

PARALLEL PLATFORM FOR NEW SECURE STREAM

CIPHERS BASED ON NP-HARD PROBLEMS

KHALED MOHAMMAD A. SUWAIS

UNIVERSITI SAINS MALAYSIA

2009

PARALLEL PLATFORM FOR NEW SECURE STREAM

CIPHERS BASED ON NP-HARD PROBLEMS

by

KHALED MOHAMMAD A. SUWAIS

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

JUNE 2009

ii

ACKNOWLEDGMENT

During my work on this thesis, there were many people who sincerely guided and

supported me. I would like to take this opportunity to express my gratitude to all of them,

for giving me the opportunity to complete this thesis.

I am deeply indebted to my supervisor, Associated Professor Azman Samsudin,

for his guidance during my research at School of Computer Sciences, Universiti Sains

Malaysia (USM). He was always accessible and enthusiastic in research. His

enthusiasm motivated me, and made my research life became smooth and rewording.

I want to express my gratitude to School of Computer Sciences, Universiti Sains

Malaysia and the general office staff, for supporting this study financially and morally.

I would like to take this opportunity to thank my beloved parents, Mohammad

and Ilham. Their unlimited support and true love had maimed the geographical

distances between us. They stand by me, raised me, supported me, taught me, and love

me. To them I dedicate this thesis.

I would also like to thank my lovely brother Abdul Aziz and my beloved sisters

Dina, Abeer and Haneen for their support and love during my study abroad.

I wish to thank the person who stand by me and shared my happiness and

sadness. The person who supported me and provided me with a caring environment, and

unforgettable moments in Malaysia. Thank you dear Beh Bee Cheng.

iii

I would like to thank Khader Alrawajfih, Nagham Almadi and Mohammad

Almadi, for being my second family in Malaysia. With them, I felt the support and

shared happy and unforgettable moments during my study.

Last but not least, I would like to thank my colleagues, Ibrahim, Hisham, Ali,

Fazila and Hamid, for their support and help. I also want to thank my dearest frinds

Mohammad Wasef, Mohammad Bakkar, Wesam Hatamleh, Mohammad Alia, Muthanna

Albuldawi, Bashar Alashal, Osama Abu-Dayyeh Sarah Shalini, Adnan Hunaif Ahmad

Alzoubi and Mohammad Betar for their care and support.

Khaled M. Suwais

iv

TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION

ACKNOWLEDGMENTS

ii

TABLE OF CONTENTS

iv

LIST OF TABLES

x

LIST OF FIGURES

xi

LIST OF ABBREVIATIONS

xv

ABSTRAK

xviii

ABSTRACT

xx

1.0 Introduction

1

1.1 NP-Hard Problems and Parallelism 5

1.2 Research Problem 7

1.3 Research Scope 8

1.4 Research Goal and Objectives 9

1.5 Research Contributions 9

1.6 Research Methodology 10

1.7 Thesis Organization 13

v

CHAPTER TWO: STREAM CIPHERS AND PARALLELISM

2.0 Introduction

15

2.1 Stream Ciphers: Concept and Definition 17

 2.1.1 Synchronous Stream Ciphers 19

 2.1.2 Asynchronous Stream Ciphers 21

2.2 Stream Ciphers: Categorization and Related Works 23

 2.2.1 Hardware based Stream Ciphers 26

 2.2.2 Software based Stream Ciphers 38

 2.2.3 Hybrid Designs 53

2.3 Non-deterministic Polynomial Time Hard Problem (NP-hard) 58

 2.3.1 Discrete Logarithm Problem (DLP) 62

 2.3.2 Elliptic Curve Discrete Logarithm Problem (ECDLP) 64

 2.3.3 Shortest Vector Problem in Lattice (SVP) 67

 2.3.4 Travelling Salesman Problem (TSP) 68

2.4 Parallelism in Cryptography 70

 2.4.1 Methods for Parallel Computing 71

 2.4.2 Current Parallelism in Cryptography 76

2.5 Summary 78

CHAPTER THREE: NP-HARD BASED STREAM CIPHERS AND PARALLEL

PLATFORM

3.0 Introduction

80

3.1 Stream Ciphers Based on NP-hard Problems

80

 3.1.1 Stream Ciphers Based on Elliptic Curve Discrete Log Problem

(ECSC-128)

81

 3.1.1.1 Problem Definition 81

 3.1.1.2 The Design of ECSC-128 85

 3.1.2 Stream Cipher Based on Discrete Log Problem (DSP-128) 90

 3.1.2.1 Problem Definition 90

vi

 3.1.2.2 The Design of DSP-128 93

 3.1.3 Stream Cipher Based on Shortest Vector Problem in Lattice

(LTSC-128)

