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ABSTRACT 

Factoring integers is not an easy task. It is classified as a hard algorithm such 

that the security of the RSA cryptosystem is based upon. Many different methods for 

factoring integers have been developed. There are many set of classes of algorithms 

such as Trial Division, Fermat, Pollard Rho, Pollard p-1 and General Number Field 

Sieve(GNFS). 

In this dissertation, we discussed four factoring algorithms such as Trial 

Division, Fermat, Pollard Rho and Pollard p-l. Some examples are given to illustrate 

the mathematical concepts in the integer factorization algorithms. A programming 

using software Mathematica version 7.0 were used to carry out the integer 

factorization algorithms. Results on integer factorization algorithms obtained were 

shown and discussed. 



CHAPTER! 

INTRODUCTION 

Cryptography is an important building block of e-commerce system. The used 

of cryptography include A TM cards, computer passwords, and electronic commerce. 

Cryptography is a word from Greek KpD1n6c;, kryptos, "hidden, secret"; and ypaq>ro, 

grapho, "I write", or -A.oyia, -logia, is the practice and study ofhiding information. 

In particular, public key cryptography can be used for ensuring the 

authenticity of information in an organization. To protect the sensitive information in 

an organization, encryption can be applied so that the encrypted data is completely 

meaningless except to the individuals with the correct decryption key. 

Encryption is the process of converting ordinary information into cipher text. 

While decryption is the reverse, in other words, moving from the cipher text to 

ordinary information. A cipher is a pair of algorithms that create the encryption and 

the decryption. The detailed operation of a cipher is controlled both by the algorithm 

and by a key. This is a secret parameter for a specific message exchange context. 



1.2 Objectives 

This dissertation is to study the integer factorization and we are also going to discuss 

a few factoring algorithms related to cryptography and their findings by using 

software Mathematica version 7.0. 

1.3 Dissertation Outline 

There are 4 chapters in this dissertation. In chapter 1, we give an introduction on 

integer factorization. In chapter 2, we discuss briefly about integer factorization 

algorithms and the fundamental theorem of Arithmetic. In chapter 3, we discuss the 

four algorithms and their findings. In this chapter, we also are going to discuss about 

general number field sieve (GNFS). Lastly, in chapter 4, we have a future direction 

and conclusion which we summarized briefly on algorithms and the findings. 

I 



In 1750 Euler had an idea of integer factorization. He only looked at integer 

based on special forms. One of the method is integers can be written as n= a2 + Db2
• 

He used the method to factor some large numbers for that time. 

In 1974, John Pollard was developed the p-1 method and he targeted at a 

special class of integers which relies on the hope that there is at least one prime p in 

\ 

the factorization of n, such that p-1 is smooth. This means p-1 is the product of 

relatively small primes. Then, Brent optimized the p method in 1980 and Carl 

Pomerance introduced the quadratic sieve algorithm which added some digits to the 

numbers that could be factored resulting in a factorization of a 71 digit number in 

1983. 

Lenstra developed a new method by using elliptic curves method in 1987 

which is specialized for composites with small factors. In 1988, John Pollard, Richard 

P. Brent, J. Brillhart, H. W. Lenstra, C. P. Schnorr and H. Suyama outlining an idea of 

factoring a special class of numbers by using algebraic number fields. Shortly after 

number field sieve was implemented and was generalized to be general purpose 

algorithm. It is the most complex factoring algorithm but it is also the fastest 

factorization method of a 512 bit composite (Integer factorization, 2010). 

2.2 Fundamental Theorem of Arithmetic 

The prime numbers are the integers which greater than 1 that can factored into 

two positive integers. For example, integers 2, 3, 5, 7, ... are primes while 1, 4, 6, 8, .. 

are non prime integers. The non prime integers which greater than 1 are called 



composite numbers. For example, 10 is composite number such that 10 can be 

factored into two distinct ways as 1 x 10 and 2 x 5. 

