
FINITE AUTOMATA AND APPLICATIONS

by

NAWARA R.F ELFAKHAKHRE

Project Submitted in partial fulfillment

of the requirements for the degree

of Master of Sciences (Teaching of Mathematics)

JUNE 2010

ACKNOWLEDGEMENTS

I would like to thank the administration of The School of Mathematical Sciences,

Universiti Sains Malaysia for all their help.

Of course, my advisor, Prof K.G. Subramanian, deserves great thanks. Without him I

would not have discovered any things about finite automata and its applications, and

without his guidance and advice. I would not have made it through graduate school.

Also I would like to thank Scholarship Department, Ministry of Education Libya for

giving me Scholarship to upgrade my knowledge.

Finally, I would like to thank my husband and my parents and my parents in law for

their support and encouragement.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS ... iii

LIST OF FIGURES ...•.. v

ABSTRAK .•.. vii

ABSTRACT ... ix

1. INTRODUCTION

1.1 Mathematical Preliminaries and Notations

1.1.1 Sets .. 1

1.1.2 Functions and relations .. 2

1.1.3 Graphs and tree .. .4

1.2 Three basic concepts

1.2.1 Languages ... 7

1.2.2 Grammars ~ ... 12

1.2.3 Automata ... 14

iii

2. FINITE AUTOMATA

2.1 Finite state systems ... 17

2.2 Deterministic finite automata {DFA) ... 20

2.3 Nondeterministic Finite Automata (NFA) ... 29

2.4 Nondeterministic Finite Automata with >..-transition (>..-NFA) 37

3. FINITE AUTOMATA AND REGULAR LANGUAGES

3.1 Regular expressions .. 44

3.2 Regular language ... 45

3.3 Kleene's theorem ... 47

4. FUZZY FINITE AUTOMATA

4.1 lntroduction ... ss

4.2 Regular fuzzilanguages ... SG

4.3 Finite fuzzy automata ... 59

CONCLUSION ... 66

REFERENCES ... 67

iv

LIST OF FIGURES

Page

1. Mappings or functions fv / 2 .•...•...•...........•...........................•............•............•....•... 3

2. Graph with two nodes and an edge .. 4

3. Directed graph .. 4

4. Undirected graph . .- ... 5

5. Graph G, and Sub graph G' (shown darker) ... 6

6. Tree of the graph .. 6

7. The schematic representation of general automata ... 15

8. Diagram to a finite automaton called M1•......•.................................•.............. 19

9. Diagram to a finite automaton is called M2 ..•.•...•.........••••.•...•.....•••.•.•..••...•..••...•.. 22

10. DFA that accepts the language L = {bna: n ;:::: 0} .. 23

11. A DFA recognize the language L ={an bam: n, m > 0} 24

12. A diagram of DFA recognized by M2•.........•...•.••...•...•..•...•..•..••••.....•..•.••••.•.•..•. 25

13. Two diagrams for DFAs recognize L11 L2 ••. 28

14. A diagram of DFA for L1 n L2 ••..•...•••••....••.•......••...•............••...•.•...••.•..•••••.•....••..•..• 29

15. Five NFA's .. 30

v

16. Diagram to the NFA is called M3 .. 32

17. A computation tree for the NFA M3, as it processes babbab 34

18. A diagram to a DFA N that equivalent the NFA M3 .. 37

19. Diagram to a>..- NFA called N1 ... 38

20. The >..-NFA N2 .. 40

21. Diagram to a >..-NFA N3 ... 41

22. A diagram to NFA which accept the same language of N3 42

23. >..-NFAs for the three basic languages .. .48

24. Union, Star and Catenation operations on >..-NFA .. .49

25. Constructing an >..-NFA for(OO + 1)*0* ... 50

26. Diagram to an NFA .. 52

27. Diagram to an FT-NFA M1 .. 60

28. Diagram to an FS-NFA M2 .. 62

29. Diagram to an FS-NFA M3·············••oo•••oo••• ... 63

30. Diagram to an FS-DFA which equivalent to FS-NFA M3 64

vi

AUTOMATA TERHINGGA DAN APLIKASI

ABSTRAK

Automaton terhingga (finite automaton) boleh dianggap sebagai suatu model mesin

teringkas, yang mempunyai memori terhingga. Saiz memori bergantung pada

panjang input (input length). Automata terhingga merupakan model tertua daripada

teori bahasa formal, iaitu sejak 1943. Ia digunakan oleh McCulloch dan Pitts dalam