98

 3.1.3.1 Problem Definition 98

 3.1.3.2 The Design of LTSC-128 101

3.2 The Design of the Parallel Platform 108

 3.2.1 Generator Selector (GS) 109

 3.2.2 Parameter Extractor (PEx) 110

 3.2.3 Keystream Generator (KG) 111

 3.2.4 Keystream-size Controller (KC) 113

 3.2.5 Plaintext Encoder (PEn) 114

 3.2.6 Detector, Controllers and Inner-Components Communications 116

3.3 Summary 131

CHAPTER FOUR: SECURITY AND PERFORMANCE ANALYSIS

4.0 Introduction

134

4.1 Implementation Issues and Techniques

136

4.2 Stream Ciphers Performance and Security Analysis

139

 4.2.1 Analyzing ECSC-128 Stream Cipher 141

 4.2.1.1 Security Analysis 141

 4.2.1.2 Performance Analysis 146

 4.2.2 Analyzing DSP-128 Stream Cipher 148

 4.2.2.1 Security Analysis 148

 4.2.2.2 Performance Analysis 152

 4.2.3 Analyzing LTSC-128 Stream Cipher 153

 4.2.3.1 Security Analysis 153

 4.2.3.2 Performance Analysis 159

4.3 The Parallel Platform Performance and Security Analysis 161

 4.3.1 The Effect of the Parallel Platform on the Stream Ciphers Security 162

 4.3.2 The Impact of the Parallel Platform on ECSC-128 Stream Cipher 162

vii

 4.3.3 The Impact of the Parallel Platform on DSP-128 Stream Cipher 164

 4.3.4 The Impact of the Parallel Platform on LTSC-128 Stream Cipher 167

4.4 Discussion 169

4.5 Summary 172

CHAPTER FIVE: CONCLUSIONS AND FUTURE WORKS

5.0 Thesis Summary 173

5.1 Future Works 174

REFERENCES 182

APPENDIX A: DIEHARD STATISTICAL TESTS SUITE

A.0 Introduction

193

A.1 Diehard Statistical Tests Description 193

 A.1.1 Birthday Spacing Test 193

 A.1.2 Overlapping 5-Permutation Test 194

 A.1.3 Binary Rank Test for (31×31) Matrices 194

 A.1.4 Binary Rank Test for (32×32) Matrices 195

 A.1.5 Binary Rank Test for (6×8) Matrices 195

 A.1.6 Bitstream Test 196

 A.1.7 DNA Test 196

 A.1.8 OPSO Test 196

 A.1.9 OQSO Test 197

 A.1.10 Count-The-1’s Test on Stream of Bytes 197

viii

 A.1.11 Count-The-1’s Test for Specific Bytes 198

 A.1.12 Parking Lot Test 199

 A.1.13 Minimum Distance Test 199

 A.1.14 3Dspheres Test 200

 A.1.15 Squeeze Test 200

 A.1.16 Overlapping Sums Test 201

 A.1.17 Run Test 201

 A.1.17 Run Test 201

APPENDIX B: ENCRYPTION RATES AND STATISTICAL RESULTS

B.0 Introduction

203

B.1 Encryption Rates of the Proposed Stream ciphers 203

 B.1.1 Encryption Rates of ECSC-128, DSP-128 and LTSC-128 Stream

Ciphers

203

 B.1.2 Encryption Rates of the Parallelized ECSC-128, DSP-128 and

LTSC-128

204

 B.1.3 Effect of Multi-core Processors on Stream Ciphers Encryption

Rates

205

 B.1.4 Effect of Multi-core Processors on the Parallelized Stream Ciphers

Encryption Rates

205

B.2 Results Obtained from Diehard Tests 206

 B.2.1 Diehard Test Results for ECSC-128 Stream Cipher 207

 B.2.2 Diehard Test Results for DSP-128 Stream Cipher 209

 B.2.3 Diehard Test Results for LTSC-128 Stream Cipher 211

ix

APPENDIX C: GMP AND NTL LIBRARIES

C.0 Introduction

213

C.1 Auxiliaries Libraries 213

 C.1.1 GMP Library 213

 C.1.1.1 GMP Functions Classifications 214

 C.1.1.2 Using GMP 214

 C.1.2 NTL Library 220

 C.1.2.1 NTL: Headers and Modules 221

 C.1.2.2 Using NTL 223

LIST OF PUBLICATIONS 228

x

 LIST OF TABLES

 Page

2.1 Truth table of the Boolean function ββββ (a1, a2) = a1a2 + a1 31

3.1 Association table between the counter, plaintext segment and

thread ID

117

3.2 Generating new counter value for encryption on each thread 123

3.3 Generating new counter value for decryption on each thread 124

4.1 p-values and conclusion for Diehard test on ECSC-128

142

4.2 The rounded distribution of the overall produced p-values for

ECSC-128

143

4.3 p-values and conclusion for Diehard test on DSP-128

148

4.4 The rounded distribution of the overall produced p-values for

DSP-128

148

4.5 p-values and conclusion for Diehard test on LTSC-128

154

4.6 The rounded distribution of the overall produced p-values for

LTSC-128

155

B.1 Encryption rates of ECSC-128, DSP-128 and LTSC-128 on Dual-

Core and Quad-Core processors

200

B.2 Encryption rates of the parallelized P(ECSC-128), P(DSP-128)

and P(LTSC-128) on Dual-Core and Quad-Core processors

200

B.3 The improvement of ECSC-128, DSP-128 and LTSC-128 stream

ciphers performance on Quad-core processor

201

B.4 The improvement of the parallelized ECSC-128, DSP-128 and

LTSC-128 stream ciphers performance on Quad-core processor

202

B.5 List of p-values produced by Diehard tests for ECSC-128 stream

cipher

203

B.6 List of p-values produced by Diehard tests for DSP-128 stream

cipher

205

B.7 List of p-values produced by Diehard tests for LTSC-128 stream

cipher

207

C.1 Summary of some NTL modules 218

xi

 LIST OF FIGURES

Page

1.1 Taxonomy of Cryptology

2

1.2 Stream cipher

4

1.3 Quad-core processor

6

1.4 Proposed stream cipher design 11

1.5 Research workflow 12

2.1 Model of conventional cryptosystem (Stalling, 2003)

14

2.2 Synchronous stream cipher 18

2.3 Asynchronous stream cipher

20

2.4 Stream ciphers classifications

24

2.5 LFSR of length l

26

2.6 Shrinking generator (modified from (Choi, et al., 2003))

28

2.7 Self-shrinking generator

29

2.8 Alternating step generator

34

2.9 S-Box input/output mapping

39

2.10 F-function of MUGI 41

2.11 Stream cipher based on block cipher scheme 42

2.12 Single round of Phelix (Whiting, et al., 2005)

44

2.13 One block of Phelix (Whiting, et al., 2005)

46

2.14 Updating the inner states of Rabbit (Boesgaard, et al., 2003) 47

2.15 KSA and PRGA algorithms in RC4 stream cipher

50

2.16 PRGA round operation

50

2.17 Functions A, B and C in the keystream generator ABC (Anashin, et al., 2005)

53

2.18 Relationship between P, NP, NP-complete and NP-hard problems 61

xii

2.19 The geometry of point doubling on Elliptic Curve (Certicom, 2008)

64

2.20 2-Dimensional Lattice Space (Csárdi, 2006)