The fundamental theorem is useful to break down integers into smallest prime 

numbers. Thus 35 is 5 x 7 and 90 is 2 x 3 x 3 x 5, this implies that every positive 

integer can be factored uniquely. Before we show the fundamental theorem of 

arithmetic, we present some definitions related to our work. 

Defmition 2.2.1: A Composite Number is a number which can be divided evenly by 

numbers other than 1 or itself. 

Definition 2.2.2: A prime number is a positive integer greater than 1 that is divisible 

by no positive integers other than 1 and itself. 

Definition 2.2.3: A trivial factor is a positive integer factor x of n such that x = 1 or 

x=n. 

Defmition 2.2.4: A nontrivial factor is a positive integer factor x of n such that xis 

between 1 and n. 

Definition 2.2.5: A floor function gives the greatest integer less than or equal to n. 

Definition 2.2.6: A ceiling function gives the smallest integer greater than or equal to 

n. 

Theorem 2.2.1: If n is a positive integer and all its prime factors are smaller than B, 

then n is called B-smooth. 

Defmition 2.2.7: 

Let two numbers x and y are defined as congruent modulo n if the difference 

between x andy is an integer multiple of n (Pollard Rho method, 201 0). 



Example 2.2.1: Suppose that x = 37, y = -14 and n =17. xis congruent toy modulo n. 

We find the difference x andy, (x-y) = 37- (-14) =51= 3 * 17. 

Defmition 2.2.8: 

The greatest common divisor of a and b is the largest positive integer dividing both 

a and band is denoted by either gcd(a, b) or by (a, b). 

Example 2.2.2: Compute gcd(482, 1180) (Trappe, 2005). 

Solution: First, we divide 1180 by 482. Then, we get the quotient is 2 and the 

remainder is 216. Now we divide 482 by the remainder 216. Then the quotient is 2 

and the remainder is 50. We repeat this process of dividing the previous one by the 

most recent remainder until the last nonzero remainder is the gcd which is 2. 

1180 = 2.482 + 216 

482 = 2.216 +50 

216 = 4.50 + 16 

50=3.16+2 

16=8.2+0 

Theorem 2.2.2: A fundamental theorem of arithmetic is every integer greater than 

1 can be factored uniquely into product of primes (Wikipedia, 2010). 

G. h el e2 em IVen t at n =PI P2 ... Pm where p 1 < p 2 < ... < Pm are primes and e,> 0, e2> 0, 

.... , em> 0 are integers. Before we proof the theorem, let us give briefly a preliminary 

about primes. 



[(~'" Proposition 2.2.1: (Euclid's First Theorem) An integer p > 1 is prime if and only if it 
W:->-· , 

satisfies the property: for all integers a, b, PI ab implies pia or plb. 

Proof: Assume that a, bare non-zero. In this case, we have either gcd(a,p)= 1 or 

,,, gcd( a, p )= p since p is a prime. 

Conversely, assume for all integers a, b, plab implies pia or plb. If p is composite then 

p=ab,, for some a < p and b < p. But pip = ab then implies pia or plb, both are 

impossible . 

. In fact, rather than using Euclid's First Theorem directly in the proof of the Theorem 

of Arithmetic, we use the following consequence of it. 

Corollary 2.2.1: Let p be a prime. For any integers a1, az, ... , ak, PI a1, az, ... , ak 

•. implies PI a1 or PI az or ... or PI ak. 

Here we need the following basic result. 

· Lemma 2.2.1: If m > 1 is an integer, then the smallest d > 1 which divides m must be a 

number. 

Proof: Let d > 1 be the smallest positive divisor of m. Supposed has a factor b with 

1< b5, d and d =be. But bid and dim implies blm. Since dis the smallest factor of m 

which is greater than 1, we must have b = d, so dis prime. 

of Theorem of Arithmetic: First, we show that n is a product of primes. If n is 

prime then we are done. Let us assume that n is not a prime. 

no= n and let i = 0. 



(1). 