merintis konsep automaton sebagai suatu model bagi mengkaji sistem saraf. Kleene,

kemudiannya menulis kertas kerja pertama tentang automata terhingga, yang

akhirnya mewujudkan suatu teorem yang dikenali sebagai teorem Kleene. Pada tahun

1959, Michael Rabin dan Dana Scott menjalankan suatu kajian tentang teori automata

terhingga "Finite Automata and Their Decision Problem", yang memperkenalkan idea

ten tang mesin yang tidak berketentuan (nondeterministic machine), yang terbukti suatu

konsep yang penting. Dalam peringkat awal, teori automata terhingga telah

dibangunkan sebagai suatu teori matematik bagi litar beijujukan (sequential circuits).

Sesuatu litar beijujukan mampu mengekalkan keadaan semasa numbor terhingga (finite

number). Logik litar (suatu kawalan keadaan terhingga) menentukan keadaan baru

berdasarkan keadaan semasa litar dan simbol input yang diberikan. Apabila sesuatu

simbol input diproses, litar tidak akan dapat membacanya lagi.

vii

Aplikasi utama automata terhingga adalah pemprosesan teks. Dalam reka bentuk

pengkompil (compiler design), automata terhingga digunakan untuk menentukan logik

bagi analisis leksikal. Aplikasi automata terhingga yang lain antaranya: padanan

rentetan (string matching), pemprosesan bahasa tabii (natural language processing),

pemampatan teks (text compression), dll.

Dalam projek ini, kami memperkenalkan konsep daripada mana-mana automata

terhingga dan meneliti definisi asas. Kami, kemudiannya memperkenalkan dua jenis

automata terhingga iaitu automata terhingga berketentuan (deterministic finite

automata, DFA) dan automata terhingga tidak berketentuan (nondeterministic finite

automata, NFA). Kedua-dua jenis automata terhingga ini menerima keluarga bahasa

yang sama, iaitu bahasa yang regular, yang akan diperkenalkan di sini. Kami juga

menjelaskan kepentingan teorem Kleene's dalam kedua-dua bahagian.

Sebagai kesimpulan, kami juga turut memperkenalkan definisi asas bagi automata

terhingga kabur (fuzzy finite automata) dan bahasa kabur regular (regular fuzzy

languages) sebagaimana yang diutarakan oleh (Salomma et.al (1995), Martin Vide et.al

(2004)).

viii

ABSTRACT

A finite automaton can be considered as the simplest machine model in that the machine

has a finite memory; that is, the memory size is independent of the input length. Finite

automaton is the oldest model of formal language theory, since in 1943, in the

pioneering work of McCulloch and Pitts, the concept of automaton appeared as a model

for studying nervous systems. Then Kleene wrote the first paper on finite automata that

proved a theorem which we now know as Kleene's theorem. In 1959, Michael Rabin

and Dana Scott presented a study on the theory of finite automata, in their joint paper

"Finite Automata and Their Decision Problem", which introduced the idea of

nondeterministic machines, which has proved to be a very important concept. In the

early stage, the theory of finite automata has been developed as a mathematical theory

for sequential circuits. A sequential circuit maintains a current state from a finite number

of possible states. The circuit logic (which is a finite state control) decides the new state

based on the current state of the circuit and the given input symbol. Once an input

symbol is processed, the circuit will not be able to read it again.

A main application of finite automata is text processing. In compiler design, finite

automata are used to capture the logic of lexical analysis. Other applications include

string matching, natural language processing, text compression, etc.

ix

In this project, we first introduce the concepts of finite automata and review the basic

definitions. Then we introduce the two types of finite automata deterministic finite

automata (DFA), nondeterministic finite automata (NFA). The two types of finite

automata really accept the same family of languages, the regular languages, that will

be introduced here, and then we describe the important Kleene's theorem in two parts.

