut yang disediakan secara salutan celup langsung adalah kurang berbanding 

permukaan rata. Kaedah secara tidak langsung telah dicadangkan dan WCA 

maksimum bagi membran PP dan PVDF yang telah diubahsuai adalah 161±2.3° and 

152±3.2°. Suatu sistem MGAS berterusan yang dibina secara dalaman telah direka 

untuk menilai prestasi membran yang telah diubahsuai dari segi penyingkiran CO2 

daripada aliran gas yang mengandungi 20% (v/v) CO2 seimbang dengan N2. 

Parameter operasi (halaju cecair, halaju gas dan ketumpatan pembungkusan modul 

membran) dan kesan-kesan lain terhadap penyingkiran CO2 telah dikaji. Prestasi 

penyerapan CO2 telah disiasat bagi cecair-cecair penyerap berbeza iaitu piperazin 

(PZ), monoetanolamina (MEA), dietanolamina (DEA) campurannya. PZ 

mempamerkan kecekapan penyerapan yang lebih tinggi berbanding penyerap lain. 

Dari segi keserasian membran dengan PZ, membran PVDF didapati mempunyai 

kestabilan permukaan yang tinggi berbanding membran PP. Di samping itu, telah 

diperhatikan bahawa MEA yang telah diaktifkan mempunyai kecekapan penyerapan 

CO2 yang tinggi berbanding DEA yang diaktifkan pada kepekatan dan keadaan 

operasi yang sama. Rintangan pemindahan jisim melalui modul membran telah 

ditentukan melalui kaedah plot Wilson. Didapati bahawa rintangan pemindahan jisim 

cecair merupakan langkah kawalan dalam semua larutan amina. Selain itu, pekali 

pemindahan jisim meningkat dengan peningkatan kepekatan pengaktif dalam 

campuran amina.  

 

 

 

 



xxv 

 

SUPERHYDROPHOBIC POLYMERIC HOLLOW FIBER MEMBRANE 

CONTACTORS FOR CO2 ABSORPTION 

 

ABSTRACT 

In recent years the climate change became a global concern due to the 

increasing of the earth’s surface temperature. This phenomenon was exacerbated by 

the expansion of industrial activities due to the increasing emissions of the 

greenhouse gas (mainly CO2). Many efforts were conducted to capture CO2 from the 

industrial process streams. Membrane gas absorption system (MGAS) was proposed 

as an alternative technique to overcome disadvantages of the conventional CO2 

absorption processes. However, there are still many challenges in order to 

commercialize MGAS such as membrane surface stability, absorbent liquid 

efficiency and compatibility between absorbent liquid and membrane material. In 

order to solve this problem, a porous superhydrophobic layer of low density 

polyethylene (LDPE) had been coated on the outer surface of the polypropylene (PP) 

and polyvinylidene fluoride (PVDF) hollow fiber membrane via solvent non-solvent 

coating method. Parameters to prepare superhydrophobic flat surface (non-solvent 

type, non-solvent content in coating solution and polymer concentration) had been 

studied and optimized. It was observed that non-solvent like ethanol did produce 

polymeric surface with higher water contact angle (WCA) compared to methyl ethyl 

ketone used as non-solvent additives. The increasing of ethanol content in the coating 

solution up to 50% (v/v) led to the increased of WCA from 110±2.8
o
 to 160±1.4

o
. 

The hydrophobicity of the coated layers were analysed in terms of surface roughness, 

physical structure and water contact angle. It was found that the WCA of the coated 

PP and PVDF hollow fiber membranes surfaces prepared via direct dip coating were 
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less than the flat surface. Indirect method was proposed and the maximum WCA of 

modified PP and PVDF membranes were 161±2.3
o
 and 152±3.2

o
, respectively. A 

continuous MGAS inhouse-built was designed to evaluate the performance of 

modified membranes in term of CO2 removal from gas stream of 20% (v/v) CO2 

balanced with N2. The operating parameters (liquid velocity, gas velocity and 

packing density of the membrane module) and other effects on the CO2 removal were 

studied. The CO2 absorption performance was investigated for different absorbent 

liquids namely piperazine (PZ), monoethanolamine (MEA), diethanolamine (DEA) 

and their blends. PZ exhibited higher absorption efficiency than other absorbents. In 

terms of the membrane’s compatibility with PZ, PVDF membrane was found to have 

high surface stability compared to the PP membrane. In addition, it was observed that 

the activated MEA had CO2 absorption efficiency higher than activated DEA at the 

same concentrations and operating conditions. The mass transfer resistance through 

the membrane module was determined via Wilson plot method. It was observed that 

the liquid mass transfer resistance was the controlling step in all amine solutions. 

