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ABSTRAK 

PENCIRIAN DAN KESAN GARAM TRINATRIUM Sn(IV) KLORIN e6 
DIKLORID DALAM TERAPI FOTODINAMIK 

 

Kajian ini dilakukan bagi menyelidik kesan pH dan serum ke atas foto pemeka 

garam Sn(IV) klorin e6 diklorid trinatrium dan mengkaji kesannya dalam terapi 

fotodinamik.  

Penyelidikan ini merangkumi empat tahap. Dalam tahap pertama, kekutuban 

foto pemeka dikaji dan didapati menjadi lebih larut dalam pelarut kutub dengan 

pekali pemadaman molar tinggi. Pengasidan medium yang mengandungi foto 

pemeka menghasilkan perubahan kimia terhad dalam cecincin pirol. Tidak terdapat 

kesan bererti serum ke atas struktur kimia foto pemeka. 

Dalam tahap kedua penyelidikan ini, foto pemutihan bagi foto pemeka telah 

dipengaruhi oleh kehadiran serum di dalam medium itu. Penambahan kepekatan 

serum meningkatkan kadar foto pemutihan foto pemeka Sn(IV) klorin e6. Faktor 

utama yang menyebabkan foto pemutihan adalah oksigen singlet. 

Tahap ketiga penyelidikan ini adalah mengkaji pengambilan bersel Sn(IV) 

klorin e6 oleh sel kanser. Adalah didapati pengambilan dadah bersel bertambah  

dengan pengurangan pH medium. Sebaliknya, kehadiran serum di dalam medium 

menghasilkan pengurangan pengambilan dadah bersel. Menggunakan sel kanser 

HepG2 dan sel normal CCD 18 CO, didapati pengambilan dadah bersel oleh sel 

kanser adalah lebih banyak berbanding sel normal. 

Tahap terakhir penyelidikan ini adalah mengkaji kesan Sn(IV) klorin e6 dalam 

terapi foto dinamik in vitro menggunakan MCF7, T47D dan garis sel kanser HepG2. 

Keputusan yang diperolehi menunjukkan foto pemeka mempunyai kurangnya 

ketoksikan gelap. Masa inkubasi, kepekatan dan dos cahaya berlainan telah 
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digunakan bagi mengkaji kesan foto pemeka dialam terapi foto dinamik. Masa 

inkubasi optimum adalah lebih kurang 6 jam. Manakala, kepekatan optimum adalah 

sekitar 30 µg/ml dan bertambahnya dos cahaya akan meningkatkan foto ketoksikan 

foto pemeka. 
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CHARACTERIZATION AND EFFECT OF Sn(IV) CHLORIN e6 
DICHLORIDE TRISODIUM SALT IN PHOTODYNAMIC THERAPY 

 

ABSTRACT 

 

 This study was performed to investigate the effect of pH and serum on Sn(IV) 

chlorin e6 dichloride trisodium salt photosensitizer and studying its effect in 

photodynamic therapy. 

This research consists of four stages. In the first stage the polarity of the 

photosensitizer was examined and found to be more soluble in polar solvents with 

high molar extinction coefficient. Acidification of the medium containing the 

photosensitizer resulted in limited chemical changes in its pyrrole ring. There was no 

significant effect of  serum on the chemical structure of the photosensitizer. 

In the second stage of this research the photobleaching of the photosensitizer 

was affected by the presence of serum in the medium. The increasing of the 

concentration of serum in the medium increases the photobleaching rate of Sn(IV) 

chlorin e6 photosensitizer. The main factor responsible for the photobleaching was 

found to be the singlet oxygen. 

The thired stage of the research was to investigate the cellular uptake of Sn(IV) 

chlorin e6 by cancer cell. It was found that the cellular drug uptake increases with the 

decreasing of pH of the medium. On the other hand, the presence of serum in the 

medium resulted in a reduction of the cellular drug uptake. Using HepG2 cancer cells 

and CCD 18 CO normal cells it was found that the cellular drug uptake by cancer 

cells is more than that in normal cell. 

The final stage of this research was to study the effect of Sn(IV) chlorin e6 in 

photodynamic therapy in vitro using MCF7, T47D and HepG2 cancer cell lines. It 
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was found that the photosensitizer has a lack of dark toxicity. Different incubation 

times, different concentrations and different light doses were used to investigate the 

effect of the photosensitizer in photodynamic therapy. The optimum incubation time 

was about 6 hours while the optimum concentration was around 30 µg/ml and the 

increasing of light dose increases the phototoxicity of the photosensitizer. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 History of photodynamic therapy 

Solar light was used thousands of years ago by some ancient civilizations in 

treating some kinds of diseases such as vitiligo, psoriasis, and skin cancer. Egyptians, 

Indians, Chinese, and Greeks have applied such techniques three thousands year ago. 