Finally, we also introduce the basic definitions for fuzzy finite automata and regular

fuzzy languages as stated by (Salomma et.al {1995), Martin Vide et.al (2004)), which is

application of finite automata such as lexical analyser.

X

CHAPTER 1

INTRODUCTION

In this chapter, the basic notions needed for the discussion in the subsequent

chapters, are given based on (Linz 2006).

1.1 Mathematical Preliminaries and Notations

1.1.1 Sets

A set is a collection of objects. The objects in the set, called members or

elements, are described by listing or by a property. For example, a finite set

A= { 1, 2, 3, ... , 10} and an infinite set B = {1, 2, 3, ... } can respectively be written

as A= { x: 1 :::; X:::; 10 and X EN}, B = {x: X 2:: 1 and X EN}.

There are some special sets:

Empty set is a set which does not have any element and it is denoted by 0 or { }.

Universal set is the set of all objects or elements considered in a given problem.

It is denoted by U. Also there is another set called Power set. The power set of X

is the set of all subsets of X de fined as P(X) = { Y I Y ~ X}. This is also written

as P(X) = 2x.

For two sets A and B, if every element of set A is an element of set B, then A is

1

a subset of B. This is written as A ~ Ei. As an example, consider X = { 5, 6, 7},

A= { 1, 2, 3, ... , 10 }, and Y = { 0,1 ,2} then X~ A, butY 't A because 0 ft. A.

The usual set operations are union (u), intersection (n), and difference (-).

Another operation is the complement of a set. The complement of a set A with

respect to U is denoted by A. In mathematical symbol, all these are written as

A = { x lx E U and x ft. A}

A U B = { x lx E A or x E B or both }

A- B = { x lx E A and x ft. B}

A n B = {x I x E A and x E B}.

Example:

Consider u = { u I u EN}' ul = { 7, 8, 9}' Uz = { 9, 10, 11, 12, 13} and

U3 = { 121, 120} Then U1 = { 1,2,3,4,5,6,10,11,12, ... } ,

U1 u U3 = { 7,8,9,121,120} and U1 n U3 = 0 and U1 n U2 = {9}.

1.1.2 Functions and Relations

The Cartesian product of sets X11 X2, X3, ••••••• , Xn is defined as:

A relation on X1 ,X2,X3, ... ,Xn is a subset of X1 x X2 x ... x Xn. There are many

types of relation, such as Binary relations, Ordering relations, and equivalence

relations. A function is a binary relation between two sets X, Y with the

2

condition that for every element x E X, there is a unique element y of Y, such

that f(x) = y.

Iff: X ~ Y is a function then the domain of the function f is the set of X, and we

write D1 = { x: x EX; f: X ~ Y}. The co-domain of the function f is the set of

elements of Y, and the range of the function f is the set of elements such that

y = f(x); y is then called the image of x, we write Rt = { y: y E Y; f: X~ Y y =

f(x)}.

Equivalently we can define a function f: A~ B as a relation R where R: A ~ B

that satisfies the following two conditions:

(i) 'Va E A,3b E B such that (a, b) E f.

(ii) 'Va E A,'Vb,c E B,(a,b) E fand (a,c) E f ===> b =c.

Example:

In Figure 1 below,

A B A fz B

Figure 1 Mappings or functions fv / 2

observe that / 1 is a function since f(x) =a, f(y) = b, f(z) = a, and the range

is {a, b}, but f 2is not a function because b E A, but b does not have any image in

the co-domain B.

3

1.1.3 Graphs and Trees

A graph is a set of vertices with lines joining some of the vertices. The vertices

are called nodes, and the lines are called edges. Each edge can be an arc

consisting of an ordered pair of vertices and represents possible direction of

motion that may occur between vertices. Suppose that the edge consists of a pair

of nodes i and j then we write the edge as a pair (i, j). Usually, in the graph the

node is denoted by a circle and the edge by a line as shown in the Figure 2.

