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SINTESIS DAN PENCIRIAN SILIKA NANOZARAH DAN PENGGUNAANYA 

SEBAGAI PENGISI DI DALAM NANOKOMPOSIT SILIKA-BISMALEIMIDA 

 

ABSTRAK 

 

Penyelidikan yang dijalankan adalah untuk mengkaji pembentukan, pertumbuhan dan 

kaedah pengawalan saiz zarah silika melalui proses sol-gel dengan menggunakan 

tetraetoksilikat (TEOS) sebagai pemula dalam keadaan bes. Pembentukan dan 

pertumbuhan zarah silika didapati sangat dipengaruhi oleh kepekatan NH3 (mangkin). 

Sol yang stabil telah terbentuk pada kepekatan NH3 yang rendah manakala kepekatan 

yang tinggi telah menghasilkan zarah yang besar dan berbentuk sfera dengan saiz 

dalam julat  90 – 700 nm. Pendekatan pertama secara penambahan sedikit garam 

ammonium (NH4X) telah menghasilkan silika nanozarah yang tersebar dengan saiz  

20.5 hingga 34.1 nm. Ini bergantung kepada saiz dan kepekatan anion yang hadir di 

dalam sistem. Pendekatan kedua telah digunakan untuk mengurangkan lagi saiz zarah 

silika melalui pengoptimuman parameter tindak balas seperti kepekatan TEOS, nilai R 

(nisbah kepekatan air terhadap TEOS), kadar penambahan NH3 dan suhu tindak balas.  

Zarah silika yang sangat halus dan tersebar dengan saiz 7.1 ± 1.9 nm yang berada di 

dalam julat zarah asas telah berjaya dihasilkan pada keadaan optimum.  Silika 

nanozarah yang dihasilkan kemudianya disebar dan dikeringkan dengan menggunakan 

kaedah penyahidratan-alkohol (AD). Kaedah ini merupakan suatu kaedah pengeringan 

yang baru, mudah dan rendah kosnya serta mampu menggurangkan penggumpalan dan 

meningkatkan sebaran silika nanozarah berbanding kaedah pengeringan beku (FD) and 

pengeringan ketuhar (OD). Silika nanozarah yang telah diproses mempunyai beberapa 

sifat menarik yang bergantung kepada saiz. Peningkatan luas permukaan spesifik (SSA) 

and kepekatan silanol (δOH) yang nyata serta peningkatan  ketumpatan ketara (Da) yang 
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beransur telah diperhatikan apabila saiz zarah dikurangkan daripada 400 kepada 7 nm. 

Selain itu, pengurangan nombor silanol (αOH) dan sudut ikatan Si-O-Si serta kewujudan 

kecacatan aktif-optik pada saiz zarah yang lebih kecil mencadangkan bahawa 

perubahan ketara berlaku pada struktur nanosilika. Pengubahsuaian permukaan silika 

secara kimia telah dijalankan dengan mencantum kumpulan epoksida and maleimida. 

Kumpulan epoksida telah dicantum dengan menggunakan 3-

glisidiloksipropiltrimetoksisilana (GPTS) manakala kumpulan maleimida telah 

dicantum melalui tindak balas 1,1’-(Metilenadi-4,1-fenilena)bismaleimida (BMI) 

kepada silika nanozarah yang terlebih dahulu dicantumkan dengan kumpulan amina 

menggunakan 3-aminopropiltrimetoksisilana (APTS). Kedua-dua kumpulan epoksida 

dan maleimida yang didapati terikat secara kovalen pada permukaan silika adalah 

reaktif. Muatan kumpulan berfungsi didapati meningkat dengan pengurangan saiz 

zarah, sebagai contoh 130 nm (1.09 mmol/g) < 20 nm (1.70 mmol/g) < 7 nm (2.04 

mmol/g) bagi kumpulan epoksida. Matriks untuk nanokomposit silika-bismaleimida 

(SBN) telah disediakan daripada formulasi yang mengandungi BMI and 4,4’-

diaminodifenilmetana (DDM) pada nisbah 2:1 (BMI/DDM) dengan 0.1 % berat 

dikumilperoksida (DCP) sebagai pemecut pematangan. Formulasi tersebut 

menghasilkan komposit dengan masa-gel yang panjang (208 s/g) dan masa pasca-

pematangan yang singkat (2 jam) berbanding dengan formulasi lain. Zarah nanosilika 

(7, 20 dan 130 nm) telah dicampurkan ke dalam matriks BMI/DDM secara kaedah 

gabungan yang melibatkan  pra-rawatan serbuk silika dengan BMI dan adunan-lebur. 

