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PELANTAR SELARI UNTUK SIFER ALIRAN SELAMAT YANG BARU 

BERASASKAN PERMASALAHAN NP-HARD  

 

ABSTRAK 

 

 

 

Tujuan kajian ini adalah untuk mengenal pasti unsur-unsur utama reka bentuk 

sifer aliran yang selamat dan pantas. Dalam bidang kriptografi, sifer aliran ialah 

algoritma kekunci simetri yang direka untuk menyulitkan dan menyahsulitkan data-data 

sulit. Penyulitan dan penyahsulitan sejumlah besar data-data ini memerlukan reka bentuk 

alternatif sifer aliran yang menjanjikan tahap keselamatan dan kepantasan yang lebih 

tinggi bagi penyulitan data. 

 

 Kedua-dua masalah NP-hard dan keselarian digunakan dalam kajian ini. 

Masalah-masalah NP-hard digunakan untuk memberi tahap keselamatan tinggi pada 

sifer aliran memandangkan ketiadaan algoritma untuk menyelesaikan masalah tersebut 

dalam sistem polinomial. Konsep keselarian diperkenalkan sebagai platform bagi sifer 

aliran berdasarkan masalah NP-hard. Platform selari ini direka bentuk bagi 

membolehkan sifer aliran ini berfungsi lebih pantas di atas pemproses berbilang teras 

(multicore processor). 

 

 Integrasi antara sifer aliran berdasarkan masalah NP-hard dengan platform selari 

merupakan faktor utama dalam penghasilan sifer aliran yang selamat dan pantas. 

Analisis keselamatan dan statistik menunjukkan bahawa sifer aliran berdasarkan 

masalah NP-hard kami adalah selamat daripada serangan-serangan cryptanalysis dan 

statistik. Analisis prestasi ke atas platform selari menunjukkan keputusan mengagumkan 
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bagi sifer aliran yang diuji, di mana platform selari tersebut dapat mempercepatkan 

kadar enkripsi lebih kurang 1.8 dan 3.75 kali, masing-masing pada pemproses dwi-teras 

dan empat-teras. Platform tersebut didapati cekap menggunakan pemproses berbilang 

teras di mana ia mampu meningkatkan prestasi sifer aliran yang diuji selaras dengan 

peningkatan bilangan teras dalam pemproses berbilang teras. 

 

 Kajian ini memperkenalkan reka bentuk praktikal (bagi sifer aliran dan platform 

selari) yang berskala menggunakan pemproses berbilang teras.  Masa depan platform 

selari ini adalah cerah memandangkan bilangan teras dalam pemproses berbilang teras 

meningkat secara eksponen. Justeru, bilangan teras yang meningkat ini akan memacu 

prestasi sifer aliran berasaskan permasalahan NP-hard terpalam. 
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PARALLEL PLATFROM FOR NEW SECURE STREAM CIPHERS BASED ON 

NP-HARD PROBLEMS  

 

ABSTRACT 

 

 

 

The purpose of this study was to identify the key elements for secure and fast 

stream cipher’s design. In cryptography, stream cipher is a symmetric key algorithm, 

which is designed to encrypt and decrypt stream of confidential data. Encrypting and 

decrypting massive amount of data, necessitates alternative design for stream cipher, 

which compromises high level of security and fast data encryption. 

 

Both NP-hard problems and parallelism were utilized in this study. The NP-hard 

problems were used to provide stream ciphers with high level of security, since there is 

no algorithm exists to solve NP-hard problems in polynomial time. Parallelism was 

introduced as a platform for stream ciphers based on NP-hard problems. The parallel 

platform was designed to enable stream ciphers based on NP-hard problems to perform 

faster on multi-core processors. 

 

The integration between the stream ciphers based on NP-hard problems and the 

parallel platform was the primary factor in producing secure and fast stream ciphers. The 

security and statistical analysis showed that our NP-hard problem-based stream ciphers 

are secure against cryptanalysis and statistical attacks. The performance analysis on the 

parallel platform revealed impressive results for the tested stream ciphers, where the 

parallel platform accelerated the encryption rate by approximately 1.8 and 3.75 times on 

Dual-core and Quad-core processors respectively. The platform was found efficient in 
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utilizing multi-core processors, in which it was able to speed up the performance of the 

tested stream ciphers relatively to the increasing number of cores, on multi-core 

processors. 