Edge

Figure 2 A Graph with two nodes and an edge

Thus we can denote the graph G as a pair (V,E) when V is a finite set of nodes

and E is a finite set of edges which is simply a binary relation on V. We use the

graph to represent information on problems so that it becomes easy to

understand. A graph can be drawn in many ways. Also we can divide the graph

into two types: directed graph and undirected graph. The difference between

them is that the edges in a directed graph carry information about directions; For

example consider the directed graph in Figure 3.

Figure 3 Directed graph

4

I
r In the graph of Figure 3, we have four nodes and five edges, each edge possesses
t
~
~·
~ a sense of a direction such as the edge (A,B) represents leaving node A and

entering node B. A description ofthe graph as formally is as follows:

G = ({A, B, C, D}, {(A, B), (B, D), (D, C), (D,A), (B, C)})

But in undirected graphs no sense of the direction of edges is considered. For

example consider the same graph in Figure 3 but without a sense of direction.

Then it will become like the graph in Figure 4.

Figure 4 Undirected graph

The edge (A,B) represents either leaving A to enter B or leaving B to enter A.

We can describe this formally as follows:

G = ({A, B, C, D}, {(A,B),(B,A),(A,D),(D,A),(B,C),(C,B),(B,D),(D,B),(D,C),(C,D)}).

The degree of the node corresponds to the number of edges at the node. In the

Figure 4 the nodes A,C have degree 2 and the nodes B,D have degree 3. In-

degree of a vertex is the number of edges entering it. The out-degree of a vertex

is the number of edges leaving it. An edge is called loop when joining a vertex to

itself. A loop at a vertex counts 2 to the degree because we count each end of the

loop. A vertex is called isolated if the degree of the vertex zero .Two or more

5

f

I
~. edges joining the same pair of vertices are called multiple edges. A graph with
~.
~· no multiple edges and loops is called a simple graph. If G' is a sub graph of the

graph G then the nodes of G' is subset of nodes of G and the edges of G' is subset

of the edges of G, like that in Figure 5.

Figure 5 Graph G, and Sub graph G' (shown darker)

A path is a chain of nodes joined by edges. If every two nodes in the graph have

a path between them then the graph is connected. A path is a cycle if it starts

and ends in the same node. If the graph consists of at least three nodes and

repeats only the first and the last nodes then it is a simple cycle.

A tree of graph is connected graph that has no cycles, and has the shape like a

tree when the root of a tree is the node of degree 1 and the nodes which have

more degree one are leaves of a tree.

Leave Leave

Figure 6 Tree of the graph

6

1.2 Three basic concepts

There are three basic concepts to define any finite automata which are as follows:

1.2.1 Languages

The concept of a language is introduced after introducing certain other

concepts. First we will define symbols, alphabets then string to arrive in the end

to define a language.

Symbols can be letters a,b,c, ... ,z or numbers 0,1,2, ,9 , or Bits 0,1 or English

word like cat, mouse also syntactic components of a programming language

such as for , begin and ; : =. Symbols are elements of an Alphabet where an

Alphabet is a finite set of symbols denoted by L· For example 2:1 = {0,1}, 2:2 =

{a, c, r, e, p, h, l, n, t} are alphabets. A string or word over an alphabet Lis a finite

sequence of symbols, for example

w1 = car and w2 = elephent are two strings over_L2 , and strings over 2:1 are

sequences of binary digits ,s1 = 110000110001001011001110011,

s2 = 110011. If a string v appears within another string w then v called a

substring ofw. 1, 11, 10, 100, 011 are substrings of s2 •

Every string w has a length, denoted by lwl which is the length of sequence of

symbols such as lw2 1 = 8 and ls2 1 = 6. The string which has length zero called

the null string or empty string which means that the string does not have any

symbols. It is denoted E,>.. or e. If w and s are two strings, then the

concatenation of w and s is denoted by w.s or just ws is the string obtained by

7

having the symbols of s to the right end of w such as the concatenation of w1 and

s2 is w1s2 = car110011.

