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SUBORDINASI PEMBEZA DAN MASALAH PEKALI UNTUK
FUNGSI-FUNGSI ANALISIS

ABSTRAK

Lambangkan A sebagai kelas fungsi analisis ternormal pada cakera unit D

berbentuk f(z) = z +
∑∞

n=2 anzn. Fungsi f dalam A adalah univalen jika fungsi

tersebut ialah pemetaan satu ke satu. Tesis ini mengkaji lima masalah penye-

lidikan.

Fungsi f ∈ A dikatakan dwi univalen dalam D jika kedua-dua fungsi f dan

songsangannya f−1 adalah univalen dalam D. Anggaran pekali awal, |a2| dan |a3|,
fungsi dwi univalen akan dikaji untuk f dan f−1 yang masing-masing terkandung

di dalam subkelas fungsi univalen tertentu. Seterusnya, batas penentu Hankel

kedua H2(2) = a2a4 − a2
3 untuk fungsi analisis f dengan zf ′(z)/f(z) dan 1 +

zf ′′(z)/f ′(z) subordinat kepada suatu fungsi analisis tertentu diperoleh.

Bermotivasikan kerja terdahulu dalam subordinasi pembeza peringkat kedua

untuk fungsi analisis dengan pekali awal tetap, syarat cukup bak-bintang dan uni-

valen untuk suatu subkelas fungsi berpekali kedua tetap ditentukan. Kemudian,

syarat cukup cembung untuk fungsi yang pekali keduanya tidak ditetapkan dan

yang memenuhi ketaksamaan pembeza peringkat kedua dan ketiga tertentu diper-

oleh.

Akhir sekali, subkelas fungsi multivalen yang memenuhi syarat bak-bintang

dan hampir cembung dikaji.

Beberapa aspek permasalahan dalam teori fungsi univalen dibincangkan dalam

tesis ini dan hasil-hasil menarik diperoleh.

viii



DIFFERENTIAL SUBORDINATION AND COEFFICIENTS
PROBLEMS OF CERTAIN ANALYTIC FUNCTIONS

ABSTRACT

Let A be the class of normalized analytic functions f on the unit disk D, in

the form f(z) = z+
∑∞

n=2 anzn. A function f in A is univalent if it is a one-to-one

mapping. This thesis discussed five research problems.

A function f ∈ A is said to be bi-univalent in D if both f and its inverse

f−1 are univalent in D. Estimates on the initial coefficients, |a2| and |a3|, of

bi-univalent functions f are investigated when f and f−1 respectively belong to

some subclasses of univalent functions. Next, the bounds for the second Hankel

determinant H2(2) = a2a4 − a2
3 of analytic function f for which zf ′(z)/f(z) and

1 + zf ′′(z)/f ′(z) is subordinate to certain analytic function are obtained.

Motivated by the earlier work on second order differential subordination for

analytic functions with fixed initial coefficient, the sufficient conditions for star-

likeness and univalence for a subclass of functions with fixed second coefficient

are obtained. Then, without fixing the second coefficient, the sufficient condition

for convexity of these functions satisfying certain second order and third order

differential inequalities are determined.

Lastly, the close-to-convexity and starlikeness of a subclass of multivalent func-

tions are investigated.

A few aspects of problems in univalent function theory is discussed in this

thesis and some interesting results are obtained.

ix



CHAPTER 1

INTRODUCTION

1.1 Univalent function

Let C be the complex plane and D := {z ∈ C : |z| < 1} be the open unit

disk in C. A function f is analytic at a point z0 ∈ D if it is differentiable in

some neighborhood of z0 and it is analytic in a domain D if it is analytic at all

points in domain D. An analytic function f is said to be univalent in a domain

if it provides a one-to-one mapping onto its image: f(z1) = f(z2) ⇒ z1 = z2.

Geometrically, this means that different points in the domain will be mapped into

different points on the image domain. An analytic function f is locally univalent

at a point z0 ∈ D if it is univalent in some neighborhood of z0. The well known

Riemann Mapping Theorem states that every simply connected domain (which is

not the whole complex plane C), can be mapped conformally onto the unit disk D.

Theorem 1.1 (Riemann Mapping Theorem) [29, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D

onto the unit disk D satisfying f(ζ) = 0 and f ′(ζ) > 0.

In view of this theorem, the study of analytic univalent functions on a simply

connected domain can be restricted to the open unit disk D.

Let H(D) be the class of analytic functions defined on D. Let H[a, n] be the

subclass of H(D) consisting of functions of the form

f(z) = a + anzn + an+1z
n+1 + · · ·

with H ≡ H[1, 1].

Also let A denote the class of all functions f analytic in the open unit disk

D, and normalized by f(0) = 0, and f ′(0) = 1. A function f ∈ A has the Taylor

1



series expansion of the form

f(z) = z +
∞∑

n=2
anzn (z ∈ D).

For a fixed p ∈ N := {1, 2, . . . }, let Ap be the class of all analytic functions of the

form

f(z) = zp +
∞∑

k=1

ak+pz
k+p,

that are p-valent (multivalent) in the open unit disk, with A := A1.