The Greeks Herodots called such treatment heliotherapy (Ackroyd et al. 2001). 

Indians used the seeds of plant (Psoralea Corylifolia) combined with sunlight while 

Egyptians used extracts of plant (Ammi Majus) in treating vitiligo. Psoralens are 

considered as the photoactive components of the plants (Briffa and  Warin 1979).  

In the early twentieth century, the term photodynamic action was used to 

describe photosensitization of biological effects. A photodynamic action is a light-

activated process which requires the presence of molecular oxygen. Photodynamic 

action was replaced by photochemotherapy then known as photodynamic therapy 

(PDT). 

PDT is the type of photochemical therapy that depends on the presence of 

oxygen. Light - chemical interactions induced cell damage was initially obtained by 

the German medical student Oscar Raab (Dolmans et al. 2003). During one of his 

experiments to investigate the toxic effect of acridine on paramecium, Raab 

concluded that an interaction between light and acridine caused toxic effects that 

destroyed paramecia (Grossweiner 2005). The researcher explained that the toxicity 

depends on the amount of light in the laboratory proving that a small amount of 

acridine which is not toxic in the dark can rapidly damage paramecia in the presence 

of light (Juarranz et al. 2008). 
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In 1901, Niels Finsen discovered that red light could discharge smallpox 

pustules and prevent their formation (Schneider et al. 2008)  and UV sunlight could 

be used to treat cutaneous tuberculosis. For these findings, Finsen was awarded the 

1903 Nobel Prize in medicine (Juarranz et al. 2008).  

PDT had been used for the first time in 1903 by Tappeiner and Jesionok, 

when they applied eosin to basal cell carcinomas (BCCs) and irradiated the area by 

white light (Dolman et al. 2003). Hausmann was the first scientist who studied the 

biological properties of hematoporphyrin in 1908 (Urbach et al. 1976). 

Hematoporphyrin was produced (in an impure form) by Scherer, who removed iron 

from dried blood in 1841 (Grossweiner 2005). During the period 1908 - 1913 there 

were a lot of studies to demonstrate the mechanism of sensitiveness of 

hematoporphyrin by light. In 1913 Meyer Betz applied a study on himself by 

injecting 200 mg of hematoporphyrin. He remained sensitized to light for two 

months. Meyer and Fischer studied the efficiency of porphyrin structure in 

photodynamic therapy (Dolmans et al. 2003). It was difficult to purify the 

hematoporphyrins, so research for pure substances started. Auler and Banzer 

reported that hematoporphyrin injected in rats accumulated in primary and metastatic 

tumours as well as lymph nodes (Ackroyd et al. 2001). Rasmussen, Ward and Figge 

reported that the hematoporphyrin had a tumour-localizing ability in a variety of 

human malignancies (Rasmussen et al. 1955). Between 1960 and 1966, Samuel 

Schwartz and his group found that low or medium concentrations of 

hematoporphyrin have good sensitizing effect (Cohen and Schwartz 1966).  

Schwartz found that pure hematoporphyrin has a poor tumour – localization 

and some components had better localization. These were known as 
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hematoporphyrin derivatives HpD, and are used for diagnostic and therapeutic 

purposes (Huang 2005). 

In 1974, treatment of psoriasis was performed by using a combination of 

psoralens and UV (320-400 nm) radiation (Briffa and  Warin 1979). In 1975, PDT 

was used by Dougherty, who reported that HpD can be used as a photosensitizer with 

red light and can completely destroy mouse mammary tumour. Then, HpD 

photosensitizer was used for treating bladder cancer and skin cancer (Schouwink 

2001). The research attempted to use new photosensitizers such as ALA Luvulan, 

ALA Metvix, and mTHPC Foscan, and PDT became an established treatment 

method for localized cancers. 

 

1.2 Photodynamic Therapy  

PDT is a promising treatment for early stages of various neoplastic and           

non-neoplastic diseases. It is an effective single treatment for small superficial 

tumours and an adjuvant treatment in debulking surgery for more advanced diseases. 

 PDT is based on using a combination of a photosensitizer and light with 

appropriate wavelength with the presence of oxygen to cause selective damage to the 

unhealthy tissue. The photosensitizers make cells more responsive to light. PDT 

treatment could be applied through two steps as follows: 

Firstly, the patient is injected with the light sensitive drug which accumulates 

in the tumour more than intact tissue, and stays longer in the cancer cells. Secondly, 

after injection the tumour area will be irradiated by light of proper wavelength which 

causes cancer cell damage. 

The destruction of cells by necrosis and apoptosis can be observed within a 

few hours after PDT. After about 24 hours, the cell will breakdown (Korbelik and 
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Dougherty 1999). This cell death causes a modulation of the immune system where 

number of cytokines and inflammatory mediators are released to attack the cancer 

cells (Tuner  and Hode 2004). The activity of the immune system is very important 

to complete the tumour destruction (Korbelikl et al. 1996) . There are different types 

of these drugs and each one is activated by light of different wavelength of light. 