Silika nanozarah yang tulen didapati berinteraksi dengan matriks polimer melalui 

ikatan hidrogen manakala zarah silika dengan permukaan yang diubahsuai telah 

menghasilkan interaksi pengisi-matriks yang kuat melalui ikatan kovalen. Justeru, 

zarah silika dengan permukaan yang diubahsuai telah menyebabkan peningkatan sifat 



 xxv 

mekanik terma SBN seperti E’, Tg dan Td  yang ketara dengan penurunan CTE. 

Peningkatan sifat-sifat tersebut didapati bergantung kepada kepekatan pengisi, 

kumpulan berfungsi pada permukaan dan saiz zarah. Secara keseluruhan, sifat mekanik 

terma yang terbaik bagi SBN telah diperoleh dengan zarah silika bersaiz 7 nm 

(dicantum dengan kumpulan epoksida) pada kepekatan 10.0 % berat, iaitu E’: 14.1 GPa 

(pada 30 °C), Tg: 300 °C,  α1: 28.8 ppm/°C dan Td (onset): 451 °C.  
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SYNTHESIS AND CHARACTERIZATION OF SILICA NANOPARTICLES 

AND THEIR APPLICATION AS FILLERS IN SILICA-BISMALEIMIDE 

NANOCOMPOSITE 

 

ABSTRACT 

 

A series of investigations were carried out to study the formation, growth and methods 

to control the size of silica particles via sol-gel process using tetraethylorthosilicate 

(TEOS) as the precursor in basic condition. The formation and growth of silica particles 

were significantly affected by the NH3 (catalyst) concentration. Lower NH3 

concentrations lead to the formation of stable sols while higher NH3 concentrations 

resulted in bigger, spherical silica particles with sizes varying from 90 - 700 nm. In the 

first approach, the addition of small amount of ammonium salts (NH4X) produced 

monodispersed silica particles ranging from 20.5 to 34.1 nm depending on the size and 

concentration of the anion present in the system. The second approach was conducted 

to further reduce the silica size by optimizing the reaction parameters such as 

concentration of TEOS, R (water to TEOS concentration ratio) value, NH3 feed rate 

and reaction temperature. The optimal reaction conditions successfully produced highly 

dispersed ultrafine silica nanoparticles with particle size of 7.1 ± 1.9 nm which falls in 

the primary size range. The freshly synthesized silica nanoparticles was dispersed and 

dried using a relatively new, simple and cost effective alcohol-dehydration (AD) 

technique which was able to suppress the agglomeration and improve the dispersion of 

silica compared to freeze drying (FD) and oven drying (OD) techniques. The processed 

silica nanoparticles exhibited some interesting size-dependent properties. Significant 

increase in the specific surface area (SSA) and silanol concentration (δOH) and a more 

gradual increase in the apparent density (Da) were observed as the particle size was 

reduced from around 400 to 7 nm. In addition, the decrease in the silanol number (αOH) 
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and Si-O-Si bond angle and the presence of optically active defect sites at smaller 

particle sizes suggest that the silica structure has been significantly altered at the 

nanoscale. Chemical modification of silica surface was conducted by grafting epoxide 

and maleimide groups. The epoxide groups were grafted using 3-

glycidyloxypropyltrimethoxysilane (GPTS) while the maleimide groups were grafted 

by reacting 1,1’-(Methylenedi-4,1-phenelene)bismaleimide (BMI) with silica 

nanoparticles pre-grafted with amino groups using 3-aminopropyltrimethoxysilane 

(APTS). Both epoxide and maleimide groups were found covalently bonded to the 

silica surface and reactive. The loading of functional groups increased with the 

decrease in the particle size: e.g. 130 nm (1.09 mmol/g) < 20 nm (1.70 mmol/g) < 7 nm 

(2.04 mmol/g) for the epoxide groups. The matrix for the silica-bismaleimide 

nanocomposite (SBN) was prepared using a formulation containing BMI and                

4,4’-diaminodiphenylmethane (DDM) at 2:1 (BMI/DDM) mol ratio with 0.1 wt.% of 

dicumylperoxide (DCP) as the curing accelerator. The specified formulation exhibited 

longer gel-time (208 sec/g) and shorter post-curing time (2 hours) compared to other 

formulations. The silica nanoparticles (7, 20 and 130 nm) were incorporated into the 