Moreover, the overall mass transfer coefficient was increased with the increasing of 

the activator concentration in the amine blends.                    
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CHAPTER 1 

INTRODUCTION 

 

1.1 Global climate changes 

 Carbon dioxide (CO2) is the largest component of greenhouse gases present 

in the atmosphere than others such as methane, water vapour, nitrous oxide and 

ozone. It was proven that the CO2 is responsible for the increasing of the temperature 

of the earth’s surface. CO2 causes 9-26% of the greenhouse effect whilst water 

vapour, methane and ozone cause about 36-70%, 4-9% and 3-7% , respectively 

(Kiehl and Kevin, 1997).   

 

 Part of the energy coming from the sun will be absorbed by the earth system 

while the other will be reflected back into the space. Consequently, the global 

warming depends on the balance between the energy entering and leaving the 

planet’s system. Greenhouse gases act like a thick blanket which decrease the energy 

reflecting to the space and trap into atmosphere thus increase the earth’s temperature. 

CO2 composes the major part of the blanket in atmosphere which is responsible for 

the climate change (Arenillas et al., 2005). It was recorded that CO2 emitted into the 

atmosphere contributes in approximately 55% of the global warming (Kaithwas et al. 

2012).   

 

Since the early 20
th

 century, Earth's mean surface temperature has increased 

by about 0.8 °C, with about two-thirds of the increase occurring since 1980. This 
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increasing in the earth’s temperature during this period of time could attributable to 

the increasing concentrations of greenhouse gases produced by human activities such 

as the burning of fossil fuels and deforestation. The emission of the flue gas from the 

thermal power plants is increasing because 30% of the total global fossil fuel is being 

used for power generation (Bandyopadhyay, 2011). 40% of the total CO2 emissions 

are produced by the burning of fossil fuels in power plants (Desideri, 1999).  

 

 It was estimated that future global CO2 emissions will be increased from ∼7.4 

giga tons of atmospheric carbon (GtC) / year in 1997 to ∼26 GtC/year in 2100 

(Mercedes et al., 2004). In Malaysia the largest amount (86.7%) of the CO2 

emissions to the atmosphere at 1994 comes from the burning of fuels to produce the 

energy as presented in Table 1.1.  It was expected that the CO2 emission will be 

increased due to the development in the Malaysian industries as well as the 

increasing of power consumption in urban area.  

 

Table 1.1: Summary of CO2 emission for Malaysia in 1994 (Gurmit, 2000) 

CO2 emission source 
CO2 quantity 

(Giga gram) 

Weight percent 

(%)  

Fuel combustion for energy generation  84,415 86.7 

Cement production 4,973 5.1 

Industrial wastewater treatment 318 0.3 

Forest and grassland conversion 7,636 7.8 

Total  97,342 100 

 

http://en.wikipedia.org/wiki/Greenhouse_gas
http://en.wikipedia.org/wiki/Fossil_fuel
http://en.wikipedia.org/wiki/Deforestation
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From 2000 until 2011, the CO2 emissions in Malaysia for energy generation 

has increased about 1.6 times, whereby the CO2 emissions was increased from 

117.57 million metric tons in 2000 to 191.44 million metric tons in 2011 (EIA, 

2013). Malaysia is one of the signatories of the Kyoto Protocol; it is not bound by 

any limit of greenhouse emission (Rahman, 2011). However, an alternative energy 

resource such as biomass, biogas and solar energy was undertaken by Malaysian’s 

government to reduce the CO2 emissions.   

 

Advanced technology is continuously revolutionised to reduce CO2 emission 

and minimize the risks of the global warming. In general, the universal industrial 

facility for generation of electrical power is the power plant (Thomas et al., 1997). 

Fossil fuel is mostly used in the power plant combustion chambers. Therefore, 

reducing CO2 emissions to the atmosphere could provide a mid-term solution to 

alleviate environment impacts and allows human to continue to use fossil energy 

until the development of a reasonable renewable energy technology. 

 

1.2 Separation technology for CO2 

The technologies for CO2 capture in fossil fuel-fired power stations are 

commonly classified as pre-combustion, post-combustion and oxyfuel combustion. 