Researchers have used different photosensitizing agents and different 

wavelengths to treat different areas of the body by PDT. The therapy can affect 

cancer cells by three ways: Direct killing of cancer cells, shrinking or destroying 

cancer cells by damaging the blood supply to the tumour, which prevents the cancer 

from growing, and it may trigger the immune system to attack the cancer cells. 

 

1.3 Principles of Photodynamic Therapy 

Photodynamic therapy protocol depends on three important parameters: The 

administration of a photosensitizer in tumour tissue, light with a suitable wavelength, 

and the presence of oxygen in the tumour tissue. 

When the photosensitizer is exposed to light with a particular wavelength the 

molecule of photosensitizer absorbs the photon of light and is excited from its ground 

state to the excited singlet state. The life time of the molecule in the excited state is 

very short. The decay of molecule to its ground state occurs by more than one way. It 

may decays directly by emitting a photon (fluorescence) after an internal conversion 

with loss of excess energy, or by taking the inter-system crossing and transferring 

into the lowest triplet state, which has a lower energy level than the first excited 

state. A therapeutic photodynamic effect can be obtained when the photosensitizer 

undergoes electron spin conversion to triplet state (3P*) which has a lower energy 

but has longer lifetime than singlet state (1 – 10 µs) (Ochsner 1997). The increase of 
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the molecules lifetime increases the probability of transferring the energy to 

neighboring molecules, and the probability of the molecule to interact with other 

molecules such as molecular oxygen would also increase. There are two mechanisms 

for this energy to transfer termed by Type I and Type II reactions. 

 

1.3.1 Type I Reaction 

In type I process, the excited photosensitizer directly interacts either with the 

surrounding molecules, substrates and biological solvents to form radicals by 

hydrogen atom extraction, or with radical ions by electron transfer. Most of these 

radical species can react with molecular oxygen to form reactive oxygen species 

(ROS) such as superoxide anions, hydroxyl radicals, and hydrogen peroxide. These 

reactions cause a cytotoxic effects and subsequently cell death (Neto et al. 2006). 

 

1.3.2 Type II Reaction 

In this type of reaction, the energy of the photosensitizer molecule in its 

excited triplet state may directly transfer to molecular oxygen to generate excited 

state singlet oxygen. Singlet oxygen can react with a large number of biological 

substrates to cause the most damage species during photodynamic treatment as 

shown in Fig. 1.1 (Hermann et al. 2006). 

 

1.4 The Mechanism of Light Excitation 

Quantum theory explains the transitions between levels. When incident light 

on molecule has energy corresponding to the different energy between two levels, it 

can be absorbed and an electron moves to a higher level. The molecule will be in an 
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excited state, and remains for a short period of time at the excited state before 

returning to its ground state. The electron can return to its ground state by: 

 

 

Figure 1.1: The Mechanism of PDT: Type I and Type II Reactions. 

 

Firstly: It returns to the lowest vibrational and rotational level within the 

excited state by internal conversion. Then the molecule returns to its ground state by 

emitting fluorescence light. 

 

Secondly: When the electron is in its lowest rotational and vibrational level 

within the excited state, it can transfer to the triplet excited state by inter-system 

crossing. No loss of energy occurs during this transferring since the electron spin 

cannot be changed. Another internal conversion to the lowest level within the triplet 

state is expressed. Then the molecule can decay to the ground state by an emission 

called phosphorescence. Figure 1.2 represents the transition between levels by 

Jablonski Diagram. 
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Figure 1.2: Jablonski Diagram explains excitation and decaying of the molecule by 
fluorescence or phosphorescence.  
 
Where: S: singlet state, T: triplet state, L: laser, F: fluorescence, P: phosphorescence, IC: 
internal conversion, ISC: inter-system crossing. 
 

 

1.5 Photosensitizers 

Hematoporphyrin and HpD were the first photosensitizers used in PDT. HpD 

was found to have selective tumour localization compared with hematoporphyrin. 

Dougherty produced a widely used photosensitizer named photofrin in 1980s during 

purifying of HpD (Dougherty 1987). 

The slow clearance of photofrin from the body causes skin sensitivity to light 

for a long time. Several photosensitizers had been produced in clinical trials. Third 

generation photosensitizers were produced to absorb wavelengths further than       

660 nm. Some of them are already used in clinical trials. The search continues in the 

vision to generate new photosensitizers of more activation, longer light wavelength 

absorption, faster uptake by tissue, and faster clearance of the body. 
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The ideal photosensitizer has some properties such as: High quantum yield of 

reactive oxygen species, stability, preferential uptake by tumour, rapid clearance, 

maximum light absorption at wavelengths more than 630 nm, and non-toxic in 

absence of light. 