BMI/DDM matrix using a combination of procedures involving pre-treatments of silica 

powder in presence of BMI and melt-mixing. The pure silica nanoparticles interacted 

with the polymer matrix through hydrogen bonding while the surface modified 

nanoparticles exhibited strong filler-matrix interaction via covalent bonding. Therefore, 

the surface modified nanoparticles resulted in significant improvements in thermal 

mechanical properties of SBN such as E’, Tg and Td and also reduction in CTE. The 

property enhancements were found dependent on the filler concentration, surface 

functional group and particle size. Overall, the best thermal mechanical properties were 
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obtained for SBN containing 7 nm silica particles (grafted with epoxide groups) at 10.0 

wt.%, i.e., E’: 14.1 GPa (at 30 °C), Tg: 300 °C, α1: 28.8 ppm/°C and Td (onset): 451 °C.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Nanotechnology 

On December 29, 1959, Richard Feynman in his famous talk entitled 

"There's Plenty of Room at the Bottom” has described the possibility of maneuvering 

things atom by atom in the future [1]. Now, his prediction seems to be realized with the 

rapid development in nanotechnology. Nanotechnology is rapidly sweeping through all 

vital fields of science and technology such as electronics and pharmaceuticals with 

tremendous supports from researchers from both academic and industrial sectors. This 

is an emerging technology of the 21st century. In the year 2005 alone, US$ 9.6 billion 

worth of fund had been dedicated to nanotech research by the governments, 

corporations and venture capitalists throughout the world [2]. In the same year, US$ 32 

billion worth of goods incorporated with nanotechnology were sold, ranging from 

General Motors vehicles that includes parts made of polymer-nanoclay composites, to 

antimicrobial bandages that contains nanosilver particles [2]. Thus, nanotechnology 

does not only open more room for research and developments but also promises good 

revenues through commercialization of nanomaterial incorporated products. 

 

The term nanotechnology can be briefly defined as the science and 

engineering involved in the design, synthesis, characterization, and application of 

materials and devices on the nanometer scale or one billionth of a meter [3]. In 

materials where strong bond is present, delocalization of valence electron is extensive 

and the extent of delocalization depends and varies with the size of the system [4]. This 

in turn, affects the properties of the material such as chemical properties, magnetic 
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properties, optical properties, thermal properties and surface reactivity [4]. As a result, 

nanomaterials often exhibit unique and improved properties compared to the bulk 

counterparts. Therefore, it provides opportunity to develop new classes of advanced 

materials which can meet the demands from high-tech industries such as electronics, 

aerospace, defense and pharmaceutical.  

 

1.2 Nanoceramics 

Development of ceramic particles in nano dimension with improved 

properties has been studied with much success in several areas such as synthesis, 

surface science and texturology [4]. Ceramic is defined as non-metallic and inorganic, 

thus all the metal oxides, nitrides and carbides falls in this category [5]. Examples of 

ceramic are silicon dioxide (silica), aluminum oxide (alumina), titanium dioxide 

(titania), silicon nitride, and etc. The ceramic materials have been reported to exhibit 

unique surface chemistry in the nano dimension [6]. Therefore, nanoceramics such as 

silica nanoparticles have been intensively studied in recent years due to its prospect of 

application in various commercial fields.      

 

1.2.1 Silica Nanoparticles 

Advancement in nanotechnology has lead to the production of nano-sized 

silica, SiO2, which has been widely used in both scientific research and engineering 

development [7]. Generally, materials with the particle size in the range of 1 – 100 nm 

are defined as nanomaterials [4, 8-10]. Natural silica is found in plants such as barley, 

rice husk and bamboo and also in mineral forms of quartz and flint. The silica particles 

extracted from these natural resources contains metal impurities and not favorable for 

advanced scientific and industrial applications. Thus, focus is given to synthetic silica 
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(colloidal silica, silica gels, pyrogenic silica and precipitated silica), which is pure and 

produced mostly in amorphous powder forms compared to natural mineral silica 

(quartz, tridymite, cristobalite) which are in crystalline forms [11].  As shown in Figure 

1.1, the various methods that have been used to obtain nanomaterials can be 

categorized into two main approaches: top-down and bottom-up [4, 12]. Top-down is 

characterized by reducing the dimension of the original size by utilizing special size 

reduction techniques. Bottom-up approach which involves synthesis of nanomaterials 

from atomic or molecular scale is the common route used to produce silica 

nanoparticles. Some of the widely used methods to synthesize silica nanoparticles are 

sol-gel process, reverse microemulsion and flame synthesis.  

 

 
 

Figure 1.1: Top-down and bottom-up approaches to produce nanomaterials [4, 12]. 