 

This study has introduced a practical design (stream cipher and parallel 

platform), which was scalable in utilizing multi-core processors. The future of the 

parallel platform is promising, since the number of cores in multi-core processors is 

increasing exponentially. Thus, the increasing number of cores will effectively 

accelerate the performance of plugged-in NP-hard problem-based stream ciphers. 
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CHAPTER ONE 
 

INTRODUCTION 
 

 

 

 

 

1.0   Introduction to Cryptography 

Cryptography is the fundamental component for any computer security 

application used to provide cryptographic services for secure communication over 

public and unsecured channels. Cryptography focuses on issues of securing messages 

so that only the relevant parties can read the message (Mollin, 2007). The main 

purpose of cryptography is to encode the data (plaintext) to unreadable form 

(ciphertext) and vice versa. Transforming a message to an incomprehensive form is 

accomplished by a process known as encryption. In contrast, transforming an 

encrypted message to its original form is accomplished by a process known as 

decryption.   

 
The use of cryptography was important through the centuries, in which 

cryptographic applications were used for civilian usage (companies, individuals, etc), 

or even were used in military operations as in World War I (e.g. cipher wheels or 

marks on papers) and World War II (e.g. Purple machine and Enigma) (Kahn, 1967). 

Cryptography is generally designed to provide confidentiality, authentication, 

integrity and accessibility services (Menezes, et al., 1993; Mouratidis, et al., 2003). 

Confidentiality service is used to ensure that messages are accessible only to 

authorized recipients. Authentication is normally used to authenticate the identity of 

the connected parties. Preventing eavesdroppers from changing the content of the 

messages sent from source to destination is basically a service provided by the 
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integrity service. Lastly, accessibility is designed to only allow authorized parties to 

use the available information resources.  

 
In modern times, cryptographic systems (cryptosystems) have been used 

extensively in our daily communications to provide us with high level of security. In 

practice, cryptography is applied in numerous applications such as: internet 

communication, wireless communication (mobile phones) and banking transactions. 

The development of the cryptographic tools and systems has played an important 

role in re-shaping the communication style in a significant manner. 

 
Based on the cryptography taxonomy found in (Kahn, 1967; Feistel, 1970; 

Beutelspacher, 1996), cryptography and cryptanalysis are combined together to form 

the science of Cryptology. The sciences of Cryptology and its cryptographic 

primitives are categorized in Figure 1.1. 

 

Cryptology 

Cryptography Cryptanalysis 

Encryption  Authentication Active 
Attack 

Passive 
Attack 

Public Key Digital Signature 

Hash Function Certificates 

Symmetric Asymmetric 

Stream Cipher Block Cipher 

Figure 1.1: Taxonomy of Cryptology 
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Cryptography, as shown in Figure 1.1, deals with two categories of 

cryptosystems. The first category includes encryption algorithms which are classified 

into two further sub-categories: symmetric and asymmetric cryptosystems. The other 

category includes authentication algorithms which are classified into two main 

categories: hash functions and certificates authentication. In this research, we are 

focusing only on the stream cipher which falls under the encryption category of 

cryptography. 

 
 In principle, symmetric and asymmetric cryptosystems share the same design 

goal, in which both cryptosystems are responsible for encrypting and decrypting 

user’s messages. The main difference between these cryptosystems is the use of 

additional key in asymmetric cryptosystems. Symmetric key cryptosystems use a 

single key to encrypt and decrypt a given message.  On the contrary, asymmetric key 

cryptosystems (also known as public-key cryptosystems), use two different keys to 

encrypt and decrypt a message. 

  
In stream ciphers, a sequence of random bits is generated and used as a 

keystream which will never be used again during the run of the cipher. In general, 

stream ciphers are faster than block ciphers, making them suitable to be used in a 

resource-constrained environment (Karlof, et al., 2004). The basic idea of stream 

ciphers is inherited from the theoretical encryption algorithm called a One-Time Pad, 

in which a plaintext is XORed with a key of the same length as the plaintext 

(Daswani, 2007). The general structure of stream ciphers is shown in Figure 1.2. 