66

2.21 Travelling Salesman Problem representation

67

2.22 Multithreaded system architecture

70

2.23 Multithreading on multiprocessors machine

71

2.24 Multithreading on distributed processors

72

2.25 Performance improvement gained from multi-core technology

73

3.1 KGS mechanism in ECSC-128

86

3.2 The design of ES stage in ECSC-128

87

3.3 The overall design of ECSC-128

87

3.4 The code snippet of IS in DSP-128 stream cipher

91

3.5 The code snippet of KGS in DSP-128 stream cipher

93

3.6 KGS mechanism in DSP-128

94

3.7 The overall design of DSP-128.

94

3.8 Initializing polynomials L and M by extracting the coefficients from ℓ

100

3.9 Choosing the second and third segments to form the final Ks

102

3.10 The code snippet of KGS in DSP-128 stream cipher

103

3.11 The design of ES Stage implemented in LTSC-128

103

3.12 Generator Selector (GS) component

106

3.13 Parameter Extractor (PEx) component

107

3.14 Parallel keystream generated by the Keystream Generator (KG) component

108

3.15 The code snippet of KG in the parallel platform

109

3.16 Keystream-size Controller (KC) component

110

3.17 Plaintext Encoder (PEn) component

112

3.18 MCD and MCD on Dual-core processor

114

xiii

3.19 The code snippet of BsC controller

115

3.20 Bit-sync Controller (BsC)

116

3.21 Parallel keystream generation controlled by BsC

118

3.22 Concurrency and consistency in parallel keystream generation

120

3.23 Encryption performed on Dual-core processor

121

3.24 Decryption performed on Quad-core processor

122

3.25 Performing encryption and decryption on different number of cores

126

3.26 The general form of the parallelized platform

127

3.27 Shared processes between the stream cipher and the platform architecture

129

4.1 Difficulty of forward, inverse operation against key length

139

4.2 Performance comparison between ECSC-128 and RC4

144

4.3 Performance comparison between DSP-128 and RC4

149

4.4 Performance comparison between LTSC-128 and RC4

156

4.5 Performance comparison between ECSC-128, DSP-128, LTSC-128 and RC4

157

4.6 Performance comparison between the parallelized P(ECSC-128) and RC4

159

4.7 Performance improvement achieved by P(ECSC-128)

160

4.8 Performance comparison between the parallelized P(DSP-128) and RC4

162

4.9 Performance improvement achieved by P(DSP-128)

163

4.10 Performance comparison between the parallelized P(LTSC-128) and RC4

165

4.11 Performance improvement achieved by P(LTSC-128)

166

4.12 Efficiency level of the parallel platform on 2, 4, 8-cores processors

167

5.1 Current level of parallelism on Quad-core processor

172

5.2 Extended level of parallelism on Quad-core processor

173

C.1 Example on program header supporting GMP

211

C.2 Linking C and C++ programs to lgmp library

211

C.3 Various GMP data types declarations 212

xiv

C.4 Integer variables initialization

212

C.5 Assignment functions

213

C.6 Conversion functions

214

C.7 Arithmetic functions

215

C.8 Logical and bit manipulation functions

216

C.9 Relationship between NTL header files

217

 C.10 Polynomial addition

219

 C.11 Polynomial multiplication

220

 C.12 Left and right shift operations on polynomial

221

 C.13 NTL miscellany functions

222

xv

 LIST OF ABBREVIATIONS

NP-hard: Non-deterministic Polynomial-hard

PRNG: Pseudo-random Number Generator

NS: Next-State

LFSR: Linear Feed-back Shift Register

NLFSR: Non-Linear Feed-back Shift Register

FCSR: Feed Carry Shift Register

FPGA: Field Programmable Gate Array

ANF: Algebraic Normal Form

T-Function: Triangular-Function

S-Box: Substitution-Box

AES: Advanced Encryption Standard

SPN: Substitution-Permutation Network

SSL: Secure Socket Layer

WEP: Wired Equivalent Privacy

IV: Initial Vector

SHA: Secure Hash Algorithm

KSA: Key-Scheduling Algorithm

PRGA: Pseudo-random Generation Algorithm

NoC: Network on Chip

DLP: Discrete Logarithm Problem

ECDLP: Elliptic Curve Discrete Logarithm Problem

ECC: Elliptic Curve Cryptography

ECDSA: Elliptic Curve Digital Signature Algorithm

xvi

ECMQV: Elliptic Curve Menezes-Qu-Vanstone

SVP: Shortest Vector Problem

CVP: Closest Vector Problem

TSP: Travelling Salesman Problem

VHDL: VHSIC Hardware Description Language

PS-LFSR: Parallelized-Structured Linear Feed-back Shift Register

ONB: Optimal Normal Form

PB: Polynomial Basis

IS: Initialization Stage

KGS: Keystream Generation Stage

ES: Encryption Stage

NIST: National Institute of Standard and Technology

GCD: Greatest Common Divisor

LSB: Least Significant Bit

MSB: Most Significant Bit

GS: Generator Selector

PEx: Parameter Extractor

KG: Keystream Generator

KC: Keystream-size Controller

PEn: Plaintext Encoder

MCD: Machine-core Detector

TCC: Thread Creation Controller

BsC: Bit-sync Controller

NOB: Number of Bits

NOC: Number of Cores

DualC: Dual-Core

xvii

QuadC: Quad-Core

BDAY: Birthday Spacing Test

OPERM: Overlapping 5-Permutation Test

RANK: Binary Rank Test for Matrices

BSTM: Bitstream Test

DNA: DNA Tests

OPSO: OPSO Test

OQSO: OQSO Test

CBYTE: Count-The-1’s Test on stream of bytes

CSBYTE: Count-The-1’s Test for specific bytes

PARKL: Parking Lot Test

MDIST: Minimum Distance Test

3DS: 3Dspheres Test

SQEZ: Squeeze Test

OSUM: Overlapping Sums Test

RUN: Run Test

CRAP: Crap Test

GMP: GNU Multi-precision

NTL: Number Theory Library

xviii

PELANTAR SELARI UNTUK SIFER ALIRAN SELAMAT YANG BARU

BERASASKAN PERMASALAHAN NP-HARD

ABSTRAK

Tujuan kajian ini adalah untuk mengenal pasti unsur-unsur utama reka bentuk

sifer aliran yang selamat dan pantas. Dalam bidang kriptografi, sifer aliran ialah

algoritma kekunci simetri yang direka untuk menyulitkan dan menyahsulitkan data-data

sulit. Penyulitan dan penyahsulitan sejumlah besar data-data ini memerlukan reka bentuk

alternatif sifer aliran yang menjanjikan tahap keselamatan dan kepantasan yang lebih

tinggi bagi penyulitan data.