 

1.2.1.1  Sol-Gel Process  

 The sol-gel process is widely applied to produce ceramic materials due to its 

ability to form pure and homogenous products at mild conditions. The process involves 

hydrolysis and condensation of metal alkoxides [5, 13] such as tetraethylorthosilicate 

(TEOS, Si(OC2H5)4) or inorganic salts [13] such as sodium silicate (Na2SiO3). Silicate 

particles mostly synthesized in the presence of mineral acid (e.g. HCl) or base (e.g. 

NH3) as catalyst. Flow chart of a typical sol-gel process which leads to the production 

silica nanoparticles  using silicon alkoxides (Si(OR)4), is shown in Figure 1.2.  

Top-down

Bottom-up

Top-down

Bottom-up



 4 

 
 

Figure 1.2: Flow chart of a typical sol-gel process for preparing nanosilica        
powder [6]. 

 

 

Condensation of hydroxide molecules by elimination of water leads to the formation of 

sol (colloidal silica). After a prolonged ageing process, the colloidal particles will link 

together to form network structure, resulting in a porous gel. Removal of solvent from 

the sol or gel will produce silica powder. Since the sol-gel process starts with the 

nanosized hydroxide units, and undergoes reaction on the nanometer scale, it results in 

the formation of nanometer silica particles [4]. Optimizing the reaction conditions of 

sol-gel process such as concentration of reactants, concentration of catalyst and reaction 

temperature [14, 15] and addition of electrolytes (metal salts) [16] are some of the 

recent attempts made by the researchers to reduce the silica size using the sol-gel 
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platform. The smallest possible silica nanoparticles with average diameter of 14 to 20 

nm, in colloidal form have been produced using these approaches [14-16].                 

 

1.2.1.2 Reverse Microemulsion   

 Reverse microemulsion (RM) is an efficient method to synthesis 

monodispersed nanoparticles [17]. In a typical RM system, the surfactants molecules 

dissolved in organic solvents forms spherical micelles. As illustrated in Figure 1.3, in 

the presence of water, the polar head groups organize themselves to form microcavities 

containing water, which is often called as reverse micelles [18]. Synthesis of silica 

nanoparticles inside the microcavities can be achieved by controlled addition of silicon 

alkoxides and catalyst into the medium containing reverse micelles. The surfactant 

stabilized microcavities (in nanometer size) provides a cage-like effect that limits 

particle nucleation, growth and agglomeration [19, 20], leading to the formation of 

homogenous silica nanoparticles. Major drawbacks of the RM approach are the high 

cost and difficulties in the removal of surfactants after the synthesis [21]. 

 

 

 

Figure 1.3: Schematic representation of reverse micelles, showing the different 
regions of a micellar solution: (1) water pool; (2) interface; and               
(3) organic phase [18]. 

Polar head groups 

Non-polar tail groups 

Surfactant  
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1.2.1.3 Flame Synthesis  

 Silica nanoparticles also can be produced through high temperature            

flame decomposition of metal-organic precursors. This process also referred                

as chemical vapor condensation (CVC) [3]. In a typical CVC process, silica 

nanoparticles are produced by burning silicon tetrachloride, SiCl4 with hydrogen and 

oxygen [11]. Difficulty in controlling the particle size, morphology and phase 

composition is the main disadvantages of the flame synthesis [4]. Nevertheless, this is 

the prominent method that has been used to commercially produce silica nanoparticles 

in powder form.    

 

1.2.2  Applications of Silica Nanoparticles 

 Silica nanoparticles are widely used in high-tech applications owing to their 

many attractive properties such as excellent physical, chemical, mechanical and 

sintering properties [4]. At present, silica nanoparticles are extensively studied for their 

prospective as photonic crystals [22, 23], chemical sensors [24], biosensors [25],          

nanofillers for advanced composite materials [26-28], markers for bioimaging [29], 

substrate for quantum dots [30, 31] and catalysts [32, 33], and etc. Optical absorption 

and emission properties, concentration of silanol groups, specific surface area and 

density are some of the key parameters that govern the utilization of silica nanoparticles 

in the contemporary research works. However, literatures describing the size-dependent 

properties and contemporary application of silica nanoparticles are still lacking                 

at the moment.    
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1.2.3 Agglomeration and Aggregation Problems in Silica Nanoparticles 

 The extents of agglomeration and aggregation in silica nanoparticles are 

important parameters that govern their utility in various types of application. 