Some of the classical ciphers are:  Affine cipher, Vigenère Autokey Polyalphabetic 

cipher and Playfair cipher (Bishop, 2003; Stallings, 2006). 
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The essential motivation of using stream ciphers, instead of block ciphers, is 

the ability of stream ciphers to perform faster in environment where computational 

power and memory capacity are limited (Karlof, et al., 2004). However, current 

technologies tend to overcome the limitation problems (such as performance and 

computational power) by presenting new multi-core processors which can improve 

the performance of the running systems.  

 

 

1.1   NP-Hard Problems and  Parallelism 

NP-hard problems are complex mathematical problems with no algorithm to 

solve them in polynomial time is exist. NP-hard problems are well known in the field 

of cryptography since they proved to provide cryptosystems with high security.  The 

use of NP-hard problems was efficient in different symmetric key cryptosystems, key 

exchange protocols, digital signature algorithms, and many others. However, the 

problem associated with NP-hard problems is the intensive number of calculations 

required during the run of the algorithm. Therefore, parallelism is introduced to fill 

ki 
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Ci Pi 
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Figure 1.2: Stream cipher 
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up the gap between the intensive calculations of NP-hard problems and their 

performance by utilizing the existence of multi-core processors. 

 
High performance computing is increasingly in demand especially in several 

scientific and commercial applications. The need for secure and high performance 

communication has become an important ingredient in our daily life. Achieving 

higher performance is feasible by utilizing more computer resources, where several 

jobs are accomplished simultaneously and therefore completed in shorter time. 

Parallel processing is described as the concurrent use of multiple processing 

resources (e.g. multiple CPUs) to solve a computational problem, where a given 

problem is broken into smaller segments and solved concurrently using multiple 

processors. Technically, the achievement of higher performance depends on two 

essential factors: faster hardware devices and processing techniques (Briggs, 1986). 

Several researches were conducted to improve the hardware architecture and 

software techniques in order to achieve higher performance. 

 
Under the processing techniques factor, multithreading technique was 

introduced in 1960s (SunSoft, 2002) to enhance the performance of applications by 

running them in parallel on the available resources. Multithreading technique aims to 

create a virtual multiprocessors environment and use this environment to run 

multiple tasks on single processor. From other perspective, the recent hardware 

revolution has played a significant role in improving systems performance through 

the multi-core technology. Multi-core is a technology where a single physical 

processor contains the logical core of more than one processor as shown in Figure 

1.3. The main goal of this technology is to enable the multi-core processor to run 
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multiple tasks concurrently in order to achieve higher performance compared to 

single-core processors.  

 

 

Applying parallel techniques in cryptography has become essential for higher 

throughput and improved performance, especially with the current available 

resources. Therefore, in this study we are utilizing the new multi-core technology 

with the multithreading techniques to speed up the encryption process in stream 

ciphers, in order to provide secured and better performance cryptosystems. 

 

 

1.2   Research Problem 

This study is conducted due to the importance of stream ciphers in securing 

information, which is considered as the most strategic resources. The state-of-art of 

stream ciphers is found lack of a comprehensive literature review that analyzes the 

constructional design of existing stream ciphers.  Therefore, the exploration and 

analysis of existing stream ciphers resulted in addressing   two problems, which are: 

the security and the design properties.  
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Figure 1.3:  Quad-core processor 
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The massive numbers of existing stream ciphers are found vulnerable 

(security-breakable) to cryptanalysis attacks due to the weaknesses of their 

keystream generator. From the other perspective, the constructional design of these 

stream ciphers is found sequential. Therefore, these stream ciphers do not allow 

parallelism and not able to take full advantage of parallel computer architecture 

which is ready and available in markets. 

As a summary, identifying the problems associated with existing stream 

ciphers is crucial to determine the efficient solutions. However, solving the security 

issue require applying complex and hard mathematical problems (i.e. NP-hard 

problems) at the keystream generator level to increase its resistance against 

cryptanalysis attacks.  The use of NP-hard problems in stream ciphers is promising 

since there is no algorithm to solve these problems in polynomial time. On the other 

hand, re-constructing the design of stream ciphers is possible by identifying the 

independent components of their internal design. By doing that, stream ciphers will 

be able to utilize multi-core processors to enhance their performance, and then 

deliver the security community with highly secure and fast stream ciphers. 