1) Let d; denote the smallest divisor of n; . (From the above lemma, d; is a prime.) 
Let 

2) If n;+I is prime then stop. If n;+I is not a prime, then replace i by i + 1 and go to 

,,, Since no> nt > ... , this process will be terminated. Let say nk is a prime. Then n =no= 
' 
\ 

nk dk-1... d0, so n is a product of primes. By arranging the primes in increasing order 

and !lfouping identical primes in the product together, we may write n as in the 

. ei ~ em II f2 
theorem. Now we prove umqueness. Suppose n = PI P2 ... Pm = PI P2 

Pm1m where the Pi's are distinct primes but not necessarily in any particular order and 

the e1, e2, ... , em and fi. h., ... , fm are non-negative integers. By the corollary 2.2.1, we 

must have pdPI II or pdP2 12 or .... p 1JPm
1
m. Since the p/s are distinct, the only 

II e2 e Cfi -~) 
possibility is if PtlPJ so in particular Ji >0. If fi> e1 then P2 ... Pm m = p1 

P2f2 ... Pmlm and the corollary 2.2.1 implies pJ!P2 e2 or ... pJ!Pm em. This is impossible 

since the p/s are distinct. Similarly, e1 > Ji leads to a contradiction. This leaves the 

only possibility e1 = Ji., so P2 e2 ... Pm em =P2 12 ... Pm1m. Proceeding inductively, we find 

e2 = h, ... , em = fm· This leads to uniqueness and the theorem. 

2.3 Integer Factorization Algorithms 

In this topic, we will be discussed about a few factoring algorithms. Every 

integer can be represented uniquely as a product of prime numbers. For example, 90 is 

easy to factor or we can write it as 2 x 3 x 3 x 5. 



Cryptography is an important building block of e-commerce systems. RSA is 

one of the public key for ensuring the authenticity of information in an organization. 

The basis of security of RSA is depending on difficulty of factoring large numbers. 

Integer factorization problem is to find number's prime factor. 

There are several factoring algorithms can be used to factor the numbers such 

as Trial division, Pollard Rho, Pollard p-1, elliptic curve factorization, Number Field 
'-

Sieve,etc. There are three algorithms that are most effective which can factor large 

number such as number field sieve, elliptic curve factorization and general number 

field sieve. For the next section, we will be going to discuss more detail about several 

algorithms. 



CHAPTER3 

FACTORING ALGORITHMS AND DISCUSSIONS 
\ 

3.1 Introduction 

In this chapter, we are going to discuss a few factoring algorithms. Each 

algorithms are explained and pseudocodes are given (Connelly Barnes, 2010). We 

also will discuss the findings of the algorithms. In this chapter, we discussed four 

factoring algorithms such as the Trial division algorithm, Fermat factorization 

algorithm, Pollard Rho factorization algorithm and the Pollard p-1 factorization 

algorithm. 

3.2 Trial Division Algorithm 

Trial division often called the naive method of factoring. It is the simplest 

algorithm for factoring an integer. Given an integer n, n refers to "the integer to be 

· factored", trial division consists of testing whether n is divisible by any number. Note 

that, it is only work to test the factors less than n. 

Assume that, x andy are nontrivial factor of n such that n= xy and x ~ y. 



implement the algorithm above, we usea software Mathematica version 7.0. Now, 

for some examples to justify the algorithm . 

.,. .. ,, ..... '"' 3.4.1: Factor 12 by using trial division method (Tripod, 2010). 

find the factor by attempting to divide a number by prime 

•n.uJuv ..... .., which are less than the square root of the number. 