 

1.5.1 Selective Tumour Localization of Photosensitizers 

The identification of target is necessary in PDT to facilitate drug 

development. Since the new photosensitizers tend to be pure compounds, the site of 

localization can often be identified. Mitochondria, lysosomes, nuclei, plasma 

membrane of tumour cells, and tumour vasculature are estimated as PDT targets. The 

vasculature damage is an important aspect of PDT (Juarranz et al. 2008). Drug 

localization can be determined by fluorescence microscopy, because most 

photosensitizers emit fluorescence (Peng 1996). Since the migration of cytotoxic 

singlet oxygen 1O2 is less than 0.02 µm after its formation, the sites of photodamage 

can reflect the localization of the photosensitizer at the time of irradiation (Leung et 

al. 2002). 

 

1.5.2 Subcellular Damage  

The most highly selective photosensitizers are the monocationic porphyrin for 

membranes and the chlorin p6 for lysosomes (Kessel et al. 1995), the porphycene for 

the mitochondria (Kessel and Luo 1998), 5-aminolevulic acid (ALA) – induced PpIX 

produced in mitochondria (Dougherty et al. 1998), Foscan® for endoplasmic 

reticulum and Golgi apparatus (Teiten et al. 2003). Photosensitizers localized in 

mitochondria are likely to induce apoptosis (Cantatore and Kriegel 2004), and that 
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localized in the plasma membrane are likely to induce necrosis ( Ricci and Wei-Xing 

2006).  

There are lipophilic and hydrophilic photosensitizers. The lipophilic has an 

affinity to the plasma membrane, while the hydrophilic has an affinity to 

mitochondria (Moan et al. 1980). The plasma membrane damage can be observed 

within minutes after exposure to light and appears as swelling and blebs formation. 

Shedding of vesicles containing cytosolic and lysosomal enzymes, reduction of 

active transport, depolarization of the plasma membrane, increased uptake of the 

photosensitizer, increased permeability to chromate, and cytosolic enzymes (Nowis 

et al. 2005, Dougherty et al. 1998), up and down regulation of surface antigens 

(Davies 1986). This type of damage causes cell death by necrosis. 

 Cell death by apoptosis was reported for the first time in 1991 as a response 

to PDT (Agarwal et al. 1991) . The mechanism of apoptosis is normally part of the 

genetic apparatus. It ends with fragmentation of DNA and dissociation of cell into 

particles bounded by membrane that are engulfed by macrophages without any 

harmful materials around. The time required for initiation of apoptosis varies widely 

and results in death of more than 80% of tumour cells in 1-3 days (Dougherty et al. 

1998). Since most PDT photosensitizers do not aggregate in cell nuclei, PDT has a 

low potential of damaging DNA, mutations, and carcinogenesis (Moan and Sommer 

1983). 

 

1.6 Objectives of the Study  

In this study a new photosensitizer of porphyrin type with Sn(IV) metal in the 

center of the carboxyl group which expected to have more stable properties than free 

base porphyrin photosensitizers. The principal objectives of this thesis can be 



10 
 

summarized in the following points: firstly, to investigate the pH dependence and 

photobleaching of the Sn (IV) chlorin e6 photosensitizer in different environments.  

Secondly, to compare the pH dependence of cellular drug uptake by MCF7 breast 

cancer cell lines with and without foetal bovine serum as well as to determine the 

selective drug uptake by tumours using cancer and normal cells. The final purpose of 

this research is to investigate the effect of the photosensitizer in PDT using MCF7, 

T47D and HepG2 cancer cell lines. 

 

1.7 Outline of Thesis 

This thesis contains eight chapters having the common theme, the 

characterization of Sn (IV) chlorin e6 as a new photosensitizer and its effect in 

photodynamic therapy. The first chapter provides background information on the 

historical improvement of photodynamic therapy, its principles, mechanisms, and the 

objectives of this research.  

A literature review on the porphyrin and their characterization is discussed in 

the second chapter of the thesis. This chapter is categorized into four main subjects: 

i) Acid base properties of porphyrin type photosensitizers, ii) Cellular uptake of 

porphyrins, iii) Photodynamic effect of porphyrins, iv) Photobleaching of porphyrins. 

Chapter three is a description of the materials, chemicals and instruments that were 

used throughout this research. Chapter four presents the study of Sn (IV) chlorin e6 

in different environments which are analytical buffered solution, DMSO, methanol 

and PBS. The pH dependence of the photosensitizer in analytical buffered solution 

with and without the presence of foetal bovine serum is also mentioned in this 

chapter. The photobleaching and photoproducts of the photosensitizer upon 
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irradiation with red laser beam for different times is described in chapter five. 

Studying the main factor responsible for photobleaching is considered in this chapter.  