Agglomeration is the sharing of a plane or side between two particles, while 

aggregation indicates one-point linking of particles [11]. The presence of agglomerates 

and aggregates will readily affect the physical properties such as surface area. 

Therefore, agglomeration and aggregation-free nanoparticles are essential in ceramics, 

composites and electronics applications [34]. It has been reported that the 

agglomeration can be reduced by appropriate drying of the sol or gel that carries the 

nanoparticles [35]. On the other hand, chemical modification of silica surface has been 

proven to effectively reduce the aggregation phenomena [11].    

 

1.3 Silica-Polymer Nanocomposites 

 In principle, the incorporation of inorganic moieties (fillers) with organic 

polymeric materials (matrix) results in the formation of composite materials [8]. Once, 

one of the dimensions of the filler material is of the order of a nanometer scale or more 

definitively in the range of 1 - 100 nm, it is termed as nanocomposite [4, 8-10]. The 

final product does not have to be in nanoscale, but can be micro- or macroscopic in size 

[36]. The resulting inorganic-organic hybrid materials, which is also often called as the 

polymer matrix composite (PMC), have been proven to exhibit excellent properties in 

terms of thermal, mechanical, electrical and magnetic behaviors compared to the pure 

organic polymer due to the synergism between the properties of the components [8]. 

Exceptionally low coefficient of thermal expansion (CTE) of silica caused by the high 

Si-O bond energy has made the silica filled PMCs widely studied, especially for the 

applications at elevated temperatures such as in semiconductor packaging [7].  
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 The application of silica nanoparticles as fillers in the preparation of 

advance PMC has drawn much attention in recent years. This is due to the increased 

demand for new materials with improved thermal, mechanical, physical and chemical 

properties, especially for the application in semiconductor packaging, aerospace and 

defense related industries. Recent developments in the synthesis of monodispersed, 

narrow size distributed silica nanoparticles are realized to provide significant boost to 

the development of silica-polymer nanocomposites. Silica nanoparticles which exhibit 

significantly higher specific surface area and silanol concentration compared to the 

bulk silica [4] is expected to drastically alter the properties of polymer composite with 

respect to macroscopic composites that are made of the same components. In the case 

of particle filled composite system, the surface area per unit volume is inversely 

proportional to the material’s diameter. Thus, greater surface area per unit volume        

(A/V ratio) is achieved with smaller particle size [37, 38]. Higher A/V ratio results in 

increased interaction between the nanoparticles and polymer matrix, leading to various 

property enhancements.  

 

  Generally, three types of nanocomposite can be prepared by varying the 

type of chemical interaction between the inorganic-organic components in PMC,        

i.e., (i) strongly bonded (via covalent, coordination, ionic interactions); (ii) weakly 

bonded (van der Waals, hydrogen-bonding interactions); and (iii) without chemical 

interactions [39, 40]. A critical challenge in the design of these hybrid inorganic–

organic systems is the ability to control the mixing between the two dissimilar 

components or phases [8]. Homogenous mixing of the inorganic-organic components 

can be achieved by surface modification of silica nanoparticles.  
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1.3.1 Surface Modification of Silica Nanoparticles  

 Physical mixtures of organic polymers and preformed silica nanoparticles 

may lead to phase separation, resulting in poor mechanical, thermal, optical and etc. 

properties [8]. The hydrophilic nature of silica surface shows restricted affinity towards 

the polymer matrix [7]. In addition, silica nanoparticles tend to form aggregates during 

the formation of nanocomposite due to the inter-particle interactions. According to 

Kickelbick [8], there are five possibilities to overcome the phase separation in hybrid 

particulate systems, i.e., (i) the use of a polymer which weakly interacts (secondary 

bondings) with the nanoparticles; (ii) the covalent attachment of an inert organic layer 

on the surface of the particle to serve as a compatibilizer at the particle/polymer 

interface; (iii) the encapsulation of the particles through emulsion polymerization;         

(iv) the attachment of functional groups which allow a covalent linkage with the 

polymer; and (v) the attachment of initiation groups for grafting of polymer chains 

from the particle surface. Among the five different methods, attachment of functional 

groups which could form covalent bonding with the polymer matrix is relatively 

popular and used by many researchers to impart strong interfacial bonding in the 

nanocomposite.  

