
INTEGER FACTORIZATION ALGORITHMS

by

NOR AZUANI BINTI HASAN

Dissertation submitted in partial fulfillment
of the requirements for the degree

of Master of Science in Mathematics

April2010
/

848086

(h

\ Q/-\\~\
t-'31\qC\1
"J0\0

LIST OF CONTENTS

Acknowledgement

List of contents

Abstrak

Abstract

1 Introduction

1.1 Integer Factorization

1.2 Objectives

1.3 Dissertation Outline

2 Literature Review on Integer Factorization Algorithms

2.1 Introduction

2.2 Fundamental Theorem of Arithmetic

2.3 Integer Factorization Algorithms

3 Factoring Algorit s and Discussions

3.1

3.2 Trial Div sion Algorithm

3.3 Pseudocode:Trial Division

PAGE

11

111

v

Vl

1

2

3

3

4

4

5

9

11

11

11

12

ABSTRACT

Factoring integers is not an easy task. It is classified as a hard algorithm such

that the security of the RSA cryptosystem is based upon. Many different methods for

factoring integers have been developed. There are many set of classes of algorithms

such as Trial Division, Fermat, Pollard Rho, Pollard p-1 and General Number Field

Sieve(GNFS).

In this dissertation, we discussed four factoring algorithms such as Trial

Division, Fermat, Pollard Rho and Pollard p-l. Some examples are given to illustrate

the mathematical concepts in the integer factorization algorithms. A programming

using software Mathematica version 7.0 were used to carry out the integer

factorization algorithms. Results on integer factorization algorithms obtained were

shown and discussed.

CHAPTER!

INTRODUCTION

Cryptography is an important building block of e-commerce system. The used

of cryptography include A TM cards, computer passwords, and electronic commerce.

Cryptography is a word from Greek KpD1n6c;, kryptos, "hidden, secret"; and ypaq>ro,

grapho, "I write", or -A.oyia, -logia, is the practice and study ofhiding information.

In particular, public key cryptography can be used for ensuring the

authenticity of information in an organization. To protect the sensitive information in

an organization, encryption can be applied so that the encrypted data is completely

meaningless except to the individuals with the correct decryption key.

Encryption is the process of converting ordinary information into cipher text.

While decryption is the reverse, in other words, moving from the cipher text to

ordinary information. A cipher is a pair of algorithms that create the encryption and

the decryption. The detailed operation of a cipher is controlled both by the algorithm

and by a key. This is a secret parameter for a specific message exchange context.

1.2 Objectives

This dissertation is to study the integer factorization and we are also going to discuss

a few factoring algorithms related to cryptography and their findings by using

software Mathematica version 7.0.

1.3 Dissertation Outline

There are 4 chapters in this dissertation. In chapter 1, we give an introduction on

integer factorization. In chapter 2, we discuss briefly about integer factorization

algorithms and the fundamental theorem of Arithmetic. In chapter 3, we discuss the

four algorithms and their findings. In this chapter, we also are going to discuss about

general number field sieve (GNFS). Lastly, in chapter 4, we have a future direction

and conclusion which we summarized briefly on algorithms and the findings.

I

In 1750 Euler had an idea of integer factorization. He only looked at integer

based on special forms. One of the method is integers can be written as n= a2 + Db2
•

He used the method to factor some large numbers for that time.

In 1974, John Pollard was developed the p-1 method and he targeted at a

special class of integers which relies on the hope that there is at least one prime p in

\

the factorization of n, such that p-1 is smooth. This means p-1 is the product of

relatively small primes. Then, Brent optimized the p method in 1980 and Carl

Pomerance introduced the quadratic sieve algorithm which added some digits to the

numbers that could be factored resulting in a factorization of a 71 digit number in

1983.

Lenstra developed a new method by using elliptic curves method in 1987

which is specialized for composites with small factors. In 1988, John Pollard, Richard

P. Brent, J. Brillhart, H. W. Lenstra, C. P. Schnorr and H. Suyama outlining an idea of

factoring a special class of numbers by using algebraic number fields. Shortly after

number field sieve was implemented and was generalized to be general purpose

algorithm. It is the most complex factoring algorithm but it is also the fastest

factorization method of a 512 bit composite (Integer factorization, 2010).

2.2 Fundamental Theorem of Arithmetic

The prime numbers are the integers which greater than 1 that can factored into

two positive integers. For example, integers 2, 3, 5, 7, ... are primes while 1, 4, 6, 8, ..

are non prime integers. The non prime integers which greater than 1 are called

composite numbers. For example, 10 is composite number such that 10 can be

factored into two distinct ways as 1 x 10 and 2 x 5.