The subclass of A consisting of univalent functions is denoted by S. The

function k given by

k(z) =
z

(1− z)2
=

∞∑

n=1
nzn (z ∈ D)

is called the Koebe function, which maps D onto the complex plane except for a

slit along the half-line (−∞,−1/4], and is univalent. It plays a very important

role in the study of the class S. The Koebe function and its rotations e−iβk(eiβz),

for β ∈ R, are the only extremal functions for various problem in the class S. In

1916, Bieberbach [19] conjectured that for f ∈ S, |an| ≤ n, (n ≥ 2). He proved

only for the case when n = 2.

Theorem 1.2 (Bieberbach’s Conjecture) [19] If f ∈ S, then |an| ≤ 2 (n ≥ 2)

with equality if and only if f is the rotation of the Koebe function k.

For the cases n = 3, and n = 4 the conjecture was proved by Lowner [58] and

Garabedian and Schiffer [34], respectively. Later, Pederson and Schiffer [98] proved

the conjecture for n = 5, and for n = 6, it was proved by Pederson [97] and

Ozawa [95], independently. In 1985, Louis de Branges [20], proved the Bieberbach’s

conjecture for all the coefficients n.
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Theorem 1.3 (de Branges Theorem or Bieberbach’s Theorem) [20] If f ∈ S,

then

|an| ≤ n (n ≥ 2),

with equality if and only if f is the Koebe function k or one of its rotations.

Bieberbach’s theorem has many important properties in univalent functions. These

include the well known covering theorem: If f ∈ S, then the image of D under f

contains a disk of radius 1/4.

Theorem 1.4 (Koebe One-Quarter Theorem) [29, p. 31] The range of every func-

tion f ∈ S contains the disk {w ∈ C : |w| < 1/4}.

The Distortion theorem, being another consequence of the Bieberbach theorem

gives sharp upper and lower bounds for |f ′(z)|.

Theorem 1.5 (Distortion Theorem) [29, p. 32] For each f ∈ S,

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
(|z| = r < 1).

The distortion theorem can be used to obtain sharp upper and lower bounds for

|f(z)| which is known as the Growth theorem.

Theorem 1.6 (Growth Theorem) [29, p. 33] For each f ∈ S,

r

(1 + r)2
≤ |f(z)| ≤ r

(1− r)2
(|z| = r < 1).

Another consequence of the Bieberbach theorem is the Rotation theorem.

Theorem 1.7 (Rotation Theorem) [29, p. 99] For each f ∈ S,

| arg f ′(z)| ≤





4sin−1r, r ≤ 1√
2
,

π + log r2

1−r2 , r ≥ 1√
2
,

3



where |z| = r < 1. The bound is sharp.

The Fekete-Szego coefficient functional also arises in the investigation of univalency

of analytic functions.

Theorem 1.8 (Fekete-Szego Theorem) [29, p. 104] For each f ∈ S,

|a3 − αa2
2| ≤ 1 + 2e−2α/(1−α), (0 < α < 1).

1.2 Subclasses of univalent functions

The long gap between the Bieberbach’s conjecture in 1916 and its proof by de

Branges in 1985 motivated researchers to consider classes defined by geometric

conditions. Notable among them are the classes of convex functions, starlike func-

tions and close-to-convex functions.

A set D in the complex plane is called convex if for every pair of points w1

and w2 lying in the interior of D, the line segment joining w1 and w2 also lies in

the interior of D, i.e.

tw1 + (1− t)w2 ∈ D for 0 ≤ t ≤ 1.

If a function f ∈ A maps D onto a convex domain, then f is a convex function.

The class of all convex functions in A is denoted by CV . An analytic description

of the class CV is given by

CV :=

{
f ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
.

Let w0 be an interior point of D. A set D in the complex plane is called starlike

with respect to w0 if the line segment joining w0 to every other point w ∈ D lies

4



in the interior of D, i.e.

(1− t)w + tw0 ∈ D for 0 ≤ t ≤ 1.

If a function f ∈ A maps D onto a starlike domain, then f is a starlike function.

The class of starlike functions with respect to origin is denoted by ST . Analyti-

cally,

ST :=

{
f ∈ A : Re

(
zf ′(z)

f(z)

)
> 0

}
.

In 1936, Robertson [105] introduced the concepts of convex functions of order

α and starlike functions of order α for 0 ≤ α < 1. A function f ∈ A is said to be

convex of order α if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α (z ∈ D),

and starlike of order α if

Re

(
zf ′(z)

f(z)

)
> α (z ∈ D).

These classes are respectively denoted by CV(α) and ST (α).

Note that CV(0) = CV and ST (0) = ST . An important relationship between

convex and starlike functions was first observed by Alexander [1] in 1915 and

known later as Alexander’s theorem.

Theorem 1.9 (Alexander’s Theorem) [29, p. 43] Let f ∈ A. Then f ∈ CV if and

only if zf ′ ∈ ST .

From this, it is easily proven that f ∈ CV(α) if and only if zf ′ ∈ ST (α).