The identity string of concatenation operation is null string since every string w,

satisfies >.. w = w = w >...Strings is a substring ofw ifw = xsy for some strings

x and y. String s is a prefix of w if w = sy for some strings y; Strings is a suffix

of w if w = xs for some strings x. For example some of suffixes of w2 are hent,

ent, nt, and t; and while the set of all prefixes of the string w2 is

{>.., e, el, ele, elep, eleph, elephe, elephen, elephent}.

String wR is the reversal of w if it is the sequence w in last-to-first order. String

w is a palindrome, when w = wR, like Sz = 110011 = 110011 = sr If w is a

string then the power of it is denoted wn which means repeating w, n times.

The string with power zero is empty string w 0 =>...The Kleene Star (Closure) is

a set of all finite strings over I including the empty string >.., denoted to it by I*

when I is any finite alphabet. Always the set I* is an infinite set because there

is no limit on the length of the strings which in the set. We define I+

as L+ = L*- {>..},it is the Kleene Star but does not include the empty string.

A language over L is any subset of L*· is denoted by L; this means L ~I*.

Every element in L is called sentence or word or string. For example for

alphabet }::1 = {0,1} then I~ = {>.. ,0,1,00,01,10,11,000,001, } the set

{0,00,001} is subset of L~ thus it is a language on I 1 . Note that the set

{0,00,001} has a finite number of sentences and so this language is called a finite

language. But an infinite language which has infinite number of sentences such

8

as the set L = {Gn1 n: n 2': 0} which is a language on 2:1 . The strings

01,0011,000111 are in L but 011 is not in L.

For example the languages over l: ={a, b, c} are (/), {aaab, aabb, abab, abbb,

aacb,acab,accb,abcb,acbb} and {wE l:*llwl2': 7}. When the first represents

to the empty language i.e language does not contain any string, the second is the

set of strings of length 4 that begin with a and end with b, and the last one is the

set of all strings oflength at least 7.

As languages are sets of words, so the usual operations that apply to sets can be

applied to languages. For the union(U), intersection(n) and diffrence (-) of two

languages, directly defined. But the complement of the language is defined with

respect to I* , denoted to it L defined as

L = l:*- L.

The reverse of a language is the set of all string reversal, defined as

Cross product of two languages L1 and L2 represented L1 x L2 is a string of all

pairs (x,y) when xis in L1 , y is in L2

The concatenation of two languages L11 L2 which denoted L1 L2 defined as

L1L2 = {xy: x E L11 y E L2 }.

For every language satisfy two properties

9

1. L{>-} = {>-}L = L.

2. Lf/J = f/JL = (/).

Power i of a language L since i ;::: 1 denoted Li defined as, when i = 0 will be

L0 = {>-} and for all i ;::: 1, Li = L Li-l. The following some examples:

(i) Consider :L = {a, b} then L.* = {>-,a, b, aa, ab, ba, bb, } if

L1 = {ab, b, bb} and L2 = {ab, aa, a, abba} then L1 n L2 = {ab },

L1 u L2 = {ab, b, bb, aa, a, abba} ,L2 - L1 = {aa, a, abba},

(ii) - R L1 = {>-,a, aa, ba, aaa, } and L2 = {ba, aa, a, abba}.

(iii) If L1 = {a,aba,cab,>-} and L2 = {ca,cb} then

L1 L2 = { aca, acb, abaca, abacb, cabca, cabcb, ca, cb}

(iv) If L1 = {>- ,0,1}, L2 = {00,10} then

L1 X L2 = {(>- ,00), (>- ,10), (0,00), (0,10), (1,00), (1,10)}

(v) If L = {c, d} then

(a) L0 =>-

(b)U = {c,d}

(c) L2 = LL = {c, d}{c, d} = {cc, cd, de, dd}

(d)L3 = LLL = LL2 = {c,d}{cc,cd,dc,dd}thus

L3 = {ccc, ccd, cdc, cdd, dec, dcd, ddc, ddd}.