 Kedua-dua masalah NP-hard dan keselarian digunakan dalam kajian ini.

Masalah-masalah NP-hard digunakan untuk memberi tahap keselamatan tinggi pada

sifer aliran memandangkan ketiadaan algoritma untuk menyelesaikan masalah tersebut

dalam sistem polinomial. Konsep keselarian diperkenalkan sebagai platform bagi sifer

aliran berdasarkan masalah NP-hard. Platform selari ini direka bentuk bagi

membolehkan sifer aliran ini berfungsi lebih pantas di atas pemproses berbilang teras

(multicore processor).

 Integrasi antara sifer aliran berdasarkan masalah NP-hard dengan platform selari

merupakan faktor utama dalam penghasilan sifer aliran yang selamat dan pantas.

Analisis keselamatan dan statistik menunjukkan bahawa sifer aliran berdasarkan

masalah NP-hard kami adalah selamat daripada serangan-serangan cryptanalysis dan

statistik. Analisis prestasi ke atas platform selari menunjukkan keputusan mengagumkan

xix

bagi sifer aliran yang diuji, di mana platform selari tersebut dapat mempercepatkan

kadar enkripsi lebih kurang 1.8 dan 3.75 kali, masing-masing pada pemproses dwi-teras

dan empat-teras. Platform tersebut didapati cekap menggunakan pemproses berbilang

teras di mana ia mampu meningkatkan prestasi sifer aliran yang diuji selaras dengan

peningkatan bilangan teras dalam pemproses berbilang teras.

 Kajian ini memperkenalkan reka bentuk praktikal (bagi sifer aliran dan platform

selari) yang berskala menggunakan pemproses berbilang teras. Masa depan platform

selari ini adalah cerah memandangkan bilangan teras dalam pemproses berbilang teras

meningkat secara eksponen. Justeru, bilangan teras yang meningkat ini akan memacu

prestasi sifer aliran berasaskan permasalahan NP-hard terpalam.

xx

PARALLEL PLATFROM FOR NEW SECURE STREAM CIPHERS BASED ON

NP-HARD PROBLEMS

ABSTRACT

The purpose of this study was to identify the key elements for secure and fast

stream cipher’s design. In cryptography, stream cipher is a symmetric key algorithm,

which is designed to encrypt and decrypt stream of confidential data. Encrypting and

decrypting massive amount of data, necessitates alternative design for stream cipher,

which compromises high level of security and fast data encryption.

Both NP-hard problems and parallelism were utilized in this study. The NP-hard

problems were used to provide stream ciphers with high level of security, since there is

no algorithm exists to solve NP-hard problems in polynomial time. Parallelism was

introduced as a platform for stream ciphers based on NP-hard problems. The parallel

platform was designed to enable stream ciphers based on NP-hard problems to perform

faster on multi-core processors.

The integration between the stream ciphers based on NP-hard problems and the

parallel platform was the primary factor in producing secure and fast stream ciphers. The

security and statistical analysis showed that our NP-hard problem-based stream ciphers

are secure against cryptanalysis and statistical attacks. The performance analysis on the

parallel platform revealed impressive results for the tested stream ciphers, where the

parallel platform accelerated the encryption rate by approximately 1.8 and 3.75 times on

Dual-core and Quad-core processors respectively. The platform was found efficient in

xxi

utilizing multi-core processors, in which it was able to speed up the performance of the

tested stream ciphers relatively to the increasing number of cores, on multi-core

processors.

This study has introduced a practical design (stream cipher and parallel

platform), which was scalable in utilizing multi-core processors. The future of the

parallel platform is promising, since the number of cores in multi-core processors is

increasing exponentially. Thus, the increasing number of cores will effectively

accelerate the performance of plugged-in NP-hard problem-based stream ciphers.

1

CHAPTER ONE

INTRODUCTION

1.0 Introduction to Cryptography

Cryptography is the fundamental component for any computer security

application used to provide cryptographic services for secure communication over

public and unsecured channels. Cryptography focuses on issues of securing messages

so that only the relevant parties can read the message (Mollin, 2007). The main

purpose of cryptography is to encode the data (plaintext) to unreadable form

(ciphertext) and vice versa. Transforming a message to an incomprehensive form is

accomplished by a process known as encryption. In contrast, transforming an

encrypted message to its original form is accomplished by a process known as

decryption.

The use of cryptography was important through the centuries, in which

cryptographic applications were used for civilian usage (companies, individuals, etc),

or even were used in military operations as in World War I (e.g. cipher wheels or

marks on papers) and World War II (e.g. Purple machine and Enigma) (Kahn, 1967).

Cryptography is generally designed to provide confidentiality, authentication,

integrity and accessibility services (Menezes, et al., 1993; Mouratidis, et al., 2003).

Confidentiality service is used to ensure that messages are accessible only to

authorized recipients. Authentication is normally used to authenticate the identity of

the connected parties. Preventing eavesdroppers from changing the content of the

messages sent from source to destination is basically a service provided by the

2

integrity service. Lastly, accessibility is designed to only allow authorized parties to

use the available information resources.

In modern times, cryptographic systems (cryptosystems) have been used

extensively in our daily communications to provide us with high level of security. In

practice, cryptography is applied in numerous applications such as: internet

communication, wireless communication (mobile phones) and banking transactions.

The development of the cryptographic tools and systems has played an important

role in re-shaping the communication style in a significant manner.

Based on the cryptography taxonomy found in (Kahn, 1967; Feistel, 1970;

Beutelspacher, 1996), cryptography and cryptanalysis are combined together to form

the science of Cryptology. The sciences of Cryptology and its cryptographic

primitives are categorized in Figure 1.1.