The choice of suitable technology is depending on the CO2 removal step through the 

fuel burning process (before or after fuel burned). According to this classification, 

various technologies for CO2 capture were proposed including absorption, 

adsorption, membrane, cryogenic, and hybrid applications of these technologies. The 

performance criteria of the technology are CO2 capture effectiveness, energy 
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consumption, process economy, and other technical and operational issues 

(Plasynski, and Chen, 2000)). The third technology (oxyfuel combustion) does not 

require special equipment, but it is not commercialized currently and it is still under 

development. Many studies have focused on enhancing the current technologies or 

developing new approaches of CO2 removal (Yang et al., 2008). The conventional 

processes applied for CO2 removal from flue gas are varying from simple to complex 

multi steps processes. Usually, one of the following processes is considered.     

 

1.2.1 Absorption process 

     The exhaust gas in the post-combustion technology contains CO2 at low 

partial pressure and concentration (4–14%, v/v) which represents an important 

limitation for CO2 capture. Therefore, the absorption process is a promising 

technology for the CO2 removal at flue gas streams conditions. The absorption 

process can be classified into physical and chemical absorption process according to 

the type of solvent used.  

 

1.2.1.a Physical absorption 

In this process, the CO2 physically absorb into a solvent based on Henry’s 

law. The law states that at constant temperature the solubility of gases in a solvent is 

directly proportional to the partial pressure of the gas above the solution (Hobler, 

1966). As such, the CO2 absorption takes place at high CO2 partial pressure and low 

temperature. As a result, the energy consumption mainly originate from the flue gas 

pressurization. Physical absorption is therefore acceptable for the flue gas streams of 
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low CO2 concentration. However, it is not economical for the streams with CO2 

concentration less than 15 vol% (Chakravarti et al., 2001).  

 

The solvent regeneration step occurs by the pressure reduction, heating or 

both. There are many existing commercial processes using different solvent. The 

typical solvents are Selexol (dimethylether or propylene), Rectisol (methanol), 

Purisol (n-Methyl-2-pyrollidone), Morphysorb (morpholine) and Fluor (propylene 

carbonate) (Olajire, 2010 and Yu et al., 2012). The advantage of Selexol process is 

the removing possibility of both CO2 and H2S gases under low temperature and the 

solvent regeneration can be achieved mainly by depressurization (Olajire, 2010). 

However, the operation cost in Morphysorb process is 30% to 40% lower than that 

for Selexol process (Gielen, 2003). 

 

1.2.1.b Chemical absorption 

The chemical absorption referring to the reaction of CO2 with a chemical 

solvent to form a weakly bonds intermediate compound. These bonds are broken in 

the regeneration process by heating to achieve the virgin solvent and CO2 rich 

stream. Solvent of high stable compound could increase the energy required in the 

regeneration stage. In chemical absorption process, relatively high selectivity could 

be achieved to produce high purity CO2 stream. By combining the advantages of 

chemical absorption and flue gas operating conditions (low CO2 partial pressure, low 

CO2 concentration, large flow gases and high temperature) chemical absorption 

process is well suited for CO2 removal from industrial flue gases.  
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Typically, amine solutions are widely used as solvent in chemical absorption 

process because it is a relatively cheap chemicals, even cheap solvent like 

monoethanolamine (MEA) (Rao and Rubin, 2002). However, others acidic 

contaminations such as SO2 and NO2 must be removed from flue gas stream before 

absorption stage. The drawback of these gases is the formation of heat stable salts 

when reacts with solvent such as (MEA). Usually, SO2 concentrations in flue gas 

exhaust of less than 10 ppm are recommended (Davidson., 2007). A flue gas 

desulphurization (FGD) unit is commonly used to remove SO2, while selective 

catalytic reduction (SCR), selective non-catalytic reduction (SCNR) or low NOx 

burners are employed to remove NOx contaminations. The flue gas must be cooled 

down to 45-50 
o
C before it is being introduced to the absorber (Rao et al., 2004; 

Ramezan et al., 2007). This operating temperature could enhance CO2 absorption 

performance and minimize solvent loss due to evaporation (Wang et al., 2011).  