~,,., ......... that, x andy are nontrivial factor of 12 such that 12 = xy and x ::5 y. Then we 

command for to do loop until the test fail to give true. We want the output list all 

or[ x= 2, x ::5 Floor[ .Jl2], x++, y = 12 I x];Print[" x = ",x ," , " ," y =" , y]] 

output we get, 

we get the value of x, we can get the value of y directly by dividing the integer 

2 with the value of x. Here, we say that the square root of 12 lies between x = 3 andy 

, we look at another example. 

u ........ ..,u; 3.4.2: Factor 91 by using trial division method. 

find the factor by attempting to divide a number by prime 

ers which are less than the square root of the number. 



we find x andy as p=x-y and q=x+y. We solve this equation by simultaneous 

~au.vu. and we get x= (p+q )12 andy = ( q-p )/2. Since p> 1 and q ~ p, we find that 

1 andy 2::0. 

For the algorithm, we check for each i whether Yi = ~ x/ -n is an integer and 

(Xi + Yi ), (Xi - Yi) are nontrivial factors of n. If both of these are satisfies, we 

the nontrivial factors. Otherwise we continue the iteration until Xi= n. 
'-

Pseudocode:Fermat Factorization 

function fermatFactor(n) 

for x from ceil(sqrt(n)) ton 

ysquared: = x * x -n 

if issquare(ysquared) then 

y: = sqrt(ysquared) 

p: = (x-y) 

q: = (x+y) 

if p < > 1 and p < > n then 

retump, q 

end if 

end if 

end for 

end function 



the output above, we noticed that not all possible factors, p and q are integer 

mrumt>,ers. In this factorization method, we only consider the integer numbers. Hence, 

we getp = 3, q = 7 andp = 1, q= 21 are the factor of21. Because ofthe value ofp =1 

not a prime number. Therefore, we take p= 3 and q = 7 as the factor of 21. 

\ 
'J.!<.A ... Uicyn.- 3.7.2: Factor 45 by using Fermat factorization. 

We need to find the factors p and q which can be written as the difference of squares 

2 2 such that n= x -y . 

Assume that p and q are nontrivial odd factors of n such that n=p.q and p s q where 

p=x-y and q=x+y. 

We use command for to do loop until the test fail to give true. We also use command 

break to omit the value of q when it is larger than 45. 

· For[x= Ceiling [ Fn ], x ~ n, x++, y1 = x*x- n; y = N[ .JYl, 5] ; p = N[x-y, 5] ; 

q =N[x +y 5] · Print[" x = " x " " "y = " y " " "p = " p " " "q = " q] · '' ,,,, ,,,, ,,,, '' 

If[q> 44, Break[], {x, x+y}]] 

' y = 2.0000 ' p = 5.0000 ' q = 9.0000 

' y = 4.3589 ' p = 3.6411 ' q = 12.359 

' y = 6.0000 ' p = 3.0000 ' q = 15.000 

10 ' y = 7.4162 ' p = 2.5838 ' q = 17.416 

11 y= 8.7178 'p= 2.2822 'q= 19.718 

12 ' y = 9.9499 ' p = 2.0501 ' q = 21.950 

13 ' y = 11.136 ' p = 1.864 ' q = 24.136 

14 ' y = 12.288 ' p = 1.712 ' q = 26.288 



end if 

end do 

end function 

Examples of Pollard Rho Factorization 

, we look at some examples by using software Mathematica version 7.0 . 

..... u,.,. .. ,., 3.10.1: Factor 31861 by using Pollard Rho Method with 

and xo=1 (Pollard Rho method, 2010). 

aim is to find two iterates i, j where gcd (xi- Xj, 31861) = a > 1 where a is an 

and we compute the greatest common divisor with n= 31861. 

xo=1 as x[O]=l. 

we use command for to do loop until the test fail to give true. 