 

    

1.3   Research Scope 

Stream ciphers are found lack of several security and statistical attributes, 

making them subjected to cryptanalysis attacks. The scope of this thesis is presented 

in introducing alternative stream ciphers based on the following NP-hard problems: 

• Elliptic Curve Discrete Logarithm Problem (ECDLP). 

• Discrete Logarithm Problem (DLP). 



8 
 

• Shortest Vector Problem in Lattice (SVP). 

 
This research aims to use NP-hard problems in stream cipher cryptosystems, 

with the focus on the three NP-hard problems mentioned above. Security and 

performance analysis and assessment on the proposed stream ciphers and the parallel 

platform are also carried out to ensure their practicality. 

 
The limitation of this research is associated with the choice of the highly 

studied NP-hard problems (ECDLP, DLP and SVP) for the proposed stream ciphers. 

In fact, there are several other NP-hard problems which are not well studied and 

therefore such problems need to be studied first before they can be used in 

cryptography. 

 

 

1.4   Research Goal and Objectives 

The main goal of the research is to overcome the security and design 

problems (as addressed in Section 1.2), by utilizing both NP-hard problems and 

parallelism on multi-core processors. The general objectives of this research are 

listed as follows: 

• Propose alternative methods of generating sequences of keystream in stream 

ciphers based on: 

o Elliptic curve discrete logarithm problem represented by point 

multiplication over selected elliptic curve. 

o Discrete logarithm problem represented by polynomial 

representations using polynomial arithmetic. 
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o Shortest vector problem in lattice spaces represented by Low-

Hamming weigh polynomials. 

• Propose new parallel platform for stream ciphers based on NP-hard problems 

with proper design specifications. 

• Perform intensive security and performance for the proposed stream ciphers 

and the parallel platform. 

 

 

1.5   Research Contributions 

This thesis provides a comprehensive review of stream ciphers which assist 

the development process of new stream ciphers. This thesis also present a secure and 

fast stream ciphers that has great impact on the field of information security. The 

main contributions of this research are summarized as follows: 

1. Developing new highly secure stream ciphers based on NP-hard problems for 

cryptographic applications. 

2. Presenting new research direction for parallel stream ciphers through the 

utilization of multi-core technologies. 

3. Presenting new constructional design for stream ciphers capable to work on 

parallel environments. 

4. Designing new parallel platform to accelerate the performance of secure 

stream ciphers. 
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1.6   Research Methodology 

Stream ciphers are classified into two main categories: software and hardware 

based stream ciphers. These stream ciphers rely on several software and hardware 

techniques to achieve better security. In our research, we found that many of the 

subcategories, under the main two categories, suffer from some security 

vulnerabilities (such as cryptanalysis attacks and statistical biased), and sequential 

structure. Therefore, this study aims to use NP-hard problems (new subcategory 

under the software-based category) to achieve optimum level of security. 

  Achieving the research objectives is accomplished in two phases. The two 

phases are as follows: 

• Stream Cipher Implementation Phase: the design of the proposed stream 

ciphers is divided into three stages: Initialization stage, Keystream 

Generation stage and Encryption stage. Dividing the structure of the stream 

ciphers into stages has enabled stream cipher to work in parallel, therefore 

transforming the sequential structure of existing stream cipher into new 

parallelizable structure. The employment of NP-hard problems will be 

targeted to the second stage of the design. Accordingly, generating infinite 

new keystream depends on infinite number of iterations during the run of the 

stream cipher. The iteration rests on a counter created for incremental 

operation on the initial value of the input key obtained from the initial stage. 

Finally, the obtained keystream is used to encrypt a stream of plaintext bits 

and generate a stream of enciphered bits. The general design of the proposed 

stream ciphers is shown in Figure 1.4. 
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• Platform Implementation Phase: the platform consists of several components 

and special designed detector and controllers. It is divided into five main 

components: Generator Selector, Parameter Extractor, Keystream Generator, 

Keystream-size Controller and Plaintext Encoder. These components are 

designed to work best with the stream ciphers obtained from the previous 

stage. The main goal of this platform is to enable stream ciphers generating 

multiple keystream concurrently and independently from each other.  