Chapter six discusses the cellular drug uptake of the photosensitizer by 

different cancer cell lines and its dependence on extracellular pH value. The cellular 

drug uptake was found to be pH dependent where it increased with the decreasing of 

the pH value. Chapter seven presents the effect of this photosensitizer on MCF7, 

T47D and HepG2 cancer cell lines. The photosensitizer was found to cause 

photodamage for about 60% of cancer cells. Finally, the last chapter represents the 

conclusion of this research and provides a summary of the results and potential 

avenues for future research. 
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CHAPTER 2 

LITERATUE REVIEW 

 

2.1 Porphyrins  

The basic porphyrin skeleton consists of an inner 16-member aromatic (18 π 

electron) ring containing four nitrogen atoms directed toward the center. This 

conjugated π-system is the electronic “heart” of the macrocycle and is responsible for 

the intensity, colour and optical properties of porphyrins. Substitution at any of the 

positions in the inner or outer atoms changes the photophysical properties of the 

macrocycle. 

 

2.2 Acid Base Properties of Porphyrin Type Photosensitizers 

Fluorescence excitation and absorption spectra efficiency are very important 

for photodynamic diagnosis (PDD). Fluorescence is an illumination phenomenon 

which occurs in some compounds when they are exposed to light, x-rays or 

radioactive particles. Fluorescence spectroscopy is considered a primary research 

tool in biochemistry, biophysics and the medical fields. 

Due to the fact that there is a difference in pH between normal and tumor 

tissue, it is necessary to assess the impact of pH on the fluorescence emission 

intensity and absorption of any photosensitizer. Zimmermann et al (2002) 

investigated the pH dependence of absorption and fluorescence properties of the 

photosensitizer mTHPC. In vitro fluorescence measurements showed a significant 

decrease in the fluorescence intensity at pH values below 6. In the range of              

pH 6.5 – 7.2, no pH dependence was observed. Changes in the spectral shape of the 

absorption spectra for pH less than 6 were observed. 
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The pH dependence of absorption and fluorescence spectral properties of four 

porphyrin type photosensitizers relevant to photodynamic therapy Hp(IX), TPPS2a, 

mTHPP and mTHPC has been investigated in phosphate buffer saline (PBS) solvent. 

Results showed pH dependent modification in the physiological pH range of 6 - 9 

only in the case of Hp(IX). This modification is probably related to the protonation 

of the carboxylic groups. Spectral changes were observed at pH less than 5 for all 

photosensitizers (inflection points of titration curves were at 5.1, 3.8, and 2.4 for 

TPPS2a, mTHPP and mTHPC, respectively), were likely due to the protonation of 

imino nitrogens (Cunderlikova et al.  2001). 

  The absorption, fluorescence excitation and fluorescence emission spectra of 

chlorin e6 were recorded as functions of pH in PBS solution with and without FCS. 

For neat PBS, different values of the pH of the solution resulted in a shift of both the 

absorption and the fluorescence spectra as well as in a decrease in fluorescence 

intensity. An aggregate formation at low pH values (pH less than 5) was observed. 

The presence of 5% FCS resulted in a shift of the titration curve, from an inflection 

point at about 6.5 to one at about 7.6. Spectral changes of the fluorescence emission 

spectra of serum bound chlorin e6 were also observed (Cunderlikova et al. 1999). 

 

2.3 Photobleaching  

Photobleaching can be defined as loss of absorption or emission intensity of 

the photosensitizer caused by the light during PDT treatment. Photobleaching 

sometimes can be referred to as photofading or the absence of light fastness (Bonnett 

1999). When tissues and cells containing a photosensitizer are exposed to light with 

relevant wavelength during PDT treatment, changes in the photosensitizer 

fluorescence spectra as well as decay in fluorescence intensity can be observed. 
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These changes are due to the photodestruction of the photosensitizer macrocycles, 

resulting in a loss of absorbance and fluorescence. The concentration and 

photobleaching rates determine PDT damage to normal tissue surrounding the tumor 

which contains less concentrations of the photosensitizer (Das et al. 2005). 

Photobleaching is considered an important factor in PDT dosimetry. Rapid 

photobleaching of photosensitizers decreases the efficiency of PDT. Photobleaching 

had been observed both in vitro and in vivo using the fluorescence observation. 

There are two types of irreversible photobleaching process leading to chemical 

changes in the chromophore : 

 

Photomodification: A loss of absorbance or fluorescence occurs at some 

wavelength, but the chromophore is retained in a modified form. 