 

 In the case of silica based nanocomposites, silane coupling agents,                

Si(OR)3R’ are widely used to functionalize the hydrophilic silica surface [41-43], where 

the functional groups, R’, introduced to the silica surface via condensation of silanol 

groups (≡Si-OH) with the alkoxy groups, -OR. The selection of desirable functional 

group (R’) depends on the subject of application.  
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1.3.2 Selection of Polymer Matrix 

 In order to exploit the full potential of the technological applications of the 

nanomaterials, it is very important to endow them with good processability which has 

ultimately guided scientists to use conventional polymers as one component of the 

nanocomposites [44]. The conventional polymer matrixes used in the preparation of 

composite materials can be classified into two main categories: thermoplastics and 

thermosets. A thermoplastic is a plastic that melts to a liquid when heated and freezes 

to a glassy state when cooled sufficiently. Thermoplastics often have only very weak 

intermolecular forces between non-oriented chain segments [45]. Examples of 

thermoplastics are acrylic, acetate, nylon, polyethylene, polystyrene and etc. On the 

other hand, thermosetting plastics or thermosets are polymer materials that irreversibly 

cure, to a stronger form [46]. Upon curing, the thermoset will form permanent network 

structures through formation intermolecular cross-links (covalent bonds) between the 

polymer chains [45, 46]. Thus, it exhibits good dimensional stability and resist viscous 

flow at elevated temperature compared to the thermoplastics. Therefore, thermosets are 

often used as the matrix for the preparation of advanced composite materials that can 

meet common engineering needs of high temperature applications such as in aerospace, 

defense and semiconductor packaging industries. Epoxies, poly(arylene ethers), 

polyurethanes,  polybenzimidazoles, bismaleimides, organofluoro polymers, certain 

silicones and liquid crystalline polyesters are some of the common commercially 

available thermosets.  
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1.3.2.1 Epoxies 

 At present, epoxy resins such as diglycidyl ether of Bisphenol A (DGEBA) 

are widely used as the matrix for the preparation of silica-polymer nanocomposite. The 

main advantages of epoxies are they are easy to handle and show good processability.  

However, the silica-epoxy nanocomposites are not favorable for applications above        

250 °C due to their low Tg, i.e., 165 – 240 °C [47, 48]. In addition, the incorporation of 

silica nanoparticles has been reported to decrease the Tg of the neat epoxy polymer by 7 

to 12 °C with the increase in the filler loading from 15 to 50 wt.% [47, 48]. Thus, it is 

necessary to find new classes of silica-thermoset nanocomposites which can withstand 

high temperature with minimal loss in the thermal mechanical properties as compared 

to the conventional epoxies. Thermosetting polyimide resins such as bismaleimides and 

nadimides are being favorably considered as replacements for epoxy resins in certain 

commercial and military applications [49].  

 

1.3.2.2 Bismaleimide 

 The bismaleimide (BMI) systems dominate over the other thermosetting 

polymer matrices primarily due to their high performance-to-cost ratio and relatively 

high temperature resistance (e.g. high Tg and Td and low CTE) [50]. Besides, BMI also 

offers superior thermal and oxidative stability, low susceptibility for moisture 

absorption and good flame retardance. The main advantage of BMI is that it can 

withstand high stress at high temperatures at which typical epoxies, phenolics and most 

of the high performance plastics are unstable [51]. One disadvantage of BMI is that it 

relatively brittle due to their aromatic nature and high cross-linking density. Therefore, 

many BMI resins have been modified through various chain extension reactions to 

enhance their fracture toughness. Co-polymerizing the maleimide double bond with 
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aromatic diamine such as 4, 4’-diaminodiphenylmethane (DDM) is one of the most 

efficient and cost-effective method to achieve this objective [52-54]. Some of the 

reported inorganic-BMI composites are carbon-BMI [55-57], clay-BMI [58] and 

potassium titanate-BMI [59] hybrids. However, works on silica nanoparticles-BMI 

composites have not been reported in the literatures, thus the oppurtunitiy to develop 

such material is still open. 

 

1.4 Problem Statements 

 The research developments addressed in the above sections would have 

given some brief pictures on the synthesis and applications of silica nanoparticles. 

Following are some of the challenges and opportunities that exist in the contemporary 

research in silica nanoparticles: 

 
(a)  At present, the synthesis of monodispersed and narrow size distributed silica 

nanoparticles significantly below 10 nm, in powder form via sol-gel process is 

not much reported in the literatures. Most of the reported works focused on 

the synthesis of colloidal silica nanoparticles. Preparation of silica 

nanoparticles in powder form would benefit many applications which require 

solvent free nanoparticle systems that are easy to handle and store;  

 
(b)  To date, metods to control the agglomeration of the sol-gel derived silica 

nanoparticles is not much reported in the literatures. Effective drying 

techniques could reduce the agglomeration of silica nanoparticles;  

 
(c) Literatures on size-dependent properties of silica nanoparticles are still 

lacking due difficulty in producing silica nanoparticles in well defined size 

ranges and from the same origin.  
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(d) As described earlier, the incorporation of silica nanoparticles into BMI 

polymer matrix would yield potentially a new class of nanocomposite, which 

is not much reported. Chemical modification of silica surface with BMI 

compatible organo-functional groups and preparation of BMI polymer matrix 

are two important steps that have to be passed prior to the preparation of 

silica-BMI nanocomposite.    