 
Evaluating the two phases (stream ciphers implementation phase and platform 

implementation phase) is an important step in our research. The first phase is 

evaluated by verifying the reliability of our stream ciphers security against 

cryptanalysis attacks, and examining the statistical attributes of the generated 

keystream. On the other hand, the evaluation of the platform includes extensive 

performance tests on different multi-core processors. In addition, the platform is also 

verified statistically; by re-verifying the statistical properties of the generated 

keystream by the attached stream ciphers to the parallel platform. Figure 1.5 shows 

the workflow of the main components carried out in this research. 
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Encryption 
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Figure 1.4:  Proposed stream cipher design 
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1.7   Thesis Organization 

The work conducted in this thesis is presented in five chapters with 

appendices. The first chapter provides an introduction to the work by introducing a 

brief introduction to cryptography and its related concepts. In addition, a brief 

introduction to our work is also conducted here (Chapter 1). The reminder of the 

thesis is organized as follows. 

NP-hard 

Problems 
Stream 

Ciphers 

ECDL

DLP SVP 

NP-hard Based Stream Ciphers 

Parallel Platform  

Parallel Platform 

Multi-Core Processor 

Security & 
Statistical 
Analysis  

Performance 
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Figure 1.5:  Research workflow 
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Chapter 2: In this chapter, we discuss the important concepts of stream 

ciphers and their classifications. The use of the mathematical NP-hard problems and 

parallelism in cryptographic systems is also discussed.  

 
Chapter 3: A complete description of the proposed methodology is included 

in this chapter. The chapter is divided into two sections. In Section 3.1, we discuss 

the stream ciphers design and specifications. The design and the implementation of 

the parallel platform components are described in Section 3.2. 

 
Chapter 4: This chapter presents the security and performance analysis of 

both stream ciphers and parallel platform. The security analysis is conducted from 

two perspectives: cryptanalysis attacks and statistical analysis, to show the security 

level provided in the proposed ciphers. The performance evaluation aims to show the 

efficiency of the platform in terms of the ability of delivering stream ciphers with 

higher performance. 

 
Chapter 5: Finally, we conclude our work and illustrate the possible future 

works for this study. 
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CHAPTER TWO 
 

STREAM CIPHERS AND PARALLELISM 
 

 

 

 
 

2.0 Introduction 

 Cryptographic systems are designed to provide digital transmitted data with 

security attributes over un-secured communication channels. Figure 2.1 sheds light 

on the main components of a conventional cryptosystem model to understand the 

environment that cryptographers are dealing with.  

 

 

 

This chapter will study the encryption component of the cryptosystem model 

as appears in Figure 2.1. The study will focus on one type of symmetric key 

algorithms called stream ciphers. The rest of this chapter will discuss the important 

Decryption Encryption Sender Receiver 

Cryptanalyst 

Secure Channel 

Key 
Source 

Y X X 

K 

X* K* 

Figure 2.1: Model of conventional cryptosystem (Stalling, 2003) 
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concepts of stream ciphers in terms of their design and mechanisms (Section 2.1). In 

Section 2.2, we survey the existing stream ciphers and classify them into categories 

based on the similarity between these stream ciphers. Stream ciphers are found 

somehow lack some of security attributes, making them subject to cryptanalysis 

attacks. 

 
It is obvious that sending the message X from the sender to the receiver is not 

simple due to the obstacles that might threaten the security (e.g. integrity, 

authenticity, confidentiality, etc) of the message. However, cryptosystems rely on 

some cryptographic primitives (e.g. Encryption, Digital Signatures, Certificates, etc) 

to provide the message with the required level of security. Cryptanalyst will 

sometimes be able to attack the encrypted message Y to remove the disguise and 

recover the message X using several cryptanalysis attacks. These attacks are 

basically generating a message estimate X* and a key estimate K* to recover either 

message X or key K, or even both. 

  
 The definition of the mathematical concepts related to NP-hard problems, as 

well as survey the existing cryptosystems based on NP-hard problems are discussed 

in Section 2.3. The use of complex mathematical problems is considered costly in 

terms of computation. The use of such problems will require the keystream generator 

to perform intensive calculations to generate the sequence of keystreams. One way to 

overcome this limitation is by applying parallelism to improve the performance of 

stream ciphers based on NP-hard problems. Hence, parallel techniques and their 

usage in cryptographic applications are discussed in Section 2.4 and 2.5 respectively.  