Another subclass of S that has an important role in the study of univalent

functions is the class of close-to-convex functions introduced by Kaplan [45] in

1952. A function f ∈ A is close-to-convex in D if there is a convex function g and

5



a real number θ, −π/2 < θ < π/2, such that

Re

(
eiθ f ′(z)

g′(z)

)
> 0 (z ∈ D).

The class of all such functions is denoted by CCV . The subclasses of S, namely

convex, starlike and close-to-convex functions are related as follows:

CV ⊂ ST ⊂ CCV ⊂ S.

The well known Noshiro-Warschawski theorem states that a function f ∈ A with

positive derivative in D is univalent.

Theorem 1.10 [82,131] For some real α, if a function f is analytic in a convex

domain D and

Re
(
eiαf ′(z)

)
> 0,

then f is univalent in D.

Kaplan [45] applied Noshiro-Warschawski theorem to prove that every close-to-

convex function is univalent.

The class of meromorphic functions is yet another subclass of univalent func-

tions. Let Σ denote the class of normalized meromorphic functions f of the form

f(z) =
1

z
+

∞∑

n=0
anzn,

that are analytic in the punctured unit disk D∗ := {z : 0 < |z| < 1} except for a

simple pole at 0.

A function f is said to be subordinate to F in D, written f(z) ≺ F (z), if

there exists a Schwarz function w, analytic in D with w(0) = 0, and |w(z)| < 1,

such that f(z) = F (w(z)). If the function F is univalent in D, then f ≺ F if

f(0) = F (0) and f(U) ⊆ F (U).

6



Let P be the class of all analytic functions p of the form

p(z) = 1 + p1z + p2z
2 + · · · = 1 +

∞∑

n=1
pnzn

with

Re p(z) > 0 (z ∈ D). (1.1)

Any function in P is called a function with positive real part, also known as

Caratheodory function. The following lemma is known for functions in P .

Lemma 1.1 [29] If the function p ∈ P is given by the series

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ,

then the following sharp estimate holds:

|pn| ≤ 2 (n = 1, 2, . . . ).

The above fact will be used often in the thesis especially in Chapters 2 and 3.

More generally, for 0 ≤ α < 1, we denote by P(α) the class of analytic functions

p ∈ P with

Re p(z) > α (z ∈ D).

In terms of subordination, the analytic condition (1.1) can be written as

p(z) ≺ 1 + z

1− z
(z ∈ D).

This follows since the mapping q(z) = (1 + z)/(1− z) maps D onto the right-half

plane.

Ma and Minda [59] have given a unified treatment of various subclasses con-

sisting of starlike and convex functions by replacing the superordinate function
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q(z) = (1 + z)/(1 − z) by a more general analytic function. For this purpose,

they considered an analytic function ϕ with positive real part on D with ϕ(0) = 1,

ϕ′(0) > 0 and ϕ maps the unit disk D onto a region starlike with respect to 1,

symmetric with respect to the real axis. The class of Ma-Minda starlike functions

denoted by ST (ϕ) consists of functions f ∈ A satisfying

zf ′(z)

f(z)
≺ ϕ(z)

and similarly the class of Ma-Minda convex functions denoted by CV(ϕ) consists

of functions f ∈ A satisfying the subordination

1 +
zf ′′(z)

f ′(z)
≺ ϕ(z), (z ∈ D).

respectively.

1.3 Differential subordination

Recall that a function f is said to be subordinate to F in D, written f(z) ≺ F (z),

if there exists a Schwarz function w, analytic in D with w(0) = 0, and |w(z)| < 1,

such that f(z) = F (w(z)). If the function F is univalent in D, then f ≺ F if

f(0) = F (0) and f(U) ⊆ F (U).

The basic definitions and theorems in the theory of subordination and certain

applications of differential subordinations are stated in this section. The theory of

differential subordination were developed by Miller and Mocanu [61].

Let ψ(r, s, t; z) : C3×D→ C and let h be univalent in D. If p is analytic in D

and satisfies the second order differential subordination

ψ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z), (1.2)

8



then p is called a solution of the differential subordination. The univalent function

q is called a dominant of the solution of the differential subordination or more

simply dominant, if p ≺ q for all p satisfying (1.2). A dominant q1 satisfying

q1 ≺ q for all dominants q of (1.2) is said to be the best dominant of (1.2). The

best dominant is unique up to a rotation of D.

If p ∈ H[a, n], then p will be called an (a, n)-solution, q an (a, n)-dominant,

and q1 the best (a, n)-dominant. Let Ω ⊂ C and let (1.2) be replaced by

ψ
(
p(z), zp′(z), z2p′′(z); z

)
∈ Ω, for all z ∈ D, (1.3)

where Ω is a simply connected domain containing h(D). Even though this is a

differential inclusion and ψ
(
p(z), zp′(z), z2p′′(z); z

)
may not be analytic in D, the

condition in (1.3) shall also be referred as a second order differential subordination,

and the same definition of solution, dominant and best dominant as given above

can be extended to this generalization. The monograph [61] by Milller and Mocanu

provides more detailed information on the theory of differential subordination.