 

1.5 Research Objectives 

The main objectives of this study are; 

(a)    To establish effective method(s) to synthesize monodispersed and narrow 

size distributed silica nanoparticles especially below 10 nm by;   

(i) Studying the effect of electrolytes (ammonium salts) on the 

formation of silica nanoparticles in the sol-gel process, and; 

(ii) Investigating the important experimental parameters that govern the 

growth and size of the silica particles in the sol-gel process. 

(b) To study the effect of drying technique(s) on the morphology of silica 

nanoparticles; 

(c) To determine the size-dependent properties of silica nanoparticles; 

(d) To conduct chemical modification of silica surface by grafting organo-

functional group(s); 

(e) To develop a bismaleimide-diamine polymer matrix with optimal 

formulation and curing conditions, and; 

(f) To explore the potential of silica nanoparticles prepared in this study as 

fillers in silica-bismaleimide nanocomposite system.     
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1.6 Scope of the Study  

 This study emphasizes on the synthesis, characterization and chemical 

modification of ultrafine silica nanoparticles and evaluates its potential application as 

fillers in a potentially novel PMC, i.e., silica-bismaleimide nanocomposite. The works 

conducted in this research can be categorized into three parts, i.e., (i) inorganic,         

(ii) organic, and (iii) inorganic-organic hybrid. The inorganic part involves the 

synthesis, characterization and surface modification of silica nanoparticles while the 

organic part includes the preparation of BMI/DDM polymer matrix. On the other hand, 

the hybrid part entails the preparation and characterization of silica-bismaleimide 

nanocomposites.  

  

 In the first part, two approaches are used to produce smallest possible silica 

nanoparticles via sol-gel process, i.e., via (i) addition of electrolytes (ammonium salts) 

and (ii) optimization of reaction parameters (reagents and conditions). The efficiency of 

the synthesis routes are evaluated based on the resulting particle size, morphology and 

yield. This followed by an investigation on drying techniques, aimed to reduce the 

agglomeration of silica nanoparticles in powder form. Focus is given to develop a new 

and cost effective drying technique based on alcohol dehydration to remove the liquid 

phase from the suspension that contains the silica nanoparticles. Next, the size 

dependent properties of silica nanoparticles are studied using various solid state 

characterization techniques. The study centers on the determination of some important 

physical, chemical and optical properties of silica nanoparticles. Subsequently, 

chemical modifications of silica surface are conducted to graft some selected organo-

functional groups, i.e., epoxide and maleimide groups onto the silica surface. 

Characterization of the modified silica surfaces and determination of the functional 
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groups’ reactivity are the main emphasis of this fraction of study. The second part 

focused on the preparation of BMI/DDM polymer matrix with optimal formulation and 

curing conditions. Finally, the third part involves the preparation and characterization 

of silica-bismaleimide nanocomposites. In this part, the effects of filler concentration, 

surface functional groups and particle size on the resulting thermal mechanical 

properties of silica-bismaleimide nanocomposites are studied. In addition, the effect of 

fillers on the curing profile of BMI/DDM polymer matrix and chemical interaction 

between the fillers and polymer matrix are also investigated.       

 

1.7 Thesis layout 

 This thesis is composed of 11 chapters. Chapter 1 provides a brief 

introduction to highlight current state of research on silica nanoparticles and the 

objectives of the study. Chapter 2 consists of literature studies, mainly on the synthesis 

of silica nanoparticles via sol-gel process, agglomeration of silica nanoparticles, the 

size-dependent properties, silica-polymer nanocomposites, chemical modification of 

silica surface and bismaleimide polymer matrix. The experimental procedures which 

are compilation of experimental methods for Chapter 4 to 10 are described in Chapter 