Finally, section 2.6 will summarize the important results obtained from the above 

analyzed survey. 
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2.1 Stream Ciphers: Concept and Definition 

 
Cryptographic systems are divided into two types of systems: Secret-key 

(Symmetric) or Public-key (Asymmetric) cryptosystems. In the later systems, the 

sender uses public information of the receiver to send a message to the receiver. The 

receiver then uses his private information to recover the original message. In secret-

key cryptosystems, both the sender and receiver have previously set up secret 

information in which they use this information for encryption and decryption. 

Further division of symmetric cryptosystems is the block ciphers and stream ciphers. 

Rueppel states: “Block ciphers operate with a fixed transformation on large blocks of 

plaintext data; stream ciphers operate with a time-varying transformation on 

individual plaintext digit” as quoted in (Robshaw, 1995). 

 

Definition (Encryption): Let 1 2, ,..., nk k k K∈ be a set of keystream in the key space 

K, 1 2, ,..., nm m m M∈ be a set of plaintext in the plaintext space M, and 

 
be a set of ciphertext in the ciphertext space C. The encrypted 

ciphertext is generated by: 

( ) 1 2, ,...,
ik i nE m c c c C= ∈         :1i i n∀ ≤ ≤  

From the above definition, the encryption process of a stream cipher kE is 

bijective for every ik . The plaintext space and key space are typically represented in 

bit or byte representations. Most importantly, keeping the key k  is essential for the 

security of stream ciphers. 

 
The idea of stream ciphers was inspired from the famous cipher called the 

One-time Pad (also called the Vernam cipher) (Mollin, 2007; Delfs, 2002). This 

1 2, ,..., nc c c C∈

(2.1) 
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cipher is based on XOR’ing ( ⊕ ) the message bits and the key bits. The One-time 

pad is defined by Delfs (2000) as in Equation 2.2: 

 
:{0,1} {0,1} {0,1}, ( , )E m k m k× → → ⊕

 

 

where plaintext, keystream and ciphertext bits are in the space {0, 1}. The encryption 

transformation is given by: 

 

( )
ik i i i iE m m k c C= ⊕ = ∈

 

 
and the decryption transformation is given by: 

 

( )
ik i i i iD c c k m M= ⊕ = ∈  

 
In One-time pad cipher, a truly random key is generated and securely 

transmitted to the receiver. The length of the key is the same as the length of the 

transmitted message. On the other hand, most stream ciphers other than One-time 

pad depend on the use of pseudorandom number generator (PRNG) instead of 

generating truly random key. Pseudorandom number generator generates key 

sequence (known also as keystream) that approximate the random numbers 

properties (Viega, 2003). 

  
Generally, stream cipher uses n-iterations to generate n-successive keystream 

based on the stream cipher internal state. The mechanisms used in updating the 

internal state provide us with the classification of stream ciphers: Synchronous and 

Asynchronous stream ciphers. The two types of the stream ciphers are discussed in 

Sections 2.1.1 and 2.1.2 respectively. 

 

(2.2) 

(2.3) 

(2.4) 



18 
 

2.1.1 Synchronous Stream Ciphers 

 A stream cipher is said to be synchronous if the next internal state used for 

generating new keystream is defined independently and without the use of either the 

plaintext or the ciphertext generated from the previous iteration as shown in Figure 

2.2. 

 

 

 

 

The encryption process of a synchronous stream cipher is best described by 

the following equations: 

 

( )1 , ,i iNS K+∂ = ∂  

( ), ,
is ik KG K= ∂  

( ),
ii s ic EN k m=  

 
where 0∂ is the initial state determined by the input key K, NS is the next-state 

function, KG is the keystream generation function which generates sk , and EN is the 
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Figure 2.2: Synchronous stream cipher (Mollin, 2007) 
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output function which generates the ciphered text ic by combining both the plaintext 

im and the keystream 
isk .  

 
 The properties of synchronous stream ciphers are summarized in the 

following points: 

• Synchronization requirements: both of the sender and receiver must use the 

same secret key and operating at the same position within that secret key for 

proper decryption. This mechanism will ensure the synchronization between 

the connected parties during the transmission process. The loss of 

synchronization due to some modification on the ciphertext being transmitted 

will fail the decryption process. In such case, a re-synchronization process 

such as re-initialization or placing special marks at regular intervals in the 

ciphertext is required. 