 

1.2.2 Adsorption process 

 In principal, the adsorption process occurs when the gas molecules adhere on 

the surface of the solid adsorbent. The gas-solid contacting can be either physical 

(physisorption) or chemical (chemisorption). The adsorption quality is determined by 

the adsorbed particle properties (molecular size, molecular weight and polarity) and 

the characteristics of the adsorbent surface (polarity and pore size). The CO2-rich 

adsorbent can be regenerated by the heat processing (temperature swing 

adsorption,TSA) or pressure reduction (pressure swing adsorption, PSA). In terms of 

energy saving, solid sorbents need lower energy in regeneration stage compared to 

the amine process due to the heating and cooling requirement of the large quantities 

of water presence in the solvent solution (Figueroa et al., 2008). 
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The widely applicable adsorbents in CO2 capture are activated carbon 

(Himeno, et al., 2005), mesoporous silica (Zelenak et al., 2008), metallic oxides (Lee 

et al., 2008) and zeolites (Zhao et al., 2007). Numerous adsorbents like zeolites and 

carbons are commercialized for the removal of CO2 from flue gases (Belmabkhout, 

et al., 2011). The main advantage of the adsorption process for the CO2 capture is the 

energy saving potential compared to the amine absorption process. However, the 

most available adsorbents have low adsorption capacity and selectivity. In addition, 

the treated flue gas stream must have high CO2 partial pressure, high CO2 

concentrations and low temperature.     

 

1.2.3 Cryogenic process 

 Cryogenic separation process of gas mixture involves the inducing of phase 

changes in the gas mixture at low temperature and high pressure conditions. The 

advantage of this process is the possibility to produce stream of high CO2 purity (> 

90%) in liquid form, which can be transported conveniently for sequestration 

(Olajire, 2010). In addition, there is no pre-treatment process for the exhaust gases. 

Despite of the high CO2 recovery, cryogenic processes are inherently energy 

intensive (Plasynski & Chen, 2000). The most promising application for cryogenics 

is expected to be for the separation of CO2 from stream of high pressure gases and 

high concentration of CO2 conditions in the oxyfuel combustion process. In this case, 

two advantages are achieved namely high CO2 concentration stream and pure oxygen 

recycled stream to the combustion chamber.    
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1.2.4 Membrane process 

Membranes are semi-permeable barrier which allow the separation of one or 

more gases from a feed gas mixture thus producing a specific gas rich permeate 

stream. The gas separation is taken place by various mechanisms such as 

solution/diffusion, adsorption/diffusion, molecular sieve and ionic transport. 

Molecular sieve and solution/diffusion mechanisms are considered the main 

separation mechanism for nearly all gas separating membranes (Olajire, 2010). 

 

 The membranes currently used for the gas separation can be classified 

according to their material as organic (polymeric) and inorganic (carbon, zeolite, 

ceramic or metallic). The major characteristics impose on the membrane 

performance are; permeability, that is the flux of a specific gas through the 

membrane, and selectivity, the membrane’s preference to pass one gas species over 

the other (Olajire, 2010). Therefore, high partial pressure and high concentration of a 

specific gas must be maintained in the feed stream to increase the driving force 

across the membrane thus increase gas flux in permeate stream. On the other hand, 

the membrane material dominates the membrane selectivity. The CO2 separation 

from light hydrocarbons based on membrane technology has considerably successful 

in the petroleum, natural gas and chemical industries due to its simplicity resulting 

from steady state operation, absence of moving parts and modular construction 

(Kesting and Fritsche, 1993). Currently, gas separation membranes have not been 

widely applied for CO2 removal from flue gases because the relatively high mixture 

flows and the need for flue gas pressurization (Chowdhury, 2011). 
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1.2.5 Membrane gas absorption process 

Conventionally, bubble-column, venture-scrubber, packed-tower and sieve-

tray columns are used in absorption-based CO2 capture technology to reduce the CO2 

emissions from flue gas. The gases are randomly dispersed in these equipments to 

form an interfacial area with a liquid absorbent, which is difficult to estimate. In 

addition, problems of flooding, loading, foaming, channelling, control of the fluid 

velocity and the scale-up of these systems are difficult.  

 

 In order to solve these problems, an alternative membrane gas absorption 

system (MGAS) was developed to overcome these disadvantages. The advantages 

and disadvantages of membrane contactor have been discussed in detail by 

Gabelman and Hwang (1999). In MGAS, flue gas usually flows inside the hollow 

fiber membranes (lumen), while the liquid flows at the opposite side (shell) and the 

solvent contacts the gas at the mouths of membrane pores to form mass transfer film. 

The first technology for such CO2 absorption was developed by (Qi and Cussler, 

1985a; 1985b), who used sodium hydroxide as a solvent in a hollow fiber membrane 

contactor. The membrane contactor provides greater gas–liquid contact area, and the 

overall mass-transfer coefficient is therefore three times greater than that in a packed 

column using same solvent (Sea et al., 2002).
 