 

True photobleaching: A deep-seated chemical change occurs, which results in small 

fragments that no longer have appreciable absorption in the visible region. The 

fluorescence is very sensitive to various quenching effects therefore the loss of 

fluorescence does not usually parallel to the loss of absorption. It is important to 

know which mode of observation is being employed. In this research the loss of 

absorption of Sn(IV) chlorin dichloride trisodium salt as new photosensitizer has 

been studied with various parameters as:  environment, pH value, light dose, and 

with or without FBS and BSA in phosphate buffered saline (Bonnett and Martinez 

2001). The photobleaching of porphyrin type derivatives and relative compounds has 

been extremely studied in kinetic terms but very little is known about the structures 

of the photoproducts. 
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  In 1988, Rotomskis and co-workers studied the photobleaching of 

hematoporphyrin derivatives in PBS irradiated with argon laser – ion laser beam of 

wavelength 514 nm. It was found that the decrease of absorption throughout the 

spectrum simultaneous with the appearance of new band at 640 nm. Photobleaching 

was observed without new photoproduct when ethanol was used as a solvent. The 

researchers supposed that the photoproduct has been resulted from the aggregated 

porphyrins without oxygen involvement (Bonnett and Martinez 2001).  

The photobleaching process of chlorin p6 in neat phosphate buffer, bovine 

serum albumin, and foetal bovine serum was studied by Das et al. (2005). It was 

found that FWHM of soret band increases in the presence of serum when compared 

to that in neat buffer. This increasing was due to the binding of the photosensitizer to 

lipid bilayer of proteins, which leads to aggregation. Changes in the absorption 

spectra were observed upon photoillumination which indicated that 

photomodification and photoproduct formation occurred. The photobleaching rate of 

chlorin p6 with 10% serum was three times faster than that in neat buffer. This 

observation was due to the reduction of diffusional motion of the drug when bound 

to serum proteins. A new non fluorescent band was observed at 730 nm after 

illumination. Singlet oxygen was assumed to have the main responsibility for 

photobleaching. 

The photobleaching of meta-tetra (hydroxyphenyl) chlorin mTHPC in protein 

containing solutions was examined by Belitchenkol et al. (1999). Fluorescence 

intensity was reduced at excitation wavelength 423 nm and emission wavelength     

655 nm. Also, a decrease in absorption throughout the spectrum and new absorption 

band appeared in region 325-450 nm. The rate of photobleaching was much lower in 
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absorption than that in fluorescence attributed to the assumption of the 

photobleaching of monomeric and fluorescing species of mTHPC. 

Streckyte and Rotomskis (1993) studied phototransformations of porphyrins 

in aqueous solutions and micellar media. The formation of the photoproduct at      

660 nm in micellar hematoporphyrin (Hp) and photosan-3 (PS) solutions and its 

formation in small amounts in PBS are related to the presence of covalently linked 

porphyrin structures and/or interaction with surfactant molecules. 

Spikes (1992) studied the photobleaching of porphyrins in neutral PBS and 

concluded that low oxygen concentration (2 μM) significantly reduced the 

photobleaching yields and the singlet oxygen quencher, azide, had no effect, even at 

0.1M. Inhibition and/or accelerating photobleaching rate depend on the compound, 

the porphyrin and the reaction conditions. 

Photobleaching and formation of photoproducts of mTHPBC in PBS 

supplemented with human serum albumin (HSA) during irradiation with laser were 

studied by means of absorption and steady-state fluorescence spectroscopy. The rates 

of photobleaching obtained by fluorescence measurements were higher than in the 

absorption measurements. Two photobleaching rates probably reflect differences in 

the photosensitivity of monomer (bound to proteins) and aggregated (non-bound) 

forms. Irradiation of the mTHPBC solution led to phototransformation into mTHPC, 

a clinically used second generation photosensitizer (Lassalle et al. 2004). 

Previous studies for the photobleaching of some porphyrin photosensitizers 

showed that, mTHPP yielded novel quinonoid porphyrins upon illumination in 

aqueous methanol. True photobleaching has been observed for mTHPC and 

mTHPBC under the same conditions. Also, several fragmentation products were 

recognized (Bonnett and Martinez 2002). 
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Rotomskis et al. (1996) found that, the illumination of hematoporphyrin, 

meso-tetraphenylporphyrin tetrasulphonate and hematoporphyrin derivatives in 

aqueous solutions caused photodegradation and formation of stable photoproducts 

absorbing in the red spectral region. A decrease in the absorption spectrum as well as 

fluorescence intensity upon illumination was accessed during the processing. The 

photodegradation was due to the opening of the porphyrin ring, leading to an 

increase in light absorption in the UV region. On the other hand, the formation of 

photoproducts at 640 nm was related to the aggregation state of the porphyrins. The 

spectroscopic features of the photoproducts of hematoporphyrin and 

hematoporphyrin derivative, with absorption bands in the visible region are similar to 

those of chlorin and/or porphyrin-chlorin linked systems. 