Cryptology

Cryptography Cryptanalysis

Encryption Authentication Active
Attack

Passive
Attack

Public Key Digital Signature

Hash Function Certificates

Symmetric Asymmetric

Stream Cipher Block Cipher

Figure 1.1: Taxonomy of Cryptology

3

Cryptography, as shown in Figure 1.1, deals with two categories of

cryptosystems. The first category includes encryption algorithms which are classified

into two further sub-categories: symmetric and asymmetric cryptosystems. The other

category includes authentication algorithms which are classified into two main

categories: hash functions and certificates authentication. In this research, we are

focusing only on the stream cipher which falls under the encryption category of

cryptography.

 In principle, symmetric and asymmetric cryptosystems share the same design

goal, in which both cryptosystems are responsible for encrypting and decrypting

user’s messages. The main difference between these cryptosystems is the use of

additional key in asymmetric cryptosystems. Symmetric key cryptosystems use a

single key to encrypt and decrypt a given message. On the contrary, asymmetric key

cryptosystems (also known as public-key cryptosystems), use two different keys to

encrypt and decrypt a message.

In stream ciphers, a sequence of random bits is generated and used as a

keystream which will never be used again during the run of the cipher. In general,

stream ciphers are faster than block ciphers, making them suitable to be used in a

resource-constrained environment (Karlof, et al., 2004). The basic idea of stream

ciphers is inherited from the theoretical encryption algorithm called a One-Time Pad,

in which a plaintext is XORed with a key of the same length as the plaintext

(Daswani, 2007). The general structure of stream ciphers is shown in Figure 1.2.

Some of the classical ciphers are: Affine cipher, Vigenère Autokey Polyalphabetic

cipher and Playfair cipher (Bishop, 2003; Stallings, 2006).

4

The essential motivation of using stream ciphers, instead of block ciphers, is

the ability of stream ciphers to perform faster in environment where computational

power and memory capacity are limited (Karlof, et al., 2004). However, current

technologies tend to overcome the limitation problems (such as performance and

computational power) by presenting new multi-core processors which can improve

the performance of the running systems.

1.1 NP-Hard Problems and Parallelism

NP-hard problems are complex mathematical problems with no algorithm to

solve them in polynomial time is exist. NP-hard problems are well known in the field

of cryptography since they proved to provide cryptosystems with high security. The

use of NP-hard problems was efficient in different symmetric key cryptosystems, key

exchange protocols, digital signature algorithms, and many others. However, the

problem associated with NP-hard problems is the intensive number of calculations

required during the run of the algorithm. Therefore, parallelism is introduced to fill

ki

….11001…. ….01100….
Pi Ci

ki

Ci Pi

Keystream

Generator

Keystream

Plain Text Plain Text Cipher Text

….11001….

Keystream

Keystream

Generator
Key

Figure 1.2: Stream cipher

5

up the gap between the intensive calculations of NP-hard problems and their

performance by utilizing the existence of multi-core processors.

High performance computing is increasingly in demand especially in several

scientific and commercial applications. The need for secure and high performance

communication has become an important ingredient in our daily life. Achieving

higher performance is feasible by utilizing more computer resources, where several

jobs are accomplished simultaneously and therefore completed in shorter time.

Parallel processing is described as the concurrent use of multiple processing

resources (e.g. multiple CPUs) to solve a computational problem, where a given

problem is broken into smaller segments and solved concurrently using multiple

processors. Technically, the achievement of higher performance depends on two

essential factors: faster hardware devices and processing techniques (Briggs, 1986).

Several researches were conducted to improve the hardware architecture and

software techniques in order to achieve higher performance.

Under the processing techniques factor, multithreading technique was

introduced in 1960s (SunSoft, 2002) to enhance the performance of applications by

running them in parallel on the available resources. Multithreading technique aims to

create a virtual multiprocessors environment and use this environment to run

multiple tasks on single processor. From other perspective, the recent hardware

revolution has played a significant role in improving systems performance through

the multi-core technology. Multi-core is a technology where a single physical

processor contains the logical core of more than one processor as shown in Figure

1.3. The main goal of this technology is to enable the multi-core processor to run

6

multiple tasks concurrently in order to achieve higher performance compared to

single-core processors.

Applying parallel techniques in cryptography has become essential for higher

throughput and improved performance, especially with the current available

resources. Therefore, in this study we are utilizing the new multi-core technology

with the multithreading techniques to speed up the encryption process in stream

ciphers, in order to provide secured and better performance cryptosystems.

1.2 Research Problem

This study is conducted due to the importance of stream ciphers in securing

information, which is considered as the most strategic resources. The state-of-art of

stream ciphers is found lack of a comprehensive literature review that analyzes the

constructional design of existing stream ciphers. Therefore, the exploration and

analysis of existing stream ciphers resulted in addressing two problems, which are:

the security and the design properties.

C

O

R

E

 1

C

O

R

E

 2

C

O

R

E

 3

C

O

R

E

 4

Single physical processor

Figure 1.3: Quad-core processor

7

The massive numbers of existing stream ciphers are found vulnerable

(security-breakable) to cryptanalysis attacks due to the weaknesses of their

keystream generator. From the other perspective, the constructional design of these

stream ciphers is found sequential. Therefore, these stream ciphers do not allow

parallelism and not able to take full advantage of parallel computer architecture

which is ready and available in markets.

As a summary, identifying the problems associated with existing stream

ciphers is crucial to determine the efficient solutions. However, solving the security

issue require applying complex and hard mathematical problems (i.e. NP-hard

problems) at the keystream generator level to increase its resistance against

cryptanalysis attacks. The use of NP-hard problems in stream ciphers is promising

since there is no algorithm to solve these problems in polynomial time. On the other

hand, re-constructing the design of stream ciphers is possible by identifying the

independent components of their internal design. By doing that, stream ciphers will

be able to utilize multi-core processors to enhance their performance, and then

deliver the security community with highly secure and fast stream ciphers.

1.3 Research Scope

Stream ciphers are found lack of several security and statistical attributes,

making them subjected to cryptanalysis attacks. The scope of this thesis is presented

in introducing alternative stream ciphers based on the following NP-hard problems:

• Elliptic Curve Discrete Logarithm Problem (ECDLP).