= 0, is 9, i++, x[i+ 1]= x[i] 2 + 1 ;y = Mod[x(i+1], 31861]; 

[x[i+ 1], 31861]; Print[ "x[", i+ 1,"]=", N[x[i+1] ], ", "," y = ", y, ", "," m = ", 

' 
y= 2 m= 1 

' 
y= 5 m= 1 

' 
y= 26 m= 1 

' 
y= 677 m= 1 

= 458330. 
' 

y= 12276 
' 

m= 1 



i =1, i ~ 18, i++, x[i+ 1] =1024x[if + 32767 ; y =Mod[x[i+ 1], 16843009]; 

11x[ 11
, i+1, 11

] = 11
, N[x[i+1] ], 11

, 
11

, 
11 y = 11 ,y ]] 

1.16924X 1012 

]'= 2.00682x1057 

]= 4.12398x10117 

7]= 1.74154x10238 

8 ]= 3.105735707635590x10479 

]= 9.87708854853913x10961 

10 ]= 9.98982432723791x101926 

1 ]= 1.021917082512122x 103857 

12 ]= 1.069378072094810x107717 

13 ]= 1.171015128143066x1015437 

· 4 ]= 1.404187064668079x 1030877 

5 ]= 2.0190631 04083103x1061757 

6 ]= 4.174454597908167x 10123517 

7 ]= 1. 784429689855655x 10247038 

]= 3.260609861671271x10494079 

]= 1.088673451010861x10988162 

' y= 33791 

, y = 10832340 

' y = 12473782 

' y = 4239855 

' y= 309274 

' y = 11965503 

' y = 15903688 

' y = 3345998 

' y = 2476108 

' y = 11948879 

' y = 9350010 

' y= 4540646 

' y= 858249 

' y = 14246641 

' y = 4073290 

' y= 4451768 

' y = 14770419 

' y= 4020935 

we check the greatest common divisor whether the gcd (xr Xj, 16843009) = a > 1 

where a is an integer. Then, we continue the next iteration if the gcd is not 

1] - x[2], 16843009] = 1 



3.13 Examples of Pollard p - 1 Factorization 

Now, let us look at a few examples to justify the algorithm by using software 

Mathematica version 7.0. 

Example 3.13.1: Factor 65 by using Pollard p-1 method (Connelly Barnes, 2010). 

Solution: 

Our aim is to find an integer which can divide both Xk and 65 where Xk = 2k!_l (mod 

65) for k=1, 2, 3, ... , 

We use command for to do loop until the test fail to give true. 

For[k=1, k::;; 7, k++, x[k] = N[2k!_1, 4] ;y = Mod[2k!_1, 65]; s = GCD[y, 65]; 

Print[ "x[" k "] = " x[k] " " "y = " y " " " s = " s]] 
' ' ' ' ' ' ' ' ' ' ' 

The output we get, 

x[ 1 ]= 1.000 
' 

y= 1 s= 1 

x[ 2 ]= 3.000 
' 

y= 3 s= 1 

x[ 3 ]= 63.00 
' 

y= 63 s= 1 

x[ 4 ]= 1.678xl07 

' 
y= 0 s = 65 

x[ 5 ]= 1.329xl036 

' 
y= 0 s = 65 

x[ 6 ]= 5.516xl0216 

' 
y= 0 s= 65 

x[ 7 ]= 1.553x101517 

' 
y= 0 s= 65 

Notice that, for the first 3 steps, we find that gcd {1, 65) = 1, gcd (3, 65) = 1 and gcd 

{63, 65) = 1. Then, when k 2: 4 we find that gcd (0, 65) = 65. This implies that the 

algorithm cannot find a nontrivial factor and the test never terminates. 

Example 3.13.2: Factor 317017 by using Pollard p-1 method. 

Solution: 



x[ 1 ]= 1.000 
' 

y= 1 s= 1 

x[ 2 ]= 3.000 
' 

y= 3 s= 1 

x[ 3 ]= 63.00 
' 

y= 63 s= 1 

x[ 4 ]= 1.678xl07 

' y = 6982 ' s= 1 

x[ 5 ]= 1.329x1036 

' y = 2520 ' s= 1 

x[ 6 ]= 5.516x10216 

' y = 4268 ' s= 97 

x[ 7 ]= 1.553x101517 
, y = 1358 ' s= 97 

From the output above, the value of y is actually defined as Xk = 2k!_l (mod 8051) 

and we also find the gcd for every value of y so that we can determine whether there 

exists an integer which can divide both Xk and n. Hence, 97 is a factor of 8051. In this 

example, we find that Xk = 4268 and Xk = 1358 are divisible by p - 1 = 96 and 8051 is 

also divisible by p-1 =96. 