Denote by Q the set of functions q that are analytic and injective on D̄\E(q),

where

E(q) = {ζ ∈ ∂D : lim
z→ζ

q(z) = ∞}

and q′(ζ) 6= 0 for ζ ∈ ∂D\E(q).

The subordination methodology is applied to an appropriate class of admissible

functions. The following class of admissible functions was given by Miller and

Mocanu [61].

Definition 1.1 [61, Definition 2.3a, p. 27] Let Ω be a set in C, q ∈ Q and m be

a positive integer. The class of admissible functions Ψm[Ω, q] consists of functions

ψ : C3 × D → C satisfying the admissibility condition ψ(r, s, t; z) 6∈ Ω whenever

9



r = q(ζ), s = kζq′(ζ) and

Re

(
t

s
+ 1

)
≥ k Re

(
ζq′′(ζ)

q′(ζ)
+ 1

)
,

z ∈ D, ζ ∈ ∂D\E(q) and k ≥ m. In particular, Ψ[Ω, q] := Ψ1[Ω, q].

The next theorem is the foundation result in the theory of first and second-order

differential subordinations.

Theorem 1.11 [61, Theorem 2.3b, p. 28] Let ψ ∈ Ψm[Ω, q] with q(0) = a. If

p ∈ H[a, n] satisfies

ψ
(
p(z), zp′(z), z2p′′(z); z

) ∈ Ω,

then p ≺ q.

1.4 Scope of thesis

This thesis will discuss five research problems. In Chapter 2, estimates on the

initial coefficients for bi-univalent functions f in the open unit disk with f and its

inverse g = f−1 satisfying the conditions that zf ′(z)/f(z) and zg′(z)/g(z) are both

subordinate to a univalent function whose range is symmetric with respect to the

real axis. Several related classes of functions are also considered, and connections

to earlier known results are made.

In Chapter 3, the bounds for the second Hankel determinant a2a4 − a2
3 of

analytic function f(z) = z + a2z
2 + a3z

3 + · · · for which either zf ′(z)/f(z) or

1 + zf ′′(z)/f ′(z) is subordinate to certain analytic function are investigated. The

problem is also investigated for two other related classes defined by subordina-

tion. The classes introduced by subordination naturally include several well known

classes of univalent functions and the results for some of these special classes are

indicated. In particular, the estimates for the Hankel determinant of strongly

starlike, parabolic starlike, lemniscate starlike functions are obtained.
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In Chapter 4, several well known results for subclasses of univalent functions

was extended to functions with fixed initial coefficient by using the theory of dif-

ferential subordination. Further applications of this subordination theory is given.

In particular, several sufficient conditions related to starlikeness, meromorphic

starlikeness and univalence of normalized analytic functions are derived.

In Chapter 5, the convexity conditions for analytic functions defined in the

open unit disk satisfying certain second-order and third-order differential inequal-

ities are obtained. As a consequence, conditions are also determined for convexity

of functions defined by following integral operators

f(z) =

∫ 1

0

∫ 1

0
W (r, s, z)drds, and f(z) =

∫ 1

0

∫ 1

0

∫ 1

0
W (r, s, t, z)drdsdt.

In the final chapter, several sufficient conditions for close-to-convexity and

starlikeness of a subclass of multivalent functions are investigated. Relevant con-

nections with previously known results are indicated.
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CHAPTER 2

COEFFICIENTS FOR BI-UNIVALENT FUNCTIONS

2.1 Introduction and preliminaries

For functions f ∈ S, let f−1 be its inverse function. The Koebe one-quarter theo-

rem (Theorem 1.4) ensures the existence of f−1, that is, every univalent function

f has an inverse f−1 satisfying f−1(f(z)) = z, (z ∈ D) and

f(f−1(w)) = w, (|w| < r0(f), r0(f) ≥ 1/4) .

A function f ∈ A is said to be bi-univalent in D if both f and f−1 are univalent

in D. Let SB denote the class of bi-univalent functions defined in D. Examples of

functions in the class SB are z/(1− z) and − log(1− z).

In 1967, Lewin [51] introduced this class SB and proved that the bound for

the second coefficients of every f ∈ SB satisfies the inequality |a2| ≤ 1.51. He

also investigated SB1 ⊂ SB, the class of all functions f = φ ◦ ψ−1, where φ and

ψ map D onto domains containing D and φ′(0) = ψ′(0). For an example that

shows SB 6= SB1, see [23]. In 1969, Suffridge [122] showed that a function in

SB1 satisfies a2 = 4/3 and thus conjectured that |a2| ≤ 4/3 for all functions in

SB. Netanyahu [69], in the same year, proved this conjecture for a subclass of

SB1. In 1981, Styer and Wright [121] showed that a2 > 4/3 for some function

in SB, thus disproved the conjecture of Suffridge. For bi-univalent polynomial

f(z) = z+a2z
2+a3z

3 with real coefficients, Smith [114] showed that |a2| ≤ 2/
√

27

and |a3| ≤ 4/27 and the latter inequality being the best possible. He also showed

that if z + anzn is bi-univalent, then |an| ≤ (n − 1)n−1/nn with equality best

possible for n = 2, 3. Kȩdzierawski and Waniurski [47] proved the conjecture

of Smith [114] for n = 3, 4 in the case of bi-univalent polynomial of degree n.