• Discrete Logarithm Problem (DLP).

8

• Shortest Vector Problem in Lattice (SVP).

This research aims to use NP-hard problems in stream cipher cryptosystems,

with the focus on the three NP-hard problems mentioned above. Security and

performance analysis and assessment on the proposed stream ciphers and the parallel

platform are also carried out to ensure their practicality.

The limitation of this research is associated with the choice of the highly

studied NP-hard problems (ECDLP, DLP and SVP) for the proposed stream ciphers.

In fact, there are several other NP-hard problems which are not well studied and

therefore such problems need to be studied first before they can be used in

cryptography.

1.4 Research Goal and Objectives

The main goal of the research is to overcome the security and design

problems (as addressed in Section 1.2), by utilizing both NP-hard problems and

parallelism on multi-core processors. The general objectives of this research are

listed as follows:

• Propose alternative methods of generating sequences of keystream in stream

ciphers based on:

o Elliptic curve discrete logarithm problem represented by point

multiplication over selected elliptic curve.

o Discrete logarithm problem represented by polynomial

representations using polynomial arithmetic.

9

o Shortest vector problem in lattice spaces represented by Low-

Hamming weigh polynomials.

• Propose new parallel platform for stream ciphers based on NP-hard problems

with proper design specifications.

• Perform intensive security and performance for the proposed stream ciphers

and the parallel platform.

1.5 Research Contributions

This thesis provides a comprehensive review of stream ciphers which assist

the development process of new stream ciphers. This thesis also present a secure and

fast stream ciphers that has great impact on the field of information security. The

main contributions of this research are summarized as follows:

1. Developing new highly secure stream ciphers based on NP-hard problems for

cryptographic applications.

2. Presenting new research direction for parallel stream ciphers through the

utilization of multi-core technologies.

3. Presenting new constructional design for stream ciphers capable to work on

parallel environments.

4. Designing new parallel platform to accelerate the performance of secure

stream ciphers.

10

1.6 Research Methodology

Stream ciphers are classified into two main categories: software and hardware

based stream ciphers. These stream ciphers rely on several software and hardware

techniques to achieve better security. In our research, we found that many of the

subcategories, under the main two categories, suffer from some security

vulnerabilities (such as cryptanalysis attacks and statistical biased), and sequential

structure. Therefore, this study aims to use NP-hard problems (new subcategory

under the software-based category) to achieve optimum level of security.

 Achieving the research objectives is accomplished in two phases. The two

phases are as follows:

• Stream Cipher Implementation Phase: the design of the proposed stream

ciphers is divided into three stages: Initialization stage, Keystream

Generation stage and Encryption stage. Dividing the structure of the stream

ciphers into stages has enabled stream cipher to work in parallel, therefore

transforming the sequential structure of existing stream cipher into new

parallelizable structure. The employment of NP-hard problems will be

targeted to the second stage of the design. Accordingly, generating infinite

new keystream depends on infinite number of iterations during the run of the

stream cipher. The iteration rests on a counter created for incremental

operation on the initial value of the input key obtained from the initial stage.

Finally, the obtained keystream is used to encrypt a stream of plaintext bits

and generate a stream of enciphered bits. The general design of the proposed

stream ciphers is shown in Figure 1.4.

11

• Platform Implementation Phase: the platform consists of several components

and special designed detector and controllers. It is divided into five main

components: Generator Selector, Parameter Extractor, Keystream Generator,

Keystream-size Controller and Plaintext Encoder. These components are

designed to work best with the stream ciphers obtained from the previous

stage. The main goal of this platform is to enable stream ciphers generating

multiple keystream concurrently and independently from each other.

Evaluating the two phases (stream ciphers implementation phase and platform

implementation phase) is an important step in our research. The first phase is

evaluated by verifying the reliability of our stream ciphers security against

cryptanalysis attacks, and examining the statistical attributes of the generated

keystream. On the other hand, the evaluation of the platform includes extensive

performance tests on different multi-core processors. In addition, the platform is also

verified statistically; by re-verifying the statistical properties of the generated

keystream by the attached stream ciphers to the parallel platform. Figure 1.5 shows

the workflow of the main components carried out in this research.

Initialization

Stage

Keystream

Generation

Stage

Encryption

Stage

Plaintext

Ciphertext

Input Key

K Ks

Counter++

Figure 1.4: Proposed stream cipher design

12

1.7 Thesis Organization

The work conducted in this thesis is presented in five chapters with

appendices. The first chapter provides an introduction to the work by introducing a

brief introduction to cryptography and its related concepts. In addition, a brief

introduction to our work is also conducted here (Chapter 1). The reminder of the

thesis is organized as follows.

NP-hard

Problems
Stream

Ciphers

ECDL

DLP SVP

NP-hard Based Stream Ciphers

Parallel Platform

Parallel Platform

Multi-Core Processor

Security &
Statistical
Analysis

Performance
Evaluation

Figure 1.5: Research workflow

13

Chapter 2: In this chapter, we discuss the important concepts of stream

ciphers and their classifications. The use of the mathematical NP-hard problems and

parallelism in cryptographic systems is also discussed.

Chapter 3: A complete description of the proposed methodology is included

in this chapter. The chapter is divided into two sections. In Section 3.1, we discuss

the stream ciphers design and specifications. The design and the implementation of

the parallel platform components are described in Section 3.2.

Chapter 4: This chapter presents the security and performance analysis of

both stream ciphers and parallel platform. The security analysis is conducted from

two perspectives: cryptanalysis attacks and statistical analysis, to show the security

level provided in the proposed ciphers. The performance evaluation aims to show the

efficiency of the platform in terms of the ability of delivering stream ciphers with

higher performance.

Chapter 5: Finally, we conclude our work and illustrate the possible future

works for this study.

14

CHAPTER TWO

STREAM CIPHERS AND PARALLELISM

2.0 Introduction

 Cryptographic systems are designed to provide digital transmitted data with

security attributes over un-secured communication channels. Figure 2.1 sheds light

on the main components of a conventional cryptosystem model to understand the

environment that cryptographers are dealing with.