The fundamental theorem is useful to break down integers into smallest prime

numbers. Thus 35 is 5 x 7 and 90 is 2 x 3 x 3 x 5, this implies that every positive

integer can be factored uniquely. Before we show the fundamental theorem of

arithmetic, we present some definitions related to our work.

Defmition 2.2.1: A Composite Number is a number which can be divided evenly by

numbers other than 1 or itself.

Definition 2.2.2: A prime number is a positive integer greater than 1 that is divisible

by no positive integers other than 1 and itself.

Definition 2.2.3: A trivial factor is a positive integer factor x of n such that x = 1 or

x=n.

Defmition 2.2.4: A nontrivial factor is a positive integer factor x of n such that xis

between 1 and n.

Definition 2.2.5: A floor function gives the greatest integer less than or equal to n.

Definition 2.2.6: A ceiling function gives the smallest integer greater than or equal to

n.

Theorem 2.2.1: If n is a positive integer and all its prime factors are smaller than B,

then n is called B-smooth.

Defmition 2.2.7:

Let two numbers x and y are defined as congruent modulo n if the difference

between x andy is an integer multiple of n (Pollard Rho method, 201 0).

Example 2.2.1: Suppose that x = 37, y = -14 and n =17. xis congruent toy modulo n.

We find the difference x andy, (x-y) = 37- (-14) =51= 3 * 17.

Defmition 2.2.8:

The greatest common divisor of a and b is the largest positive integer dividing both

a and band is denoted by either gcd(a, b) or by (a, b).

Example 2.2.2: Compute gcd(482, 1180) (Trappe, 2005).

Solution: First, we divide 1180 by 482. Then, we get the quotient is 2 and the

remainder is 216. Now we divide 482 by the remainder 216. Then the quotient is 2

and the remainder is 50. We repeat this process of dividing the previous one by the

most recent remainder until the last nonzero remainder is the gcd which is 2.

1180 = 2.482 + 216

482 = 2.216 +50

216 = 4.50 + 16

50=3.16+2

16=8.2+0

Theorem 2.2.2: A fundamental theorem of arithmetic is every integer greater than

1 can be factored uniquely into product of primes (Wikipedia, 2010).

G. h el e2 em IVen t at n =PI P2 ... Pm where p 1 < p 2 < ... < Pm are primes and e,> 0, e2> 0,

.... , em> 0 are integers. Before we proof the theorem, let us give briefly a preliminary

about primes.

[(~'" Proposition 2.2.1: (Euclid's First Theorem) An integer p > 1 is prime if and only if it
W:->-· ,

satisfies the property: for all integers a, b, PI ab implies pia or plb.

Proof: Assume that a, bare non-zero. In this case, we have either gcd(a,p)= 1 or

,,, gcd(a, p)= p since p is a prime.

Conversely, assume for all integers a, b, plab implies pia or plb. If p is composite then

p=ab,, for some a < p and b < p. But pip = ab then implies pia or plb, both are

impossible .

. In fact, rather than using Euclid's First Theorem directly in the proof of the Theorem

of Arithmetic, we use the following consequence of it.

Corollary 2.2.1: Let p be a prime. For any integers a1, az, ... , ak, PI a1, az, ... , ak

•. implies PI a1 or PI az or ... or PI ak.

Here we need the following basic result.

· Lemma 2.2.1: If m > 1 is an integer, then the smallest d > 1 which divides m must be a

number.

Proof: Let d > 1 be the smallest positive divisor of m. Supposed has a factor b with

1< b5, d and d =be. But bid and dim implies blm. Since dis the smallest factor of m

which is greater than 1, we must have b = d, so dis prime.

of Theorem of Arithmetic: First, we show that n is a product of primes. If n is

prime then we are done. Let us assume that n is not a prime.

no= n and let i = 0.

(1).