The photobleaching of compounds of the porphyrins series (mTHPP, 

mTHPC, and mTHPBC) has been studied in methanol and methanol–water (3:2, v/v) 

using an argon - ion laser at 514 nm by observing the reduction of spectrum with 

time. True photobleaching occurred only for mTHPC and mTHPBC, while 

photomodification was the major process for mTHPP. The rates for the 

photobleaching of mTHPC and mTHPBC were presented in different solvents. The 

photobleaching rate of the mTHPBC is found to be 90 times higher than that of the 

mTHPC in methanol–water (3:2, v/v). Singlet oxygen appeared to be the main factor 

for the photobleaching of mTHPC and mTHPBC and the photomodification of 

mTHPP (Bonnett et al. 1999). 

Comparative spectroscopic studies of hematoporphyrin like photosensitizers 

in PBS solvent have been performed. The photosensitizers studied are not 

photostable and are bleached during illumination. Formation of red-absorbing 

photoproducts was observed for hematoporphyrin like sensitizers simultaneous with 
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photobleaching. The efficiency of photobleaching and the formation of 

photoproducts in aqueous solution were conditioned by the aggregation state and 

chemical structure of the photosensitizer (Rotomskis et al. 1997). 

 

2.4 Cellular Uptake 

The difference between extracellular pH in malignant and normal tissues has 

been suggested to be responsible for selective uptake of photosensitizers in tumors. 

Accordingly, studying the cellular uptake of the photosensitizer by cancer cells and 

its dependency on pH value is very important. Investigating the dependence of drug 

cellular uptake on the presence of serum is necessary, since proteins are the main 

responsible for the drug distribution into the tissues. Several previous studies have 

been performed on porphyrin type photosensitizers. 

 A study by Hilf et al. (1983) examined the effect of the presence of serum on 

the cellular uptake by R3230AC mammary adenocarcinoma. An increase in the 

amount of serum in the medium gradually reduced the amount of HpD taken up by 

the cells at a level of 10% serum, uptake of HpD was reduced to less than 5%. 

The effect of pH and the presence of serum on the cellular uptake of chlorin 

e6 by T47D cancer cell lines were examined by Cunderlikova et al (1999). It was 

found that the decreasing of pH resulted in increasing in the cellular uptake of 

chlorin e6. Similarly, a decreasing in cellular uptake was occurred in the presence of 

serum. 

 The uptake of photosan in vitro by bladder carcinoma cells and normal cells 

was investigated at different incubation times. The concentration of photosan, 

measured in µg/106 cells, showed a good correlation to the incubation time. At all 
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incubation times, control cells showed a lower uptake when compared with tumor 

cells (Miller et al. 1991). 

The pH dependence of cellular uptake of some porphyrin type 

photosensitizers Hp(IX), TPPS2a, mTHPP, and mTHPC by T47D cancer cell lines in 

different pH values of the environments have also been investigated. The 

experiments were performed at pH range of 6.5 - 8. The results showed that the 

highest drug uptake was at low pH value in the case of Hp(IX). On the other hand, 

there was no pH influence on the drug cellular uptake of mTHPP, mTHPC, and 

TPPS2a (Friberga, E et al 2003). In other studies on cellular drug uptake of TPPS2a 

and mTHPC by WiDr and THX cancer cells did not exhibit any dependence on the 

pH value. In the same study, the cellular uptake of Hp(IX) was found to be lower in 

the presence of serum (Cunderlikova et al.  2005). 

Another study to examine the uptake of HpD by malignant cells by Bohmer 

and Morstyn (1985) found that, major determinant of HpD uptake was the 

concentration of serum in the medium. Here, increasing concentrations of FCS or 

BSA resulted in a reduction in the amount of HpD taken up by the cells. pH of the 

medium was a further factor affecting the uptake of the photosensitizer. At low pH 

the rate of HpD incorporation was much higher than at pH 7.4. Acidic pH and the 

differences in extracellular serum concentrations of malignant tumor tissue may play 

an important role in the selective uptake of HpD by malignant tumors. 

Cellular uptake of chlorin e6 in the presence of serum in various pH values 

was performed by Cunderlikova et al. (1999). This uptake was significantly higher at 

pH 6.7 as compared with that at 7.3 and 7.6. It was concluded that the change of the 

pH value of the medium resulted in a change in the lipophilicity of chlorin e6. 
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The effect of pH on cellular uptake of chlorin p6 by human colon (Colo-205) 

and breast adenocarcinoma (MCF7) cell lines were studied by Sharma et al. (2004). 

Reducing the extracellular pH from 7.4 to 6.0 affected the cellular drug uptake of the 

photosensitizer by Colo-205 cells. The uptake of the drug increased with the 

decreasing of pH of the environment. This uptake took place mainly through 

endocytosis. On the other hand, no significant difference was observed in the uptake 

of the chlorin p6 by MCF7. It was suggested that, chlorin p6 is taken up by MCF7 

cells through diffusion rather than endocytosis. 