3.14 Integer Factorization Algorithms Findings 

In the Trial division and Fermat factorization, we know that both will be 

checked for every possible factor of number, n. These factorization algorithms always 

exhaust search the number to be factored. However, the algorithms are suitable for 

factoring small numbers like two or three digit numbers. Then, the programming will 

become slow when the number of digit becomes larger. 

The Pollard Rho and the Pollard p -1 factorizations are intermediate test 

between trial division and Fermat factorization. The algorithms like Pollard Rho and 

the Pollard p-1 are more efficient compared to the trial division and Fermat 

factorization. 



• 

• 0 25°7°- 9- 196- 223°5° 2 ( 2 3 - = - 7 ............. 3) 

• 

From equation (3), we say t'Q.at 32 = 142 (mod n), which gives the factorization 187 

= gcd(14-3, 187) x gcd{l4+3, 187) = 11 xt 7. 

3.16 RSA Cryptography 

RSA stands for Rivest, Shamir and Adleman who first publicly described it for 

public key algorithm in 1977. It supports encryption and digital signatures. It also gets 

its security from integer factorization problem. It is easy to understand and 

implement. 

RSA is used in security such as email security, transport data security and 

many more. RSA gets its security from factorization problem. The basis of security of 

RSA is depending on difficulty of factoring large numbers over 1000 bits long 

numbers are used. Integer factorization problem is to find number's prime factor. 

3.17 RSA Algorithm 

We introduced briefly about key generation. First, we select random pnme 

numbers p and q. Then, we compute modulus pq and phi, <I>= (p-1) (q-1). We also 



CHAPTER4 

FUTURE DIRECTION AND CONCLUSION 

In this chapter, we discussed future direction and conclusion of integer 

factorization. If we look at the current development there are number of research in 

integer factorization. Nowadays, computational power is increasing day by day and 

although there is far to a computer being able to factor a large bit number which is 

over 500 bit in reasonable time. But many researchers intend to continue working on 

applications of integer factorization, and will try some new ideas for improving the 

efficiency of the algorithms to factor the large bit numbers. 

There are no known algorithms which can factor large integers efficiently. In 

the Trial division and Fermat factorization, we know that both will be checked for 

every possible factor of number, n. These factorization algorithms always exhaust 

search the number to be factored. However, the algorithms are suitable for factoring 

small numbers like two or three digit numbers and the programming will become 

slow when the number of digit becomes larger. 

The algorithms such as Pollard Rho and Pollard p-1 factorization are in most 

cases more efficient than trial division and Fermat factorization algorithms. 



For Pollard p-1 factorization, the smoothness bound needs to be small enough to 

ensure that the algorithm run quickly and we also do not want to choose B to be so 

small so that there is no hope of finding a nontrivial factor. 

Cryptography is an important building block of e-commerce systems. RSA is 

one of the public key for ensuring the authenticity of information in an organization. 

The basis of security of RSA is depending on difficulty of factoring large numbers 

over 1000 bit long numbers are used. The security of RSA relies on it because it can 

be helpful for users of the RSA encryption public key algorithm for choosing suitable 

key for an appropriate level of security. 

Therefore, integer factorization algorithms are important subject in 

mathematics for practical purposes such as data security. 



APPENDICES 



APPENDIX A 

Trial Division Method 

The basic idea is to find the factor by attempting to divide a number by prime 

numbers which are less than the square root of the number. 

Example 3.4.1: Factor 12 by using trial division method. 

Assume that, x andy are nontrivial factor of 12 such that 12 = .xy and x~ y. Then we 

determine whether xll2 for x=2, 3, ... ,Floor [ .Jl2 ]. 