1) Let d; denote the smallest divisor of n; . (From the above lemma, d; is a prime.)
Let

2) If n;+I is prime then stop. If n;+I is not a prime, then replace i by i + 1 and go to

,,, Since no> nt > ... , this process will be terminated. Let say nk is a prime. Then n =no=
'
\

nk dk-1... d0, so n is a product of primes. By arranging the primes in increasing order

and !lfouping identical primes in the product together, we may write n as in the

. ei ~ em II f2
theorem. Now we prove umqueness. Suppose n = PI P2 ... Pm = PI P2

Pm1m where the Pi's are distinct primes but not necessarily in any particular order and

the e1, e2, ... , em and fi. h., ... , fm are non-negative integers. By the corollary 2.2.1, we

must have pdPI II or pdP2 12 or p 1JPm
1
m. Since the p/s are distinct, the only

II e2 e Cfi -~)
possibility is if PtlPJ so in particular Ji >0. If fi> e1 then P2 ... Pm m = p1

P2f2 ... Pmlm and the corollary 2.2.1 implies pJ!P2 e2 or ... pJ!Pm em. This is impossible

since the p/s are distinct. Similarly, e1 > Ji leads to a contradiction. This leaves the

only possibility e1 = Ji., so P2 e2 ... Pm em =P2 12 ... Pm1m. Proceeding inductively, we find

e2 = h, ... , em = fm· This leads to uniqueness and the theorem.

2.3 Integer Factorization Algorithms

In this topic, we will be discussed about a few factoring algorithms. Every

integer can be represented uniquely as a product of prime numbers. For example, 90 is

easy to factor or we can write it as 2 x 3 x 3 x 5.

Cryptography is an important building block of e-commerce systems. RSA is

one of the public key for ensuring the authenticity of information in an organization.

The basis of security of RSA is depending on difficulty of factoring large numbers.

Integer factorization problem is to find number's prime factor.

There are several factoring algorithms can be used to factor the numbers such

as Trial division, Pollard Rho, Pollard p-1, elliptic curve factorization, Number Field
'-

Sieve,etc. There are three algorithms that are most effective which can factor large

number such as number field sieve, elliptic curve factorization and general number

field sieve. For the next section, we will be going to discuss more detail about several

algorithms.

CHAPTER3

FACTORING ALGORITHMS AND DISCUSSIONS
\

3.1 Introduction

In this chapter, we are going to discuss a few factoring algorithms. Each

algorithms are explained and pseudocodes are given (Connelly Barnes, 2010). We

also will discuss the findings of the algorithms. In this chapter, we discussed four

factoring algorithms such as the Trial division algorithm, Fermat factorization

algorithm, Pollard Rho factorization algorithm and the Pollard p-1 factorization

algorithm.

3.2 Trial Division Algorithm

Trial division often called the naive method of factoring. It is the simplest

algorithm for factoring an integer. Given an integer n, n refers to "the integer to be

· factored", trial division consists of testing whether n is divisible by any number. Note

that, it is only work to test the factors less than n.

Assume that, x andy are nontrivial factor of n such that n= xy and x ~ y.

implement the algorithm above, we usea software Mathematica version 7.0. Now,

for some examples to justify the algorithm .

.,. .. ,, '"' 3.4.1: Factor 12 by using trial division method (Tripod, 2010).

find the factor by attempting to divide a number by prime

•n.uJuv, which are less than the square root of the number.

~,,., that, x andy are nontrivial factor of 12 such that 12 = xy and x ::5 y. Then we

command for to do loop until the test fail to give true. We want the output list all

or[x= 2, x ::5 Floor[.Jl2], x++, y = 12 I x];Print[" x = ",x ," , " ," y =" , y]]

output we get,

we get the value of x, we can get the value of y directly by dividing the integer

2 with the value of x. Here, we say that the square root of 12 lies between x = 3 andy

, we look at another example.

u,u; 3.4.2: Factor 91 by using trial division method.

find the factor by attempting to divide a number by prime

ers which are less than the square root of the number.

we find x andy as p=x-y and q=x+y. We solve this equation by simultaneous

~au.vu. and we get x= (p+q)12 andy = (q-p)/2. Since p> 1 and q ~ p, we find that

1 andy 2::0.

For the algorithm, we check for each i whether Yi = ~ x/ -n is an integer and

(Xi + Yi), (Xi - Yi) are nontrivial factors of n. If both of these are satisfies, we

the nontrivial factors. Otherwise we continue the iteration until Xi= n.
'-

Pseudocode:Fermat Factorization

function fermatFactor(n)

for x from ceil(sqrt(n)) ton

ysquared: = x * x -n

if issquare(ysquared) then

y: = sqrt(ysquared)

p: = (x-y)

q: = (x+y)

if p < > 1 and p < > n then

retump, q

end if

end if

end for

end function

the output above, we noticed that not all possible factors, p and q are integer

mrumt>,ers. In this factorization method, we only consider the integer numbers. Hence,

we getp = 3, q = 7 andp = 1, q= 21 are the factor of21. Because ofthe value ofp =1

not a prime number. Therefore, we take p= 3 and q = 7 as the factor of 21.