Extending the results of Srivasta et al. [118], Frasin and Aouf [33] obtained estimate
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of |a2| and |a3| for bi-univalent function f for which

(1− λ)
f(z)

z
+ λf ′(z) and (1− λ)

g(w)

w
+ λg′(w) (g = f−1)

belongs to a sector in the half plane. Tan [125] improved Lewin’s result to |a2| ≤
1.485. For 0 ≤ α < 1, a function f ∈ SB is bi-starlike of order α or bi-convex of

order α if both f and f−1 are respectively starlike or convex of order α. These

classes were introduced by Brannan and Taha [22]. They obtained estimates on

the initial coefficients for functions in these classes. For some open problems and

survey, see [35,115]. Bounds for the initial coefficients of several classes of functions

were also investigated in [7,8,24–26,33,39,48,60,64,67,108,117–120,126,133,134].

2.2 Kȩdzierawski type results

In 1985, Kȩdzierawski [46] considered functions f belonging to certain subclasses

of univalent functions while its inverse f−1 belongs to some other subclasses of

univalent functions. Among other results, he obtained the following.

Theorem 2.1 [46] Let f ∈ SB with Taylor series f(z) = z + a2z
2 + · · · and

g = f−1. Then

|a2| ≤





1.5894 if f ∈ S, g ∈ S,

√
2 if f ∈ ST , g ∈ ST ,

1.507 if f ∈ ST , g ∈ S,

1.224 if f ∈ CV, g ∈ S.

Consider the following classes investigated in [7, 8, 14].

Definition 2.1 Let ϕ : D→ C be analytic and ϕ(z) = 1 + B1z + B2z
2 + · · · with

B1 > 0. For α ≥ 0, let

M(α, ϕ) :=

{
f ∈ S : (1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z)

}
,

13



L(α, ϕ) :=

{
f ∈ S :

(
zf ′(z)

f(z)

)α (
1 +

zf ′′(z)

f ′(z)

)1−α

≺ ϕ(z)

}
,

ST (α, ϕ) :=

{
f ∈ S :

zf ′(z)

f(z)
+ α

z2f ′′(z)

f(z)
≺ ϕ(z)

}
.

Suppose that f is given by

f(z) = z +
∞∑

n=2
anzn, (2.1)

then it is known that g = f−1 has the expression

g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 + · · · .

Motivated by Theorem 2.1, we will consider the following cases and then will

obtain the estimates for the second and third coefficients of functions f :

1. f ∈ ST (α, ϕ) and g ∈ ST (β, ψ), or g ∈M(β, ψ), or g ∈ L(β, ψ),

2. f ∈M(α, ϕ) and g ∈M(β, ψ), or g ∈ L(β, ψ),

3. f ∈ L(α, ϕ) and g ∈ L(β, ψ),

where ϕ and ψ are analytic functions of the form

ϕ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · , (B1 > 0) (2.2)

and

ψ(z) = 1 + D1z + D2z
2 + D3z

3 + · · · , (D1 > 0). (2.3)

2.3 Second and third coefficients of functions f when f ∈ ST (α, ϕ) and

g ∈ ST (β, ψ), or g ∈M(β, ψ), or g ∈ L(β, ψ)

We begin with the cases for f ∈ ST (α, ϕ).
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Theorem 2.2 Let f ∈ SB and g = f−1. If f ∈ ST (α, ϕ) and g ∈ ST (β, ψ),

then

|a2| ≤ B1D1

√
B1(1 + 3β) + D1(1 + 3α)√

|ρB2
1D2

1 − (1 + 2α)2(1 + 3β)(B2 −B1)D2
1 − (1 + 2β)2(1 + 3α)(D2 −D1)B2

1 |
(2.4)

and

2ρ|a3| ≤ B1(3 + 10β) + D1(1 + 2α) + (3 + 10β)|B2−B1|+
(1 + 2β)2B2

1 |D2 −D1|
D2

1(1 + 2α)
(2.5)

where ρ := 2 + 7α + 7β + 24αβ.

Proof. Since f ∈ ST (α, ϕ) and g ∈ ST (β, ψ), there exist analytic functions u, v :

D→ D, with u(0) = v(0) = 0, satisfying

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= ϕ(u(z)) and

wg′(w)

g(w)
+

βw2g′′(w)

g(w)
= ψ(v(w)). (2.6)

Define the functions p1 and p2 by

p1(z) :=
1 + u(z)

1− u(z)
= 1+c1z+c2z

2+· · · and p2(z) :=
1 + v(z)

1− v(z)
= 1+b1z+b2z

2+· · · ,

or, equivalently,

u(z) =
p1(z)− 1

p1(z) + 1
=

1

2

(
c1z +

(
c2 −

c21
2

)
z2 + · · ·

)
(2.7)

and

v(z) =
p2(z)− 1

p2(z) + 1
=

1

2

(
b1z +

(
b2 −

b21
2

)
z2 + · · ·

)
. (2.8)

Then p1 and p2 are analytic in D with p1(0) = 1 = p2(0). Since u, v : D→ D, the

functions p1 and p2 have positive real part in D, and thus |bi| ≤ 2 and |ci| ≤ 2

15



(Lemma 1.1). In view of (2.6), (2.7) and (2.8), it is clear that

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= ϕ

(
p1(z)− 1

p1(z) + 1

)
and

wg′(w)

g(w)
+

βw2g′′(w)

g(w)
= ψ

(
p2(w)− 1

p2(w) + 1

)
.