As such, it is suitable for high CO2 

concentration applications (well above 20 vol%) (Favre, 2007). Moreover, Falk-

Pederson and Dannstorm, (1997) found that a reduction of greater than 70% in 

equipment size and 66% in equipment weight can be achieved using a membrane 

contactor instead of conventional columns.  
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 The major disadvantage of membrane gas absorption is the additional 

membrane resistance in which is not existent in the conventional gas absorption 

processes. In addition, the membranes have a finite operational life. Therefore, the 

periodic membrane replacement cost need to be taken into consideration (Gabelman 

and Hwang, 1999; Li and Chen, 2005).    

 

1.3 Problems statement 

 In a typical flue gases system, the conditions of low pressure, low CO2 

concentration and high flow rate are not favorable for CO2 capture in such 

membrane, adsorption and cryogenic process. In this context, membrane gas 

absorption is appropriate to remove CO2 from mixture gases at the aforementioned 

conditions.  

  

 Despite of the advantages of membrane over conventional absorption 

equipments, the membrane wetting is the major problem in the gas absorption using 

membrane contactor which determines the CO2 separation efficiency. The liquid that 

penetrates membrane pores increase the membrane mass transfer resistance due to 

the formation of dead zones inside the pores, thus decrease the CO2 diffusion through 

the membrane.  

 

The above problem can be solved by using membranes with high water 

repellency property. This property is characterized by the high water contact angle of 

the membrane surface. Hydrophobic materials are satisfying this target due to their 

low surface energies as shown in Table 1.2.       
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Table 1.2: Surface energy of membrane polymeric materials (Mulder, 1996) 

Membrane material Surface energy (mN/m) 

Polytetraflouroethylene (PTFE) 19.1 

Polypropylene (PP) 30.0 

Polyvinylidenefloruride (PVDF) 30.3 

Polyethylene (PE) 33.2 

 

  As presented in Table 1.2, Polytetraflouroethylene (PTFE) has lower surface 

energy thus probably has high wetting resistance than other membrane materials. 

Unfortunately, PTFE membranes are very expensive in market due to their 

fabrication difficulty. Increasing the surface hydrophobicity of the cheaper 

membrane using simple and inexpensive method could enhance the absorption 

performance and decrease the cost.  

 

Chemical absorption is more preferable than physical absorption because the 

CO2 partial pressure required is relatively lower than the latter as well as the high 

absorption rate. In MGAS, the expensive absorbents with high CO2 loading capacity 

and low generation energy requirement such as methyldiethanolamine (MDEA) and 

2-amino-2-methyl-propanol (AMP) were activated with promoter additive to 

increase the CO2 removal efficiency in most open literature.  Therefore, it is useful to 

improve the CO2 absorption performance for the cheaper absorbent of low CO2 

loading capacity via promoter additive.  
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1.4 Research objectives 

Objectives of this study are stated as follows: 

a) To modify and characterize PP and PVDF hollow fiber membrane to produce 

superhydrophobic membrane.  

b) To fabricate the continuous hollow fiber membrane gas absorption system to 

capture CO2 from CO2/N2 gas mixture stream.  

c) To evaluate the efficiency and stability of the modified membranes in CO2 

absorption process.  

d) To determine the mass transfer resistances of the MGAS.  

e) To enhance the CO2 absorption performance using absorbent coupled with 

promoter additive.  

 

1.5 Scope of study 

 In this study, PP and PVDF hollow fiber membrane were modified to produce 

a superhydrophobic membrane surface via facile "solven- non – solvent coating 

method". A preliminary study was carried out to form a LDPE superhydrophobic 

layer on a silicon flat surface under different preparation variables. Two non-solvent 

additives namely ethanol and methyl ethyl ketone (MEK) were used and their 

efficiency in term of hydrophobicity was evaluated. The concentration of LDPE in 

xylene as solvent was varied from 10 to 25 mg/mL to investigate the effect of 

polymer concentration on the properties of coated surfaces.  

  

The hydrophobicity of surfaces were characterized using water contact angle 

measurements. The structure and morphology of LDPE surfaces were examined via 
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Scanning Electron Microscopy (SEM). The examination of topographic map for 

surfaces was conducted via Atomic Force Microscopy (AFM). The hydrophobicity 

of the superhydrophobic LDPE surface was tested against the different 

concentrations of corrosive acidic (HCl), basic (NaOH) and aqueous solutions of 

MEA, AMP and DEA.  