This chapter will study the encryption component of the cryptosystem model

as appears in Figure 2.1. The study will focus on one type of symmetric key

algorithms called stream ciphers. The rest of this chapter will discuss the important

Decryption Encryption Sender Receiver

Cryptanalyst

Secure Channel

Key
Source

Y X X

K

X* K*

Figure 2.1: Model of conventional cryptosystem (Stalling, 2003)

15

concepts of stream ciphers in terms of their design and mechanisms (Section 2.1). In

Section 2.2, we survey the existing stream ciphers and classify them into categories

based on the similarity between these stream ciphers. Stream ciphers are found

somehow lack some of security attributes, making them subject to cryptanalysis

attacks.

It is obvious that sending the message X from the sender to the receiver is not

simple due to the obstacles that might threaten the security (e.g. integrity,

authenticity, confidentiality, etc) of the message. However, cryptosystems rely on

some cryptographic primitives (e.g. Encryption, Digital Signatures, Certificates, etc)

to provide the message with the required level of security. Cryptanalyst will

sometimes be able to attack the encrypted message Y to remove the disguise and

recover the message X using several cryptanalysis attacks. These attacks are

basically generating a message estimate X* and a key estimate K* to recover either

message X or key K, or even both.

 The definition of the mathematical concepts related to NP-hard problems, as

well as survey the existing cryptosystems based on NP-hard problems are discussed

in Section 2.3. The use of complex mathematical problems is considered costly in

terms of computation. The use of such problems will require the keystream generator

to perform intensive calculations to generate the sequence of keystreams. One way to

overcome this limitation is by applying parallelism to improve the performance of

stream ciphers based on NP-hard problems. Hence, parallel techniques and their

usage in cryptographic applications are discussed in Section 2.4 and 2.5 respectively.

Finally, section 2.6 will summarize the important results obtained from the above

analyzed survey.

16

2.1 Stream Ciphers: Concept and Definition

Cryptographic systems are divided into two types of systems: Secret-key

(Symmetric) or Public-key (Asymmetric) cryptosystems. In the later systems, the

sender uses public information of the receiver to send a message to the receiver. The

receiver then uses his private information to recover the original message. In secret-

key cryptosystems, both the sender and receiver have previously set up secret

information in which they use this information for encryption and decryption.

Further division of symmetric cryptosystems is the block ciphers and stream ciphers.

Rueppel states: “Block ciphers operate with a fixed transformation on large blocks of

plaintext data; stream ciphers operate with a time-varying transformation on

individual plaintext digit” as quoted in (Robshaw, 1995).

Definition (Encryption): Let 1 2, ,..., nk k k K∈ be a set of keystream in the key space

K, 1 2, ,..., nm m m M∈ be a set of plaintext in the plaintext space M, and

be a set of ciphertext in the ciphertext space C. The encrypted

ciphertext is generated by:

() 1 2, ,...,
ik i nE m c c c C= ∈ :1i i n∀ ≤ ≤

From the above definition, the encryption process of a stream cipher kE is

bijective for every ik . The plaintext space and key space are typically represented in

bit or byte representations. Most importantly, keeping the key k is essential for the

security of stream ciphers.

The idea of stream ciphers was inspired from the famous cipher called the

One-time Pad (also called the Vernam cipher) (Mollin, 2007; Delfs, 2002). This

1 2, ,..., nc c c C∈

(2.1)

17

cipher is based on XOR’ing (⊕) the message bits and the key bits. The One-time

pad is defined by Delfs (2000) as in Equation 2.2:

:{0,1} {0,1} {0,1}, (,)E m k m k× → → ⊕

where plaintext, keystream and ciphertext bits are in the space {0, 1}. The encryption

transformation is given by:

()
ik i i i iE m m k c C= ⊕ = ∈

and the decryption transformation is given by:

()
ik i i i iD c c k m M= ⊕ = ∈

In One-time pad cipher, a truly random key is generated and securely

transmitted to the receiver. The length of the key is the same as the length of the

transmitted message. On the other hand, most stream ciphers other than One-time

pad depend on the use of pseudorandom number generator (PRNG) instead of

generating truly random key. Pseudorandom number generator generates key

sequence (known also as keystream) that approximate the random numbers

properties (Viega, 2003).

Generally, stream cipher uses n-iterations to generate n-successive keystream

based on the stream cipher internal state. The mechanisms used in updating the

internal state provide us with the classification of stream ciphers: Synchronous and

Asynchronous stream ciphers. The two types of the stream ciphers are discussed in

Sections 2.1.1 and 2.1.2 respectively.

(2.2)

(2.3)

(2.4)

18

2.1.1 Synchronous Stream Ciphers

 A stream cipher is said to be synchronous if the next internal state used for

generating new keystream is defined independently and without the use of either the

plaintext or the ciphertext generated from the previous iteration as shown in Figure

2.2.

The encryption process of a synchronous stream cipher is best described by

the following equations:

()1 , ,i iNS K+∂ = ∂

(), ,
is ik KG K= ∂

(),
ii s ic EN k m=

where 0∂ is the initial state determined by the input key K, NS is the next-state

function, KG is the keystream generation function which generates sk , and EN is the

Keystream
Generator

Keystream
Generator K

ik
E

ik
D

i
k

i
k

i
m

i
m

i
c

Encryption Decryption

(2.5)

(2.6)

(2.7)

Figure 2.2: Synchronous stream cipher (Mollin, 2007)

19

output function which generates the ciphered text ic by combining both the plaintext

im and the keystream
isk .

 The properties of synchronous stream ciphers are summarized in the

following points:

• Synchronization requirements: both of the sender and receiver must use the

same secret key and operating at the same position within that secret key for

proper decryption. This mechanism will ensure the synchronization between

the connected parties during the transmission process. The loss of

synchronization due to some modification on the ciphertext being transmitted

will fail the decryption process. In such case, a re-synchronization process

such as re-initialization or placing special marks at regular intervals in the

ciphertext is required.

• Error propagation: In synchronous stream ciphers, errors in ciphertext

symbols (digits or characters) during transmission do not propagate and affect

the decryption of other ciphertext symbols.