Finally, the Kleene closure or star-closure of a language L is

L* = L0 u L1 U L2 u = U~0 Li

While the KLeene plus or positive closure of a language is

10

L+ - L1 u L2 U L3 U - U00 Li - - i=1

Example (1.2.1.1):

If 2: = {0,1} and L = {1,01} then L* consists of the empty string >.. and all the

strings that can be formed using 1 and 01 with the property that every 0 is

followed by 1. For L + it will be the same set but does not consist of >...

L* = {>.., 1, 01, 11,0101,101,011, }

L+ = {1, 01, 11,0101,101,011, }

Example (1.2.1.2):

Let L = { ab, aa, baa}. Which of the following strings are in

L*: abaabaaabaa, aaaabaaaa, baaaaabaaaab, baaaaabaa? which strings are in

Notice that abaabaaabaa can be split into strings ab, aa, baa, ab, aa each of

which is in L. Also for aaaabaaaa, baaaaabaa split into aa, aa, baa, aa ; and

baa, aa, ab, aa respectively with each of them in L, the strings aaaabaaaa,

baaaaabaa are in L4 because they contain strings of length 4 in L. Thus the

strings abaabaaabaa, aaaabaaaa , baaaaabaa are in L*. But, the string

baaaaabaaaab is not in L* because there is no possible to express it in terms of

elements of L. In fact,

L = {ab,aa,baa}

L2 = {ab, aa, baa}{ab, aa, baa}

{abab,abaa,abbaa,aaab,aaaa,aabaa,baaab,baaaa,baabaa}

11

L3 = L 1}

= {ab, aa, baa}{ abab, abaa, abbaa, aaab, aaaa, aabaa, baaab, baaaa, baabaa}

= {ababab, ababaa, ababbaa, abaaab, abaaaa, abaabaa, abbaaab, abbaaaa,

abbaabaa,aaabab,aaabaa,aaabbaa,aaaaab,aaaaaa,aaaabaa,aabaaab,

aabaaaa,aabaabaa,baaabab,baaabaa,baaabbaa,baaaaab,baaaaaa,

baaaabaa,baabaaab,baabaaaa,baabaabaa}

L4 = LL3 = { abababab, ... , aaaabaaaa, , baaaaabaa, , baabaabaabaa}

1.2.2 Grammars

A grammar G is defined as a quadruple G = (V, T, S, P) where

(i) V is a finite nonempty set of objects called variables.

(ii) Tis a finite nonempty set disjoint from Vof objects called terminal

symbols.

(iii) S E Vis a special symbols called start variable.

(iv) Pis a finite set of productions.

The grammar transforms one string into another by production rules and the

strings obtained are the elements of the language of G. All production rules can

be formally expressed as x ~ y when x is an element of (VUT)+ and y is in

(V U T)*. If there is a string w of the form w = uxv, then the production x ~ y

means replace x with y in the new string which will yield z = uyv. Thus we

write w ~ z to represent that w derives z or that z is derived from w, which

means that z is directly derivable from string w. A sequence of direct

derivations like w ~ u11 u1 ~ u2 , ..•..•. , Un ~ z is a derivation of the string z

12

from the string w. Sometimes it is called parsing. The string z is derivable from

the string w with respect to the grammar G if there is a derivation of z from w

represented by w =>* z. The language generated by G, when G is the grammar,

is the language L(G) ={wET*: S =>* w}. If wE L(G), then the sequence

S => w1 => w2 => ··· => Wn => w is the derivation of the sentence w. The strings

S, w11 w2,• , Wn, which contain variables as well as terminals, are called

sentential forms of the derivation.

Example (1.2.2.1):

Consider the grammar G = ({s}, {a, b},S, P) with P given by

s~aA

A ~bs

Then S =? aA =? abS =? abaA =? ababS =? abab

So we can write S =?* abab

The string abab is a sentence in the language generated by G, while ababS is a

sentential form. It is easy to deduce that L(G) = {(ab)n : n 2: o}, we will prove

that by induction. Notice that the rule S ~ abs is repeated so we first show

that all sentential forms must have the form wi = (ab)iS.