\
'J.!<.A ... Uicyn.- 3.7.2: Factor 45 by using Fermat factorization.

We need to find the factors p and q which can be written as the difference of squares

2 2 such that n= x -y .

Assume that p and q are nontrivial odd factors of n such that n=p.q and p s q where

p=x-y and q=x+y.

We use command for to do loop until the test fail to give true. We also use command

break to omit the value of q when it is larger than 45.

· For[x= Ceiling [Fn], x ~ n, x++, y1 = x*x- n; y = N[.JYl, 5] ; p = N[x-y, 5] ;

q =N[x +y 5] · Print[" x = " x " " "y = " y " " "p = " p " " "q = " q] · '' ,,,, ,,,, ,,,, ''

If[q> 44, Break[], {x, x+y}]]

' y = 2.0000 ' p = 5.0000 ' q = 9.0000

' y = 4.3589 ' p = 3.6411 ' q = 12.359

' y = 6.0000 ' p = 3.0000 ' q = 15.000

10 ' y = 7.4162 ' p = 2.5838 ' q = 17.416

11 y= 8.7178 'p= 2.2822 'q= 19.718

12 ' y = 9.9499 ' p = 2.0501 ' q = 21.950

13 ' y = 11.136 ' p = 1.864 ' q = 24.136

14 ' y = 12.288 ' p = 1.712 ' q = 26.288

end if

end do

end function

Examples of Pollard Rho Factorization

, we look at some examples by using software Mathematica version 7.0 .

..... u,.,. .. ,., 3.10.1: Factor 31861 by using Pollard Rho Method with

and xo=1 (Pollard Rho method, 2010).

aim is to find two iterates i, j where gcd (xi- Xj, 31861) = a > 1 where a is an

and we compute the greatest common divisor with n= 31861.

xo=1 as x[O]=l.

we use command for to do loop until the test fail to give true.

= 0, is 9, i++, x[i+ 1]= x[i] 2 + 1 ;y = Mod[x(i+1], 31861];

[x[i+ 1], 31861]; Print["x[", i+ 1,"]=", N[x[i+1]], ", "," y = ", y, ", "," m = ",

'
y= 2 m= 1

'
y= 5 m= 1

'
y= 26 m= 1

'
y= 677 m= 1

= 458330.
'

y= 12276
'

m= 1

i =1, i ~ 18, i++, x[i+ 1] =1024x[if + 32767 ; y =Mod[x[i+ 1], 16843009];

11x[11
, i+1, 11

] = 11
, N[x[i+1]], 11

,
11

,
11 y = 11 ,y]]

1.16924X 1012

]'= 2.00682x1057

]= 4.12398x10117

7]= 1.74154x10238

8]= 3.105735707635590x10479

]= 9.87708854853913x10961

10]= 9.98982432723791x101926

1]= 1.021917082512122x 103857

12]= 1.069378072094810x107717

13]= 1.171015128143066x1015437

· 4]= 1.404187064668079x 1030877

5]= 2.0190631 04083103x1061757

6]= 4.174454597908167x 10123517

7]= 1. 784429689855655x 10247038

]= 3.260609861671271x10494079

]= 1.088673451010861x10988162

' y= 33791

, y = 10832340

' y = 12473782

' y = 4239855

' y= 309274

' y = 11965503

' y = 15903688

' y = 3345998

' y = 2476108

' y = 11948879

' y = 9350010

' y= 4540646

' y= 858249

' y = 14246641

' y = 4073290

' y= 4451768

' y = 14770419

' y= 4020935

we check the greatest common divisor whether the gcd (xr Xj, 16843009) = a > 1

where a is an integer. Then, we continue the next iteration if the gcd is not

1] - x[2], 16843009] = 1

3.13 Examples of Pollard p - 1 Factorization

Now, let us look at a few examples to justify the algorithm by using software

Mathematica version 7.0.

Example 3.13.1: Factor 65 by using Pollard p-1 method (Connelly Barnes, 2010).

Solution:

Our aim is to find an integer which can divide both Xk and 65 where Xk = 2k!_l (mod

65) for k=1, 2, 3, ... ,

We use command for to do loop until the test fail to give true.