• Active attack: Any modification (insertion, deletion) or replay of ciphertext

symbols by an eavesdropper causes loss of synchronization, which allows the

receiver (decrypter) to detect the modification.

2.1.2 Asynchronous Stream Ciphers (self-synchronous)

 Unlike synchronous stream ciphers, self-synchronous stream ciphers generate

keystreams as a function of the key k and a fixed number of previous ciphertext

20

symbols (Stallings, 2006). In other words, self-synchronous ciphers utilize plaintext

in the process of generating a new keystream as shown in Figure 2.3.

The encryption function of a self-synchronous stream cipher is best described

by the following equations:

()1 1, ,..., ,i i t i t ic c c− − + −∂ =

(), ,
is ik KG K= ∂

(),
ii s ic EN k m=

where 0∂ is the initial state, K is the input key, KG is the keystream generation

function which produces sk , and EN is the encryption function which combine both

of the keystream and plaintext im to produce the ciphertext ic .

 In this type of ciphers and unlike synchronous ciphers, the selection of the

key may raise problem since any statistical regularities in the plaintext will show up

Keystream
Generator

Keystream
Generator K

ik
E

ik
D

i
k

i
k

i
m

i
m

i
c

Encryption Decryption

(2.8)

(2.9)

(2.10)

Figure 2.3: Asynchronous stream cipher

21

in the key (Bishop, 2003). Self-synchronous stream ciphers have the following

properties (Mollin, 2005):

• Synchronization requirements: the decryption process in self-synchronous

stream ciphers basically depends on a fixed number N of preceding ciphertext

digits. Hence if modifications have been made on ciphertext digits during

transmission, self-synchronization will take place.

• Error propagation: self-synchronous ciphers are subjected to error

propagation due to the dependency of the keystream generation’s internal

state on the previous ciphertext digits of length N. When modifications on

ciphertext occur during transmission, decryption of up to r subsequent

ciphertext symbols may be incorrect, after which correct decryption resumes.

• Active attacks: any modification of ciphertext digits by an eavesdropper

causes multiple ciphertext symbols to be encrypted incorrectly. According to

Stallings (2003), detecting the modification in self-synchronous stream

ciphers is more difficult than in synchronous stream ciphers.

During the process of designing a stream cipher, the cryptographer has to satisfy the

following requirements (Lee, et al., 2002):

• Error Propagation: minimum number of redundant bits during the encryption

and decryption process.

• Redundant Information: minimum number of redundant bits during the

information insertion.

• Cryptographic Security: the length of the secret key should be long enough to

avoid exhaustive key search attack.

22

• Implementation Simplicity: the design of the stream cipher should be

suitable for both hardware and software implementations.

• Performance Speed: the stream cipher should be performable at minimum

speed of 1.544 Mbps.

2.2 Stream Ciphers: Categorization and Related Works

In contrast to block ciphers, stream ciphers have no standard model for their

construction design, which leads cryptographers to construct various models of

stream ciphers. The basic structures often found in stream ciphers may include

LFSR-based cipher (Linear-Feedback Shift Register), NLFSR-based cipher (Non-

Linear Feedback Shift Registers), Block cipher-based stream cipher, T-function-

based ciphers and other structures. However, this study classifies stream ciphers into

categories whereby each category includes stream ciphers that share specific

properties. Figure 2.4 shows the classification of different stream cipher algorithms

as appears in the literature. Note that the classification is based on how keystream

generators operate in generating the keystream.

In our classification, stream ciphers are divided into two main categories:

Hardware-based and Software-based stream ciphers. The classification aims to look

at stream ciphers from the implementation perspectives in which we found that they

fall into two categories (hardware-implementation and software-implementation

stream ciphers). The third level on the hierarchy of the classification includes deeper

categorization based on hardware or software related issues. The in-depth

classification of hardware-based stream ciphers includes: FCSR/NLFSR-based and

23

clock control and LFSR based stream ciphers. On the other hand, the software-based

stream cipher category includes: T-Function-based stream ciphers, Block cipher-

based stream ciphers, NP-hard problem-based stream ciphers (our proposed direction

of stream ciphers) and other alternatives that do not fit into the previous categories.

H
ar

dw
ar

e-
B

as
ed

S
hi

ft
 R

eg
is

te
rs

L
FS

R S
hr

in
ki

ng
 &

 s
el

f
sh

ri
nk

in
g

S
um

m
at

io
n

B
oo

le
an

Fu

nc
tio

ns

N
L

FS
R

/F
C

S
R

C
lo

ck
 C

on
tr

ol

S
to

p
&

 G
o

C
as

ca
de

s

A
B

S
G

 D
ec

im
at

io
n

M
ec

ha
ni

sm

T
-F

un
ct

io
n

24

S
tr

ea
m

 C
ip

he
rs

C
lo

ck
 C

on
tr

ol

S
to

p
&

 G
o

C
as

ca
de

s

A
B

S
G

 D
ec

im
at

io
n

M
ec

ha
ni

sm

S
of

tw
ar

e-
B

as
ed

F
un

ct
io

n
S

-B
ox

B
lo

ck
 C

ip
he

r
N

P
-h

ar
d

pr
ob

le
m

s

S
ho

rt
es

t V
ec

to
r

in

L
at

ti
ce

s

E
ll

ip
ti

c
C

ur
ve

D

is
cr

et
e

L
og

D
is

cr
et

e
L

og
 &

P

ol
yn

om
ia

l

F
ig

ur
e

2.
4:

 S
tr

ea
m

 c
ip

he
rs

 c
la

ss
if

ic
at

io
ns

S
ho

rt
es

t V
ec

to
r

in

L
at

ti
ce

s

E
ll

ip
ti

c
C

ur
ve

D

is
cr

et
e

L
og

D
is

cr
et

e
L

og
 &

P

ol
yn

om
ia

l

S
im

pl
e

L
og

ic
al

&

 A
ri

th
m

et
ic

O

pe
ra

ti
on

s

H
yb

ri
d

D
es

ig
ns

P
ro

p
o
se

d
 S

tr
ea

m

C
ip

h
er

s