The cellular uptake of merocyanine 540 (MC540) was investigated by 

Cunderlikova et al. (2002) at two pH values of 6.8 and 7.4. No difference was 

observed in the spectral properties of the drug between the two pH values in the 

presence of either human blood plasma or FCS of concentrations of 0 – 2%. The 

cellular drug uptake by WiDr cells was significantly higher at pH 6.8, with and 

without FCS. Accordingly, the presence of serum and the alteration of pH value are 

important factors that affect the cellular drug uptake.  

Variations of pH within the physiological range are not expected to influence 

the MC540/membrane interactions directly through modification of chemical 

structure of the drug or protonization of membrane-bound charge in the main region 

of MC540/membrane interaction which is the hydrophobic lipid region and not 

membrane protein one. Nevertheless, this might lead to changes in screening of 

negative surface charges and perhaps in membrane polarization. Such effects will 

certainly influence the response of potential sensitive probes such as MC540. 

 

 

 



21 
 

 2.3 Photodynamic effect 

Ding et al. (2004) applied ALA photosensitizer at human glioma cells and 

found that, the lowest viability was 24.26% ±2.76% with light dose of 25 J/cm2 and 

15.14%+ 3.60% with light dose of 100 J/cm2 at the same concentration of 

photosensitizer 4 µM. The dark toxicity for ALA and the light toxicity without the 

presence of photosensitizer were very low. 

The effect of photofrin on U87 and U521 cancer cells was applied by Jiang et 

al. (2003). The viability of the cells was studied at fixed laser dose of 100 mJ/cm2 

and different photofrin concentrations. The lowest viability was 78% and 50% at 

concentration of 5 ng/ml for U87 and U521 respectively. 

Tetrakis (2-chloro-3-sulfophenyl) porphyrin TCPPSO3H was found to be 

non-toxic in the dark and caused a significant photodynamic effect against MCF7 

cancer cell lines irradiated with red light at low light doses. The lowest viability was 

7% at light dose 8 J/cm2 and concentration of 2×10-5 M (Dabrowski et al. 2007). 

Dark toxicity of Chlorin e6 in MCF7 cancer cell lines was examined by Cavanaugh 

(2002). Lack of dark toxicity and an acceptable phototoxicity effect were found in 

this study. 

In vitro phototoxicity measurement on G361 cell lines using ZnTPPS4 

porphyrin type photosensitizer was performed by Kolarova et al. (2005). 

Photodamage effect on cancer cell lines was observed with the visible light. After 24 

hours incubation of cell cultures with 10 µM ZnTPPS4, the cells were irradiated for 

7.5 minutes at total irradiation dose of 12.5 J/ cm2. 

The effect of TAPP-4Val porphyrin type photosensitizer on MCF7 cancer 

cell lines was performed by Wang et al. (2008). Various concentrations of 1 - 6 × 10-

6 M of the photosensitizer resulted in lack of dark toxicity for the photosensitizer. For 
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the same concentration with light intensity of 1.4 W/cm2 for 1 hour resulted in 

gradual decrease in the number of survival cells where the lowest viability was at 

concentration of 6 × 10-6 M.  

Sharma et al. (2004) studied the effect of chlorin p6 on MCF7 cancer cell lines with 

the presence of light. The lowest viability at neutral pH was observed to be 27% 

using light dose of 18 kJ/m2 where the cells were incubated with chlorin p6 (10 µM) 

in growth medium for 3 hours in dark. 
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CHAPTER 3 

MATERIALS AND INSTRUMENTS 

 

3.1 Cell Lines 

3.1.1 Breast Cancer Cell Lines MCF7 

Human breast adenocarcinoma cancer cells derived from epithelial mammary 

gland are shown in Fig. 3.1. The base medium for these cell lines is Eagle’s Minimal 

Essential Medium (EMEM). To make a complete growth medium, the following 

components were added to 500 ml of base medium: 0.5 ml bovine insulin, 5 ml L-

Glutamine, 5 ml sodium pyruvate, 5 ml non-essential amino acid, 10 ml sodium 

bicarbonate, and 10% of FBS to the final concentration.  

 

3.1.2 Breast Cancer Cell Lines T47D 

Human breast ductal carcinoma derived from mammary gland duct tissue is 

shown in Fig. 3.2. The base medium for these cell lines is RPMI 1640 medium. The 

same components in 3.1.1 were added to the medium to get a complete growth 

medium.  

 

3.1.3 Liver Cancer Cell Lines HepG2  

Human liver hepatocellular carcinoma cell lines are shown in Fig. 3.3. The 

base medium for these cell lines is EMEM. The same procedure was used to get a 

complete growth medium as described in 3.1.1 with no addition of bovine insulin. 
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Figure 3.1: MCF7 breast cancer cells 

 

 

Figure 3.2: T47D breast cancer cells 

 

 