 

Membrane gas absorption system was developed to capture CO2 from gas 

mixture (20% CO2 and 80% N2). The modified (superhydrophobic) and pristine PP 

and PVDF membranes were tested in CO2 absorption system for 10 days. The 

efficiencies of the tested membranes were evaluated in term of the stability of CO2 

absorption flux under prolong operating time. The performance study of CO2 

absorption in PP and PVDF membranes was conducted using piperazine (PZ), MEA, 

DEA, activated MEA and activated DEA  aqueous amine solution. 

 

 In addition, the mass transfer resistances in hollow fiber membrane were 

determined in PP and PVDF membranes modules. The effect of hollow fiber packing 

density on the flow conditions that brought about impact of absorption rate thus CO2 

absorption rate was experimentally investigated. As such, empirical correlations were 

developed in term of Sherwood number as a function of Reynolds number, Schmidt 

number and module dimensions in shell side of membrane module. 

 

1.6 Organization of the thesis 

 This thesis consists of five chapters. The climate change and its relation to the 

CO2 emission was briefly described in chapter 1 (Introduction). The existing CO2 
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removal technologies especially MGAS as well as its principles were discussed. 

These observations lead to the project problem statements, research objectives and 

scope of the study.    

 The chronological developments of membrane gas absorption systems were 

described in chapter 2 (Literature Review). Past researches focused on the 

developments of CO2 were reviewed. The determination methods of mass transfer 

resistances in MGAS were described. 

 

 Chapter 3 (Material and Method) involves details of materials and 

experimental procedures. Materials details including the general properties of the 

materials used in the experiments were described. While, experimental procedures 

focused on the developments of LDPE superhydrophobic layer on the flat silicon 

sheet as well as on PP and PVDF hollow fiber membranes. Characterization 

techniques on the membrane surfaces were covered in this chapter. CO2 absorption 

measurements, liquid absorbents preparation and development of CO2 absorption 

system using hollow fiber membranes were described.   

     

 Chapter 4 (Results and Discussions) represents the major section in this thesis 

in which all experimental results achieved from experimental work based on the 

objectives stated in Chapter 1 were discussed. The findings included the optimum 

coating conditions of LDPE layer on the silicon flat sheet; PP and PVDF hollow 

fiber membranes, membrane characterization, CO2 absorption efficiency, CO2 flux 

and overall mass transfer resistance were presented and discussed. 
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Outcomes of the study presented in Chapter 4 were summarized in Chapter 5 

(Conclusions and Recommendations). Concluding remarks were recorded for each of 

the findings on the aspect of membranes modification, membrane characterization 

and CO2 absorption performance. Recommendations for the future work were 

proposed based on the limitations encountered in the present study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Gas separation    

Gas separation is one of the applicable separation technologies which used for 

a long time in the field of chemical engineering. The chemical absorption process 

based gas separation has existed for more than 60 years. It was developed primarily 

for acid gas treating such as CO2 and H2S (Kohl and Neilsen, 1997). Over the years, 

a lot of researches were conducted focused on finding the ultimate solvent for 

chemical absorption. These solvents include the various classes of amines (primary, 

secondary, tertiary, and hindered). Improvements to the performance of the current 

chemical absorption process will probably occur with the development of better 

solvents and contactors. 

 

Currently, monoethanolamine (MEA) based process is commercially 

available. It was considered as the best near-term strategy to modernize the existing 

coal power plants for capturing CO2 from combustion process due to its high 

reactivity with CO2 and low cost of raw materials compared to other amines. Using 

amine based process, the cooled flue gases flow vertically upwards through the 

absorption tower (absorber) countercurrent to the amine solution. The CO2 absorb 

chemically into the amine solution to form a weakly bonded compound. The resulted 

CO2-rich solution heated preliminary in a heat exchanger, then further heated in a 

reboiler. The formed weakly bonded compound is broken down by the application of 

heat and therefore a concentrated CO2 stream will be produced. The hot CO2-lean 
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amine is cooled down, and then sent back to the absorber. The CO2 product is 

separated from the amine in a flash separator, and then taken to the drying and 

compression unit. Figure 2.1 illustrates the process flow diagram for the CO2 

removal from flue gas stream by chemical absorption. 

 

 

Figure 2.1: Flow diagram for CO2 capture process by amine (IPCC, 2005) 

 

2.2 Membrane gas-liquid contactors 

In recent years, porous membranes have been proposed frequently for fixing 

gas-liquid interfacial areas. Unlike the conventional gas-liquid contactors used in gas 

absorption process, membrane gas-liquid contactors are non-dispersive gas-liquid 

contactors (Dindore, 2003). The membranes used as gas-liquid contactors are 

inherently non-selective and the solvent used is responsible for the selectivity aspect. 