For[k=1, k::;; 7, k++, x[k] = N[2k!_1, 4] ;y = Mod[2k!_1, 65]; s = GCD[y, 65];

Print["x[" k "] = " x[k] " " "y = " y " " " s = " s]]
' ' ' ' ' ' ' ' ' ' '

The output we get,

x[1]= 1.000
'

y= 1 s= 1

x[2]= 3.000
'

y= 3 s= 1

x[3]= 63.00
'

y= 63 s= 1

x[4]= 1.678xl07

'
y= 0 s = 65

x[5]= 1.329xl036

'
y= 0 s = 65

x[6]= 5.516xl0216

'
y= 0 s= 65

x[7]= 1.553x101517

'
y= 0 s= 65

Notice that, for the first 3 steps, we find that gcd {1, 65) = 1, gcd (3, 65) = 1 and gcd

{63, 65) = 1. Then, when k 2: 4 we find that gcd (0, 65) = 65. This implies that the

algorithm cannot find a nontrivial factor and the test never terminates.

Example 3.13.2: Factor 317017 by using Pollard p-1 method.

Solution:

x[1]= 1.000
'

y= 1 s= 1

x[2]= 3.000
'

y= 3 s= 1

x[3]= 63.00
'

y= 63 s= 1

x[4]= 1.678xl07

' y = 6982 ' s= 1

x[5]= 1.329x1036

' y = 2520 ' s= 1

x[6]= 5.516x10216

' y = 4268 ' s= 97

x[7]= 1.553x101517
, y = 1358 ' s= 97

From the output above, the value of y is actually defined as Xk = 2k!_l (mod 8051)

and we also find the gcd for every value of y so that we can determine whether there

exists an integer which can divide both Xk and n. Hence, 97 is a factor of 8051. In this

example, we find that Xk = 4268 and Xk = 1358 are divisible by p - 1 = 96 and 8051 is

also divisible by p-1 =96.

3.14 Integer Factorization Algorithms Findings

In the Trial division and Fermat factorization, we know that both will be

checked for every possible factor of number, n. These factorization algorithms always

exhaust search the number to be factored. However, the algorithms are suitable for

factoring small numbers like two or three digit numbers. Then, the programming will

become slow when the number of digit becomes larger.

The Pollard Rho and the Pollard p -1 factorizations are intermediate test

between trial division and Fermat factorization. The algorithms like Pollard Rho and

the Pollard p-1 are more efficient compared to the trial division and Fermat

factorization.

•

• 0 25°7°- 9- 196- 223°5° 2 (2 3 - = - 7 3)

•

From equation (3), we say t'Q.at 32 = 142 (mod n), which gives the factorization 187

= gcd(14-3, 187) x gcd{l4+3, 187) = 11 xt 7.

3.16 RSA Cryptography

RSA stands for Rivest, Shamir and Adleman who first publicly described it for

public key algorithm in 1977. It supports encryption and digital signatures. It also gets

its security from integer factorization problem. It is easy to understand and

implement.

RSA is used in security such as email security, transport data security and

many more. RSA gets its security from factorization problem. The basis of security of

RSA is depending on difficulty of factoring large numbers over 1000 bits long

numbers are used. Integer factorization problem is to find number's prime factor.

3.17 RSA Algorithm

We introduced briefly about key generation. First, we select random pnme

numbers p and q. Then, we compute modulus pq and phi, <I>= (p-1) (q-1). We also

CHAPTER4

FUTURE DIRECTION AND CONCLUSION

In this chapter, we discussed future direction and conclusion of integer

factorization. If we look at the current development there are number of research in

integer factorization. Nowadays, computational power is increasing day by day and

although there is far to a computer being able to factor a large bit number which is

over 500 bit in reasonable time. But many researchers intend to continue working on

applications of integer factorization, and will try some new ideas for improving the

efficiency of the algorithms to factor the large bit numbers.

There are no known algorithms which can factor large integers efficiently. In

the Trial division and Fermat factorization, we know that both will be checked for

every possible factor of number, n. These factorization algorithms always exhaust

search the number to be factored. However, the algorithms are suitable for factoring

small numbers like two or three digit numbers and the programming will become

slow when the number of digit becomes larger.

The algorithms such as Pollard Rho and Pollard p-1 factorization are in most

cases more efficient than trial division and Fermat factorization algorithms.

For Pollard p-1 factorization, the smoothness bound needs to be small enough to

ensure that the algorithm run quickly and we also do not want to choose B to be so

small so that there is no hope of finding a nontrivial factor.