(2.9)

Using (2.7) and (2.8) together with (2.2) and (2.3), it is evident that

ϕ

(
p1(z)− 1

p1(z) + 1

)
= 1 +

1

2
B1c1z +

(
1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1

)
z2 + · · · (2.10)

and

ψ

(
p2(w)− 1

p2(w) + 1

)
= 1 +

1

2
D1b1w +

(
1

2
D1

(
b2 −

b21
2

)
+

1

4
D2b

2
1

)
w2 + · · · . (2.11)

Since

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= 1 + a2(1 + 2α)z +

(
2(1 + 3α)a3 − (1 + 2α)a2

2

)
z2 + · · ·

and

wg′(w)

g(w)
+

βw2g′′(w)

g(w)
= 1− (1 + 2β)a2w +

(
(3 + 10β)a2

2 − 2(1 + 3β)a3

)
w2 + · · · ,

it follows from (2.9), (2.10) and (2.11) that

a2(1 + 2α) =
1

2
B1c1, (2.12)

2(1 + 3α)a3 − (1 + 2α)a2
2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1, (2.13)

−(1 + 2β)a2 =
1

2
D1b1 (2.14)
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and

(3 + 10β)a2
2 − 2(1 + 3β)a3 =

1

2
D1

(
b2 −

b21
2

)
+

1

4
D2b

2
1. (2.15)

It follows from (2.12) and (2.14) that

b1 = −B1(1 + 2β)

D1(1 + 2α)
c1. (2.16)

Multiplying (2.13) with (1 + 3β) and (2.15) with (1 + 3α), and adding the results

give

a2
2((1 + 3α)(3 + 10β)− (1 + 3β)(1 + 2α)) =

1

2
B1(1 + 3β)c2 +

1

2
D1(1 + 3α)b2

+
1

4
c21(1 + 3β)(B2 −B1) +

1

4
b21(1 + 3α)(D2 −D1).

Substituting c1 from (2.12) and b1 from (2.16) in the above equation give

a2
2((1 + 3α)(3 + 10β)− (1 + 3β)(1 + 2α))

− a2
2

(
(1 + 3β)(1 + 2α)2(B2 −B1)

B2
1

+
(1 + 2β)2(1 + 3α)(D2 −D1)

D2
1

)

=
1

2
B1(1 + 3β)c2 +

1

2
D1(1 + 3α)b2

which lead to

a2
2 =

B2
1D2

1[B1(1 + 3β)c2 + D1(1 + 3α)b2]

2[ρB2
1D2

1 − (1 + 2α)2(1 + 3β)(B2 −B1)D
2
1 − (1 + 2β)2(1 + 3α)(D2 −D1)B

2
1 ]

,

where ρ := 2 + 7α + 7β + 24αβ, which, in view of |b2| ≤ 2 and |c2| ≤ 2, gives us

the desired estimate on |a2| as asserted in (2.4).

Multiplying (2.13) with (3 + 10β) and (2.15) with (1 + 2α), and adding the
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results give

2((1 + 3α)(3 + 10β)− (1 + 3β)(1 + 2α))a3 =
1

2
B1(3 + 10β)c2 +

1

2
D1(1 + 2α)b2

+
c21
4

(3 + 10β)(B2 −B1) +
b21
4

(D2 −D1)(1 + 2α).

Substituting b1 from (2.16) in the above equation lead to

2ρa3 =
1

2
[B1(3 + 10β)c2 + D1(1 + 2α)b2]

+
c21
4

[
(3 + 10β)(B2 −B1) +

(1 + 2β)2B2
1(D2 −D1)

D2
1(1 + 2α)

]
,

and this yields the estimate given in (2.5).

Remark 2.1 When α = β = 0 and B1 = B2 = 2, D1 = D2 = 2, inequality (2.4)

reduces to the second result in Theorem 2.1.

In the case when β = α and ψ = ϕ, Theorem 2.2 reduces to the following

corollary.

Corollary 2.1 Let f given by (2.1) and g = f−1. If f, g ∈ ST (α, ϕ), then

|a2| ≤
B1
√

B1√
|B2

1(1 + 4α) + (B1 −B2)(1 + 2α)2|
, (2.17)

and

|a3| ≤
B1 + |B2 −B1|

(1 + 4α)
. (2.18)

For ϕ given by

ϕ(z) =

(
1 + z

1− z

)γ

= 1 + 2γz + 2γ2z2 + · · · (0 < γ ≤ 1),

we have B1 = 2γ and B2 = 2γ2. Hence, when α = 0, the inequality (2.17) reduces

to the following result.
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Corollary 2.2 [22, Theorem 2.1] Let f given by (2.1) be in the class of strongly

bi-starlike functions of order γ, 0 < γ ≤ 1. Then

|a2| ≤
2γ√
1 + γ

.