3. Chapters 4 to 10 are actually results and discussion chapters which serve the research 

objectives listed in Section 1.5, in a similar order. Chapter 4 and 5 describes the 

synthesis of silica nanoparticles in the presence of electrolytes and under optimized 

reaction conditions of sol-gel process, respectively. Chapter 6 elaborates the effects of 

drying techniques on the morphology of silica nanoparticles while Chapter 7 reports the 

size-dependent properties of silica nanoparticles. Chapter 8 conveys the chemical 

modification of silica surface using various organo-functional groups. The preparation 

and characterization of BMI/DDM polymer matrix and silica-bismaleimide 
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nanocomposite are discussed in Chapter 9 and 10, respectively. Finally, the thesis ends 

with conclusion and recommendation for future research in Chapter 11.                             
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CHAPTER TWO 

LITERATURE REVIEWS 

 

2.1 Sol-Gel Process 

 Interest in sol-gel processing of inorganic ceramics materials began in the 

mid-1800s with the initial works reported by Ebelmen [1] and Graham [2] on silica 

gels. Their works dealt with hydrolysis of tetraethylorthosilicate (TEOS), Si(OC2H5)4, 

under acidic conditions which eventually produced ‘glass like’ silica materials. In the 

period of 1950 to 1960, Roy and co-workers used the sol-gel method to produce 

various types of novel ceramics containing Al, Si, Zr, Ti, etc. [3-5]. In the same period, 

Iller’s prominent works in silica chemistry [6] made significant impact on further 

development of sol-gel process. Iller’s contributions led to the first commercial 

production of colloidal silica nanoparticles called Ludox®, by Du Pont Chemicals 

Company [7].  

 

The sol-gel process is widely used to produce homogenous and pure silica 

particles under mild conditions. It provides many advantages such as the ability           

to control the particle size, size distribution and morphology of silica compared to other 

techniques like flame synthesis and microemulsion route. The general reactions                

of TEOS that leads to the formation of silica particles in the sol-gel process can be 

written as [7-10]: 

  

      Si(OC2H5)4      +     H2O                  Si(OC2H5)3OH   +   C2H5OH  (2.1)     

    

      ≡Si-O-H         +     H-O-Si≡             ≡Si-O-Si≡    +   H2O   (2.2) 

hydrolysis 

water condensation 
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       ≡Si-OC2H5  +      H-O-Si≡                ≡Si-O-Si≡    +   C2H5OH    (2.3)         

 

The hydrolysis of TEOS molecules forms silanol groups. The polycondensation 

between the silanol groups or between silanol groups and ethoxy groups                     

creates siloxane bridges (Si-O-Si) that forms the entire silica structure [10].                     

The polycondensation reaction also often referred as polymerization [6]. The 

polymerization rate depends on reaction conditions which might result in the formation 

of either a three dimensional network or single monodispersed particles [11]. 

According to Iller [6], the polymerization occurs in three stages i.e., (i) polymerization 

of monomers to form primary particles, (ii) growth of the particles, and (iii) linking of 

particles into chains and then networks which forms the gel structure. In addition, he 

also stated that the condensation reactions takes place in such a fashion as to maximize 

the number of Si-O-Si bonds and minimize the terminal hydroxyl (silanol) groups 

through internal condensation [6]. In general, the formation of silica particles can be 

divided into two stages: nucleation and growth. Figure 2.1 shows the polymerization 

behavior of aqueous silica, given by Iller [6]. As shown in the figure, in basic condition 

(B), the particles grow in size and decrease in number through Oswald ripening 

mechanism [10]. By contrast, in acidic condition (A) or in presence of flocculating salts 

the particles aggregates into three-dimensional networks and form gels.  

 

Two models, monomer addition [12, 13] and controlled aggregation [9, 14] 

have been proposed to describe the growth mechanism of silica. The monomer addition 

model describes that after an initial burst of nucleation the particle growth occurs 

through the addition of hydrolyzed monomers onto the (primary) particle surface. By 

alcohol condensation 
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contrast, the aggregation model elaborates that the nucleation occurs continuously 

throughout the reaction and the resulting nuclei (primary particles) will aggregate 

together to form larger particles (secondary particles). 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Polymerization behavior of aqueous silica [6]. 
 

 
According to Brinker and Scherer [10], in basic conditions the particle growth occur 

predominantly by monomer addition or monomer-cluster aggregation (MCA) kinetic 

model. This model is further divided into diffusion limited monomer-cluster 

aggregation (DLMCA) and reaction limited monomer-cluster aggregation (RLMCA) 

mechanisms. According to DLCMA, monomers (Si(OH)4) travel by random walks and 

stick irreversibly (condensation reaction) at first contact with the growing cluster.  

Opposite to the DLMCA, RLMCA provides that condensation between monomer and 
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