First, we assign 12 as the value of n 

n=12 

12 

Then,we determine xll2 for x=2, 3, ... ,Floor[ .Jl2]. To do so, we use command For 

[start, test, incr, body] executes start, then repeatedly evaluates body and incr until test 

fails to give True. 

For[x=2, x~ Floor [ Fn ], x++, y=n/x; Print[" x = ", x, ", ", "y =", y]] 

x= 2, y= 6 

X= 3 , y= 4 

From the output above, we know that 12 = x y and this implies that x ~ y and the 

upper bound of x ~ Floor[ .Jl2]. Therefore the square root of 12 lies between x = 3 

andy=4. 



Example 3.4.2: Factor 91 by using trial division. 

Clear[x, y] 

First, we assign 91 as the value of n. 

n=91 

91 

\ 

Then, we determine xj91 frir x=2, 3, ... , Floor[ J9l ]. To do so, we use command For 

[start, test, incr, body] executes start, then repeatedly evaluates body and incr until 

test fails to give True. 

For[x=2, x~ Floor [ Fn ], x++, y=N[n/x, 5]; Print[" x = ", x ,"," ," y =", y]] 

X = 2 , y = 45.500 

X = 3 , y = 30.333 

X= 4 , y = 22.750 

x= 5, y= 18.200 

x= 6, y= 15.167 

x= 7, y= 13.000 

X= 8 , y = 11.375 

X = 9 , y = 10.111 

Therefore when n = 91, we get an integer number only when x = 7 andy= 13 from 

the output above. This implies that x andy are primes. 

Example 3.4.3: Factor 1253 by using trial division. 

Clear[x, y] 

First, we assign 1253 as the value of n. 

n=1253 

1253 



Then, we determine xl1253 for x=2, 3, ... , Floor[ .J1253 ]. To do so, we use 

command For [start, test, incr, body] executes start, then repeatedly evaluates body 

and incr until test fails to give True. 

For[x=2, x~ Floor [ J;; ], x++, y=N[n/x, 5]; Print[" x = ", x,",", "y =", y]] 

X = 2 , y = 626.50 

x= 3 , y= 417.67 

x= 4, y= 313.25 

X = 5 , y = 250.60 

X = 6 , y = 208.83 

X= 7 , y = 179.00 

X = 8 , y = 156.63 

X= 9 , y = 139.22 

x= 10, y= 125.30 

x= 11 , y= 113.91 

X= 12 , y= 104.42 

X= 13 , y= 96.385 

x= 14, y= 89.500 

X= 15 , y = 83.533 

X = 16 , y = 78.313 

X= 17 , y= 73.706 

X= 18 , y= 69.611 

x= 19, y= 65.947 

X = 20 , y = 62.650 

x= 21 , y= 59.667 

X= 22 , y= 56.955 



x= 23 
' 

y= 54.478 

X= 24 , y= 52.208 

x= 25 
' 

y= 50.120 

x= 26 
' 

y= 48.192 

x= 27 
' 

y= 46.407 

x= 28 
' 

y= 44.750 

x= 29 
' 

y= 43.207 

x= 30 
' 

y= 41.767 

x= 31 
' 

y = 40.419 

x= 32 
' 

y = 39.156 

X= 33 
' 

y = 37.970 

x= 34 
' 

y = 36.853 

x= 35 
' 

y= 35.800 

Therefore when n = 1253, the outputs are integer only when x = 7 andy= 179. This 

implies that x andy are primes. 

Example 3.4.4: Factor 34675 by using trial division. 

Clear[x, y] 

First, we assign 34675 as the value of n. 

n=34675 

34675 

Then, we determine xl34675 for x=2, 3, ... , Floor[ .J34675 ]. To do so, we use 

command For [start, test, incr, body] executes start, then repeatedly evaluates body 

and incr until test fails to give True. 

For[x=2, xc::; Floor [ Fn ], x++, y=N[n/x, 5]; Print[" x = ", x, ", ", "y =", y]] 