Porous polymeric membranes, flat sheet and hollow fiber, are widely used in CO2 
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absorption system. The compatibility of absorbent liquid used for gas absorption and 

membrane materials used as gas-liquid contactor are listed in Table 2.1. 

 

Table 2.1: Compatibility of membrane materials and liquid absorbents (Dindore et 

al., 2004) 

Absorbent PTFE PP PVDF PES PS 

Water  √ √ √ √ √ 

Propylene carbonate √ √ × × × 

selexol √ × × × × 

N-methyl pyrrodilone × × × × × 

Dimethyl formamide × × × × × 

Tributyl phosphate × × × × × 

Glycerol triacetate √ × × × × 

n-Formyl morpholine √ √ × × × 

 

 

2.3 Development of Membrane gas absorption system (MGAS) 

The principles for gas and vapour transportation through porous polymeric 

membrane was laid by Thomas Graham in 1928 (Pandey and Chauhan, 2001). In 

1980ʼs polypropylene (PP) capillary microporous membrane was used as liquid-

liquid contactor to separate water from salt solution.  

 

Polymeric membranes have been used commercially for gas separation since 

1980 (Baker, 202; Graham, 1995a; Graham, 1995b). Hydrophobic membranes with 

low surface energy were frequently performed for gas-liquid processes to reduce the 

possibility of membrane wetting (Wang, 2009).     
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An experimental study for CO2 absorption in absorbent liquids of water, 

aqueous NaOH and aqueous diethanolamine (DEA) was performed by Rangwala 

using commercially PP hollow fiber membrane as gas-liquid contactor (Rangwala, 

1996). The researcher found that the effective gas-liquid contact areas were 2324 and 

870 m
2
 / m

3
 for the modules of 0.0254 m diameter with 0.2 m length and 0.0510 m 

with 0.6 m length, respectively. In addition, he observed that membrane mass 

transfer coefficients (km) determined experimentally was much lower than those 

theoretically calculated for non-wetted mode for aqueous amine and NaOH 

absorbents.   

 

Li and Teo (1998) investigate the CO2 recovery from gas stream containing 

4% CO2, 17% O2 and the balance of N2 using silicone rubber and polyethersulphone 

hollow fiber membranes. They observed that the use of water as an absorbing liquid 

in the permeate side (shell side) of the modules was significantly improved the CO2 

removal efficiency. However, the CO2 permeation flux was reduced due to presence 

of the liquid film resistance and therefore the loading capacities of the modules were 

reduced. In addition, they found that the loading capacities of the modules were 

improved when alkaline solution was used as absorbing liquid. 

 

The effect of the pore size distribution of the membrane on the membrane 

mass transfer coefficient was investigated by Li et al., (2000). PVDF hollow fiber 

membrane module was used for gas removal such as H2S or SO2 from gas streams 

containing either 17.2 ppm H2S or 3000 ppb SO2 in balance of N2. 10% NaOH 

solution was used as absorbing liquid for soluble gases H2S and SO2. They found that 

the membrane mass transfer coefficient was not affected by the increasing of pores 
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size when its diameter greater than 2 μm and therefore the membrane mass transfer 

coefficient is governed only by the convective diffusion. On the other hand, they 

observed that the membrane mass transfer coefficient was decreased when the pores 

size decreased and thus the membrane mass transfer coefficient is progressively 

dominated by the Knudsen diffusion. 

 

An experimental study was performed by Kim and Yang (2000) to assess the 

effect of operating conditions on CO2 absorption rate using PTFE hollow fiber 

membrane as gas-liquid contactor. Water and 2-amino-2methyl-1-propanol (AMP) 

were used as absorbing liquids. The results revealed that the removal rate of CO2 was 

increased with increasing of volumetric flow rate of absorbent. As temperature of 

AMP rose, the absorption rate of CO2 increased as well. However, vaporized water 

filled membrane pores when high temperatures were applied and therefore the CO2 

separation efficiency was deteriorated. 

 

New absorbing liquid (CORAL) for CO2 removal was developed by Feron 

and Jansen (2002). Polypropylene hollow fiber membrane was used as gas-liquid 

contactor. They recorded that the mass transfer in the module was dominated by the 

liquid phase. They achieved loadings of up to 0.4 mol CO2 per mol of active 

component. In addition, they found that CO2 mass flux was increased when liquid 

solvent temperature was increased up to 40 
o
C.  