• Error propagation: In synchronous stream ciphers, errors in ciphertext 

symbols (digits or characters) during transmission do not propagate and affect 

the decryption of other ciphertext symbols. 

• Active attack: Any modification (insertion, deletion) or replay of ciphertext 

symbols by an eavesdropper causes loss of synchronization, which allows the 

receiver (decrypter) to detect the modification.   

 

 

2.1.2 Asynchronous Stream Ciphers (self-synchronous) 

 Unlike synchronous stream ciphers, self-synchronous stream ciphers generate 

keystreams as a function of the key k and a fixed number of previous ciphertext 
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symbols (Stallings, 2006). In other words, self-synchronous ciphers utilize plaintext 

in the process of generating a new keystream as shown in Figure 2.3. 

 

 

 

The encryption function of a self-synchronous stream cipher is best described 

by the following equations: 

 

( )1 1, ,..., ,i i t i t ic c c− − + −∂ =  

( ), ,
is ik KG K= ∂  

( ),
ii s ic EN k m=  

where 0∂ is the initial state, K is the input key, KG is the keystream generation 

function which produces sk , and EN is the encryption function which combine both 

of the keystream and plaintext im to produce the ciphertext ic . 

 In this type of ciphers and unlike synchronous ciphers, the selection of the 

key may raise problem since any statistical regularities in the plaintext will show up 
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Figure 2.3: Asynchronous stream cipher 
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in the key (Bishop, 2003). Self-synchronous stream ciphers have the following 

properties (Mollin, 2005): 

• Synchronization requirements: the decryption process in self-synchronous 

stream ciphers basically depends on a fixed number N of preceding ciphertext 

digits. Hence if modifications have been made on ciphertext digits during 

transmission, self-synchronization will take place. 

• Error propagation: self-synchronous ciphers are subjected to error 

propagation due to the dependency of the keystream generation’s internal 

state on the previous ciphertext digits of length N. When modifications on 

ciphertext occur during transmission, decryption of up to r subsequent 

ciphertext symbols may be incorrect, after which correct decryption resumes.  

• Active attacks: any modification of ciphertext digits by an eavesdropper 

causes multiple ciphertext symbols to be encrypted incorrectly. According to 

Stallings (2003), detecting the modification in self-synchronous stream 

ciphers is more difficult than in synchronous stream ciphers.  

During the process of designing a stream cipher, the cryptographer has to satisfy the 

following requirements (Lee, et al., 2002): 

• Error Propagation: minimum number of redundant bits during the encryption 

and decryption process. 

• Redundant Information: minimum number of redundant bits during the 

information insertion. 

• Cryptographic Security: the length of the secret key should be long enough to 

avoid exhaustive key search attack. 
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•  Implementation Simplicity: the design of the stream cipher should be 

suitable for both hardware and software implementations. 

• Performance Speed: the stream cipher should be performable at minimum 

speed of 1.544 Mbps. 

 

 

2.2 Stream Ciphers: Categorization and Related Works 

In contrast to block ciphers, stream ciphers have no standard model for their 

construction design, which leads cryptographers to construct various models of 

stream ciphers. The basic structures often found in stream ciphers may include 

LFSR-based cipher (Linear-Feedback Shift Register), NLFSR-based cipher (Non-

Linear Feedback Shift Registers), Block cipher-based stream cipher, T-function-

based ciphers and other structures. However, this study classifies stream ciphers into 

categories whereby each category includes stream ciphers that share specific 

properties. Figure 2.4 shows the classification of different stream cipher algorithms 

as appears in the literature. Note that the classification is based on how keystream 

generators operate in generating the keystream. 

 
In our classification, stream ciphers are divided into two main categories: 

Hardware-based and Software-based stream ciphers. The classification aims to look 

at stream ciphers from the implementation perspectives in which we found that they 

fall into two categories (hardware-implementation and software-implementation 

stream ciphers). The third level on the hierarchy of the classification includes deeper 

categorization based on hardware or software related issues. The in-depth 

classification of hardware-based stream ciphers includes: FCSR/NLFSR-based and 
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clock control and LFSR based stream ciphers. On the other hand, the software-based 

stream cipher category includes: T-Function-based stream ciphers, Block cipher-

based stream ciphers, NP-hard problem-based stream ciphers (our proposed direction 

of stream ciphers) and other alternatives that do not fit into the previous categories. 
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