On the other hand, when α = 0 and

ϕ(z) =
1 + (1− 2β)z

1− z
= 1 + 2(1− β)z + 2(1− β)z2 + · · ·

so that B1 = B2 = 2(1 − β), the inequalities in (2.17) and (2.18) reduce to the

following result.

Corollary 2.3 [22, Theorem 3.1] Let f given by (2.1) be in the class of bi-starlike

functions of order β, 0 < β ≤ 1. Then

|a2| ≤
√

2(1− β) and |a3| ≤ 2(1− β).

Theorem 2.3 Let f ∈ SB and g = f−1. If f ∈ ST (α, ϕ) and g ∈M(β, ψ), then

|a2| ≤ B1D1

√
B1(1 + 2β) + D1(1 + 3α)√

|ρB2
1D2

1 − (1 + 2α)2(1 + 2β)(B2 −B1)D2
1 − (1 + β)2(1 + 3α)(D2 −D1)B2

1 |
(2.19)

and

2ρ|a3| ≤ B1(3+5β)+D1(1+2α)+(3+5β)|B2−B1|+
(1 + β)2B2

1 |D2 −D1|
D2

1(1 + 2α)
(2.20)

where ρ := 2 + 7α + 3β + 11αβ.

Proof. Let f ∈ ST (α, ϕ) and g ∈ M(β, ψ), g = f−1. Then there exist analytic
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functions u, v : D→ D, with u(0) = v(0) = 0, such that

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= ϕ(u(z)) and (1−β)

wg′(w)

g(w)
+β

(
1 +

wg′′(w)

g′(w)

)
= ψ(v(w)),

(2.21)

Since

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= 1 + a2(1 + 2α)z + (2(1 + 3α)a3 − (1 + 2α)a2

2)z
2 + · · ·

and

(1−β)
wg′(w)

g(w)
+β

(
1 +

wg′′(w)

g′(w)

)
= 1−(1+β)a2w+((3+5β)a2

2−2(1+2β)a3)w
2+· · · ,

equations (2.10), (2.11) and (2.21) yield

a2(1 + 2α) =
1

2
B1c1, (2.22)

2(1 + 3α)a3 − (1 + 2α)a2
2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1, (2.23)

−(1 + β)a2 =
1

2
D1b1 (2.24)

and

(3 + 5β)a2
2 − 2(1 + 2β)a3 =

1

2
D1

(
b2 −

b21
2

)
+

1

4
D2b

2
1. (2.25)

It follows from (2.22) and (2.24) that

b1 = − B1(1 + β)

D1(1 + 2α)
c1. (2.26)

Multiplying (2.23) with (1 + 2α) and (2.25) with (1 + 3α), and adding the results
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give

a2
2(2 + 7α + 3β + 11αβ) =

B1
2

(1 + 2β)c2 +
D1
2

(1 + 3α)b2

+
c21
4

(1 + 2β)(B2 −B1) +
b21
4

(1 + 3α)(D2 −D1)

Substituting c1 from (2.22) and b1 from (2.26) in the above equation give

a2
2(2 + 7α + 3β + 11αβ)

− a2
2(1 + 2α)2

B2
1

(
(1 + 2β)(B2 −B1) +

(1 + 3α)(D2 −D1)(1 + β)2B2
1

(1 + 2α)2D2
1

)

=
B1
2

(1 + 2β)c2 +
D1
2

(1 + 3α)b2

which lead to

a2
2 =

B2
1D2

1[B1(1 + 2β)c2 + D1(1 + 3α)b2]

2[ρB2
1D2

1 − (1 + 2α)2(1 + 2β)(B2 −B1)D
2
1 − (1 + β)2(1 + 3α)(D2 −D1)B

2
1 ]

,

which gives us the desired estimate on |a2| as asserted in (2.19) when |b2| ≤ 2 and

|c2| ≤ 2.

Multiplying (2.23) with (3 + 5β) and (2.25) with (1 + 2α), and adding the

results give

2a3(2 + 7α + 3β + 11αβ) =
B1
2

(3 + 5β)c2 +
D1
2

(1 + 2α)b2

+
c21
4

(3 + 5β)(B2 −B1) +
b21
4

(1 + 2α)(D2 −D1)

Substituting b1 from (2.26) in the above equation give

2a3(2 + 7α + 3β + 11αβ) =
B1
2

(3 + 5β)c2 +
D1
2

(1 + 2α)b2

+
c21
4

(
(3 + 5β)(B2 −B1) +

(1 + β)2(D2 −D1)B
2
1

D2
1(1 + 2α)

)
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which lead to

2ρa3 =
1

2
[B1(3 + 5β)c2 + D1(1 + 2α)b2]

+
c21
4

[
(3 + 5β)(B2 −B1) +

(1 + β)2B2
1(D2 −D1)

D2
1(1 + 2α)

]
,

where ρ = 2 + 7α + 3β + 11αβ and this yields the estimate given in (2.20).