 

Mavroudi, et al., (2003) used different concentrations (0.5-2 M) of DEA 

aqueous solutions and pure water as absorbents for CO2 removal from stream 

containing 15% CO2 balanced with N2. A commercial Liqui-Cel Extra Flow 
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membrane contactor was used. They achieved CO2 removal efficiency up to 75% in 

case of pure water as well as nearly complete (~99) when aqueous solution of 2M 

DEA was used. 

 

The change of mass transfer resistance with time was examined for 

membrane-based CO2 absorption in water by (Mavroudi et al., 2006). Commercial 

cross-flow membrane module of polypropylene was used. The results show that 

absorption flux was decreased significantly with time due membrane wetting and 

therefore the membrane mass transfer resistance was increased. On other hand, the 

initial flux value was restored after membrane drying.  

 

The separation of CO2 from CH4 by using microporous PVDF hollow fiber 

membrane as gas–liquid contactor was performed by Atchariyawut et al., (2008). 

Pure water, aqueous NaOH solution and aqueous MEA solution were employed as 

absorbents. They observed that CO2 flux was improved by the increase of NaOH 

solution concentration and temperature as well as the CO2 volume fraction in the 

feed stream. However, they found that increase of water temperature employed as 

absorbent resulted in decreasing the CO2 flux.  

 

PP capillaries membrane as gas-liquid contactors were employed to remove 

CO2 from a gas stream containing 15% (v/v) of CO2 and 85% of N2 using an aqueous 

MEA solution as absorbent (Bottino et al., 2008). The experimental results showed 

that increase in number of capillaries were resulted in increasing of CO2 removal 

efficiency and decreasing the gas flow rate.  
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PP hollow fibers membrane and asymmetric poly phenylene oxide (PPO) 

hollow fibers were applied as membrane contactor to remove CO2 from gas stream 

containing 20% (v/v) CO2 balanced with CH4 (Simons et al., 2009). Aqueous 

solution of MEA was used as absorbing liquid. The results showed that PP 

membrane was outperformed the performance of the PPO membranes in terms of 

productivity and selectivity. However, PP hollow fiber membranes exhibited high 

sensitivity to small variations in the feed pressure which resulted in severe 

performance loss.  

 

Marzouk et al., (2010) fabricated a PTFE hollow fiber membrane module for 

CO2 removal method from gas mixture of 9.5% CO2 and 90.5% CH4 by gas 

absorption process under elevated pressure (up to 50 bars).  Distilled water was used 

as physical absorbent for CO2, while aqueous solution of NaOH and aqueous 

solutions of amines namely MEA, DEA and triethylenetetramine (TETA) were used 

as chemical absorbents. The result showed that the flux of CO2 was improved by 

increasing the gas pressure for both physical and chemical absorbents were applied. 

However, the increasing in CO2 flux for physical absorption case was more 

pronounced that the flux obtained with chemical absorption when gas pressure 

increased.  
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2.4 Membrane wetting property 

Membrane wetting is defined as the possibility of the liquid penetrating the 

membrane pore, which depends on the hydrophobic and hydrophilic properties of the 

membrane. Therefore, wetting properties can be further classified into three 

categories: 

A- Non-wetted: The membrane pores are filled with gas, which has minimal 

membrane resistance to mass transfer, as shown in Figure 2.2a.  

B- Partially-wetted: The liquid penetrates the pores and partially fills the membrane 

with liquid, as shown in Figure 2.2b. A prolonged period of stable operation time 

will affect its performance because the membrane mass-transfer resistance will 

increase rapidly (deMontigny et al., 2006; Wang et al., 2005). Lv et al. (2010) 

immersed a polypropylene (PP) fiber in amine solutions for up to 90 days and 

they observed that the membrane was swollen; this swelling reduced the 

hydrophobicity of the membrane and increased the degree of membrane 

wettability. 

C- Fully-wetted: In this case, during a prolonged period of operation, the membrane 

pores completely fill with liquid as presented in Figure 2.2c. The presence of 

stagnant liquid inside the pore leads to the formation of a dead zone, which 

reduces the overall mass-transfer rate.  

 



24 

 

 

Figure 2.2: Pore wetting pattern in hydrophobic microporous membrane  a)  non-

wetted; b) partially-wetted; c) fully-wetted 

 

 

 