Suppose that wi = (ab)iS hold for sentential forms wi of length 2i + 1 or less.

We have to prove this for i + 1. By applying the productions S ~ aA, A ~ bS to

get that (ab)i S => (ab)i+ls so that every sentential form of length 2i + 3 is also

13

CHAPTER2

FINITE AUTOMATA

2.1 Finite state systems

Finite automaton is the simplest model of computation. It is a mathematical

model that consists of discrete outputs, discrete inputs and states.

It summ~rizes information concerning past inputs which need to determine the

manner of the system on subsequent input. For example:

Theoretically, a computer and human brain can be viewed as finite state

systems when in the computer the state of the system is a central processor,

main memory, and auxiliary storage at any time is one of a very large but finite

number of states, one cannot extend the memory indefinitely. And in human

brain the states will be the cells which are evaluated as 235 . Also finite state

automaton is the simplest model of working of a computer program and used to

model processes which involve the determination of whether a particular string

is acceptable for specific purpose. In this chapter we discuss finite automata

based on (Linz, P. (2006) & Martin, J. C. (2003)).

17

~·
w

i
I
~ Definition (2.1.1):
~
il'
~.

~-'
k ,, Finite automata or finite state automata (FA) are composed of a finite number of

states and transitions between those states that occur on input symbols chosen

from an alphabet L· For the same input symbol there may be 0,1 or more

transition from each state. The automaton starts at a state called initial state or

start state, and some states are as final states or designated as accepting states.

If there is exactly one transition from each state for each input symbol then the

FA is said to be Deterministic finite automaton (DFA), otherwise the FA is called

a nondeterministic finite automaton (NFA).

A finite a_utomaton is a function from _L* into {Yes, No} in the following way:

Given a string with the first symbol k the first value of 8(q0 , k) = q1 is estimated

then continued until we come up to the final state. If the final estimation of 8

leads to accepting state then the string is accepted by the automaton, the .

automaton having returned a value of yes. If the final estimation of 8 does not

lead to accepting state, the string is rejected, the automaton, having returned a

value of No.

To describe the mathematical theories of finite automata it must be done in a

manner devoid without linking it to any specific applications.

The following figure depicts a finite automaton called M1 :

18

Figure 8 Diagram to a finite automaton called M1

Observe that M1 has three states, labeled q11 q2 , and q3 which as vertices of the

graph where:

q1 called the start state which indicated by the arrow labeled "start".

There is one accept state is q2 which indicated by double circle.

The arrows in the diagram represent to move from any state to another

called transitions.

Where o is given by

o(qvO) = ql,

o(q2 , O) = q3 ,

o(qv 1) = qz

o(qz, 1) = qz

Assume, this automaton receive an inputs string such as 1011 to get the

outputs either accept or reject will consider only this yesjno type of output.

Processing begin in M1's start state when it receives symbols of the input

string and one after other from left to right. After reading every symbol

M1 moves from one state to other, at read the last state M1 produces its output.

19

These outputs are accept if M1 in accept state when read the }ast symbol of

inputs, and are reject if it is not.

For example when input the string 1011 to automaton M1 which represents

the above diagram, the processing proceeds as follows.

1. Start in state q1 .

2. Read 1, 8(q11 1) = qz.

3. Read 0, 8(q2 , 0) = q3.

4. Read 1, o(q3, 1) = qz.

5. Read 1, 8(q2 , 1) = qz.

6. Accept because N1 in an accept state q2 at the end of the input.

When testing a large number of strings on this machine can be deduced the

following:

All the strings which end with 1,11,01,111101,01101010101, its outputs

accept.

All the strings which end with even number of zeros after 1 such as 100,

1000000, its outputs accept.

All the strings which end with odd number of zeros such as 01000 its

outputs reject.

2.2 Deterministic finite automata (DFA)

Deterministic finite automaton (DFA), is a model of with a finite amount of

memory since when an input enters and v then read, the DFA decides if the

input is accepted or rejected. There is a uniquely way to determine the next

20

state by the current state and the current input, in a DFA. For example the M1

described before is a DFA.