Theorem 2.4 Let f ∈ SB and g = f−1. If f ∈ ST (α, ϕ) and g ∈ L(β, ψ), then

|a2| ≤ B1D1

√
2[B1(3− 2β) + D1(1 + 3α)]√

|ρB2
1D2

1 − 2(1 + 2α)2(3− 2β)(B2 −B1)D2
1 − 2(2− β)2(1 + 3α)(D2 −D1)B2

1 |
(2.27)

and

|ρa3| ≤
1

2
B1(β

2 − 11β + 16) + D1(1 + 2α) +
1

2
(β2 − 11β + 16)|B2 −B1|

+
(2− β)2B2

1 |D2 −D1|
D2

1(1 + 2α)
(2.28)

where ρ := 10 + 36α− 7β − 25αβ + β2 + 3αβ2.

Proof. Let f ∈ ST (α, ϕ) and g ∈ L(β, ψ). Then there are analytic functions

u, v : D→ D, with u(0) = v(0) = 0, satisfying

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= ϕ(u(z)) and

(
wg′(w)

g(w)

)β (
1 +

wg′′(w)

g′(w)

)1−β

= ψ(v(w)),

(2.29)

Using

zf ′(z)

f(z)
+

αz2f ′′(z)

f(z)
= 1 + a2(1 + 2α)z + (2(1 + 3α)a3 − (1 + 2α)a2

2)z
2 + · · · ,

(
wg′(w)

g(w)

)β (
1 +

wg′′(w)

g′(w)

)1−β
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= 1− (2− β)a2w +
(
(8(1− β) +

1

2
β(β + 5))a2

2 − 2(3− 2β)a3

)
w2 + · · · ,

and equations (2.10), (2.11) and (2.29) will yield

a2(1 + 2α) =
1

2
B1c1, (2.30)

2(1 + 3α)a3 − (1 + 2α)a2
2 =

1

2
B1

(
c2 −

c21
2

)
+

1

4
B2c

2
1, (2.31)

−(2− β)a2 =
1

2
D1b1 (2.32)

and

[8(1− β) +
β

2
(β + 5)]a2

2 − 2(3− 2β)a3 =
1

2
D1

(
b2 −

b21
2

)
+

1

4
D2b

2
1. (2.33)

It follows from (2.30) and (2.32) that

b1 = − B1(2− β)

D1(1 + 2α)
c1. (2.34)

Multiplying (2.31) with (3− 2β) and (2.33) with (1 + 3α), and adding the results

give

a2
2

(
5− 7β

2
+ 18α− 25αβ

2
+

β2

2
+

3αβ2

2

)
=

B1
2

(3− 2β)c2 +
D1
2

(1 + 3α)b2

+
c21
4

(3− 2β)(B2 −B1) +
b21
4

(1 + 3α)(D2 −D1)

Substituting c1 from (2.30) and b1 from (2.34) in the above equation give

a2
2

(
5− 7β

2
+ 18α− 25αβ

2
+

β2

2
+

3αβ2

2

)

− a2(1 + 2α)2

B2
1

(
(3− 2β)(B2 −B1) +

B2
1(2− β)2

D2
1(1 + 2α)2

(1 + 3α)(D2 −D1)

)
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=
B1
2

(3− 2β)c2 +
D1
2

(1 + 3α)b2

which lead to

a2
2 =

B2
1D2

1[B1(3− 2β)c2 + D1(1 + 3α)b2]

ρB2
1D2

1 − 2(1 + 2α)2(3− 2β)(B2 −B1)D
2
1 − 2(2− β)2(1 + 3α)(D2 −D1)B

2
1
,

which again in view of |b2| ≤ 2 and |c2| ≤ 2 gives the desired estimate on |a2| as

asserted in (2.27). Multiplying (2.31) with [8(1 − β) + β
2 (β + 5)] and (2.33) with

(1 + 2α), and adding the results give

a3(10 + 36α− 7β − 25αβ + β2 + 3αβ2) =
B1
4

(β2 − 11β + 16)c2 +
D1
2

(1 + 2α)b2

+
c21
4

[
8(1− β) +

β

2
(β + 5)

]
(B2 −B1) +

b21
4

(1 + 2α)(D2 −D1)

Substituting b1 from (2.34) in the above equation give

a3(10 + 36α− 7β − 25αβ + β2 + 3αβ2) =
B1
4

(β2 − 11β + 16)c2 +
D1
2

(1 + 2α)b2

+
c21
4

[
8(1− β) +

β

2
(β + 5)

]
(B2 −B1) +

c21(2− β)2B2
1(D2 −D1)

4D2
1(1 + 2α)

which lead to

ρa3 =
B1
4

(β2 − 11β + 16)c2 +
D1
2

(1 + 2α)b2

+
c21
4

[
1

2
(β2 − 11β + 16)(B2 −B1) +

(2− β)2B2
1(D2 −D1)

D2
1(1 + 2α)

]

where ρ := 10 + 36α− 7β − 25αβ + β2 + 3αβ2 and this yields the estimate given

in (2.28).
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