Cryptography is an important building block of e-commerce systems. RSA is

one of the public key for ensuring the authenticity of information in an organization.

The basis of security of RSA is depending on difficulty of factoring large numbers

over 1000 bit long numbers are used. The security of RSA relies on it because it can

be helpful for users of the RSA encryption public key algorithm for choosing suitable

key for an appropriate level of security.

Therefore, integer factorization algorithms are important subject in

mathematics for practical purposes such as data security.

APPENDICES

APPENDIX A

Trial Division Method

The basic idea is to find the factor by attempting to divide a number by prime

numbers which are less than the square root of the number.

Example 3.4.1: Factor 12 by using trial division method.

Assume that, x andy are nontrivial factor of 12 such that 12 = .xy and x~ y. Then we

determine whether xll2 for x=2, 3, ... ,Floor [.Jl2].

First, we assign 12 as the value of n

n=12

12

Then,we determine xll2 for x=2, 3, ... ,Floor[.Jl2]. To do so, we use command For

[start, test, incr, body] executes start, then repeatedly evaluates body and incr until test

fails to give True.

For[x=2, x~ Floor [Fn], x++, y=n/x; Print[" x = ", x, ", ", "y =", y]]

x= 2, y= 6

X= 3 , y= 4

From the output above, we know that 12 = x y and this implies that x ~ y and the

upper bound of x ~ Floor[.Jl2]. Therefore the square root of 12 lies between x = 3

andy=4.

Example 3.4.2: Factor 91 by using trial division.

Clear[x, y]

First, we assign 91 as the value of n.

n=91

91

\

Then, we determine xj91 frir x=2, 3, ... , Floor[J9l]. To do so, we use command For

[start, test, incr, body] executes start, then repeatedly evaluates body and incr until

test fails to give True.

For[x=2, x~ Floor [Fn], x++, y=N[n/x, 5]; Print[" x = ", x ,"," ," y =", y]]

X = 2 , y = 45.500

X = 3 , y = 30.333

X= 4 , y = 22.750

x= 5, y= 18.200

x= 6, y= 15.167

x= 7, y= 13.000

X= 8 , y = 11.375

X = 9 , y = 10.111

Therefore when n = 91, we get an integer number only when x = 7 andy= 13 from

the output above. This implies that x andy are primes.

Example 3.4.3: Factor 1253 by using trial division.

Clear[x, y]

First, we assign 1253 as the value of n.

n=1253

1253

Then, we determine xl1253 for x=2, 3, ... , Floor[.J1253]. To do so, we use

command For [start, test, incr, body] executes start, then repeatedly evaluates body

and incr until test fails to give True.

For[x=2, x~ Floor [J;;], x++, y=N[n/x, 5]; Print[" x = ", x,",", "y =", y]]

X = 2 , y = 626.50

x= 3 , y= 417.67

x= 4, y= 313.25

X = 5 , y = 250.60

X = 6 , y = 208.83

X= 7 , y = 179.00

X = 8 , y = 156.63

X= 9 , y = 139.22

x= 10, y= 125.30

x= 11 , y= 113.91

X= 12 , y= 104.42

X= 13 , y= 96.385

x= 14, y= 89.500

X= 15 , y = 83.533

X = 16 , y = 78.313

X= 17 , y= 73.706

X= 18 , y= 69.611

x= 19, y= 65.947

X = 20 , y = 62.650

x= 21 , y= 59.667

X= 22 , y= 56.955

x= 23
'

y= 54.478

X= 24 , y= 52.208

x= 25
'

y= 50.120

x= 26
'

y= 48.192

x= 27
'

y= 46.407

x= 28
'

y= 44.750

x= 29
'

y= 43.207

x= 30
'

y= 41.767

x= 31
'

y = 40.419

x= 32
'

y = 39.156

X= 33
'

y = 37.970

x= 34
'

y = 36.853

x= 35
'

y= 35.800

Therefore when n = 1253, the outputs are integer only when x = 7 andy= 179. This

implies that x andy are primes.

Example 3.4.4: Factor 34675 by using trial division.

Clear[x, y]

First, we assign 34675 as the value of n.

n=34675

34675

Then, we determine xl34675 for x=2, 3, ... , Floor[.J34675]. To do so, we use

command For [start, test, incr, body] executes start, then repeatedly evaluates body

and incr until test fails to give True.

For[x=2, xc::; Floor [Fn], x++, y=N[n/x, 5]; Print[" x = ", x, ", ", "y =", y]]