A deterministic finite accepter or DFA is mathematically defined by 5-tuple

(Q,:E, q0 ,A, 8) where

Q is a finite set of internal states.

Lis a finite alphabet of input symbols.

q0 E Qis the start state or initial state.

A ~ Q is a set of accepting states

8 is a function from Q x L to Q which is the transition function.

Example (2.2.1):

We can describe M1 described earlier formally by writing M1 = (Q, :E, q0 , A, 8)

where

• I ={0,1}

• 8 is called transition function and is given by the following table:

0 1

ql ql qz

qz q3 qz
q3 qz qz

• q1 is the start state

• A = {qz}.

If all strings that machine M accepts in the set denoted by F then F is the

language of machine M written as L(M) = F. we say that M recognizes F or that

21

M accepts A. A machine always recognizes only one language and many strings

may be accepted by a machine. The empty language 0 is a language which is

~· t recognized by a machine when that machine accepts no strings.

For example (2.2.1), let

F = {w: w consists at least 1 and even number of Os follow the last 1}

Then L(M1) = F, or equivalently, M1 recognizes A, where A = {q2}.

The transition function o: Q x L ~ Q can be extended to o* which is defined as

o*: Q X 2:* ~ Q when 't/ q E Q, o*(q,>-..) = q and 't/ q E Q, y E l:*and a E

2: o*(q,ya) = o(o*(q,y), a). For example if we have a finite automaton called

M2 as in Figure 9, then

Figure 9 Diagram to a finite automaton is called M2

to calculate o*(L, 0001):

o*(L, ooo1) = o(o*(L, ooo), 1)

= o(o(o*(L, oo), o),1)

= o(o(o(o*(L, o),o), o),1)

= o(o(o(o*(L,>- O),O), o),1)

= o(o(o(o(o*(L,>-),o),o),o),1)

= o(o(o(o(L,o),o),o),1)

22

= 8(8(8(T,0),0),1)

= 8(8(K, 0), 1)

= 8(K,1) = w

Since DFA will process every string in 2::* and either is accepted or is not

accepted by M = (Q, 2:, q0 , A, 8) and so in general the language accepted by M

can be defined using extended function as

L(M) = {w E 2::*: 8*(q0 , w) E A}

Therefore the complement of L(M) will be all strings nor accepted by DFA M

and is defined as

L(M) ={wE 2::*: 8*(q0 , w) fl. A}

Example (2.2.2):

To design a DFA, the language recognized by the automaton being L = {bna: n;:::::

0}. For the given language L = {bna: n ;::: 0}, the strings could be

a, ba, b2a, b3a, , so the DFA accepts all strings consisting of an arbitrary

number of b's, followed by a single a, so that the DFA will be as in Figure 10.

Figure 10 DFA that accepts the language L = {bna: n;::: 0}

Example (2.2.3):

Given 2: ={a, b}, to construct a DFA that shall recognize the language

23

The Given language L = {an bam: n, m > 0} represents all strings with exactly

one b which is neither the first not last letter of the string. This means there is

one or more a's before or after a. The DFA is as in Figure11.

a a

Figure 11 A DFA to recognize the language L = {anbam:n, m > 0}

Here the DFA M = (Q, 1:, q0, A, 8) with, Q = {q0 , q11 q2, q3 , q4}, L = {a, b }; q0 is

initial state and A = { q3 } final state when 8 is defined as per the language

L = { q4 is dead state}.

Example (2.2.4):

To obtain the state table diagram and state transition diagram of the DFA

M2 = (Q,L,q0,A,o)whereQ = {q0,q1,q2,q3,q4 }, 1: ={a,b}and A= {q0}with

transition defined by

8(qo,b) = q2,8(q3,b) = q1,8(q2,a) = q3,8(ql,b) = q3,8(qo,a) = ql,

8(q3,a) = q2,8(qz,b) = qo,8(qva) = qo.

24

