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XILITOL DARIPADA TANDAN KOSONG BUAH KELAPA SAWIT 
MENGGUNAKAN CANDIDA GUILLIERMONDII: 

 FERMENTASI DAN KAJIAN KINETIK 
 

ABSTRAK 

Tandan buah kelapa sawit kosong adalah salah satu bahan buangan utama 

yang dihasilkan oleh kilang kelapa sawit. Bahan buangan yang mudah didapati, 

murah dan boleh diguna semula ini telah dipilih sebagai bahan asas untuk 

penghasilan xilitol, kerana ia mengandungi hemiselulosa, terutamanya xilan yang 

boleh dihidrolisis kepada xilosa. Oleh kerana kandungan xilitol dalam sumber 

semulajadi adalah sangat rendah, bahan yang mempunyai kadar harga yang rendah 

dengan kandungan xilosa yang tinggi telah dikenal pasti sebagai bahan pemula.  

 

Analisis ke atas tandan buah kelapa sawit kosong menunjukkan terdapatnya 5 

sebatian utama iaitu xilosa, glukosa, lignin, asid asitik dan furfural. Kepekatan 

sebatian tertinggi dikesan untuk xilosa pada 36.54 g/L. Ini menunjukkan tandan 

kosong buah kelapa sawit adalah bahan yang sesuai untuk penghasilan xilitol. 

 

Dalam proses hidrolisis, penghasilan xilosa yang paling tinggi iaitu 28.97 g/L 

telah dikesan pada 120 oC, 15 minit masa tindakbalas dengan menggunakan 6% asid 

sulfurik.  Proses hidrolisis telah dipanjangkan ke 300 minit untuk menentukan 

kehadiran bahan perencat seperti asid asitik dan furfural serta komponen gula yang 

lain iaitu glukosa. Di dalam proses peneutralan dan penyahtoksikan, kombinasi 

penggunaan kalsium oksida dan karbon teraktif menunjukkan kesan penurunan 

perencat yang tinggi, iaitu sehingga 69% kepekatan pada asid asetik dan 61 % 

kepekatan pada furfural. 
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 Untuk proses fermentasi, Candida guilliermondii FTI 20037 telah dipilih 

sebagai biokatalis bagi penukaran xilosa kepada xilitol.  Dengan menggunakan 

media sintetik, penghasilan xilitol tertinggi diperolehi  di dalam Media 1, pada pH 

3.5, 250 ppm, kepekatan substrat permulaan 250 g/L dan saiz inokulum 10 g/L. 

Penghasilan xilitol dengan menggunakan media ditoksifikasi dan media  tidak-

ditoksifikasi menunjukkan penghasilan xilitol per kepekatan xilosa (Yp/s) ialah 

0.73g/g dan 0.6 g/g, masing-masing. Ini menunjukkan media yang telah ditoksifikasi 

adalah substrat lebih baik berbanding media tidak-didetoksifikasi. 

 

 Penggunaan model tidak berstruktur bagi pertumbuhan, penghasilan xilitol 

dan penggunaan substrat telah dibandingkan. Didapati model Logistik bersesuaian 

dengan pertumbuhan C. guilliermondii dan penggunaan substrat, sementara model 

Leudeking-Piret pula adalah untuk penghasilan xilitol. Bagi perencatan substrat, 

model Andrew telah bersesuaian dengan pemerhatian eksperimen dengan R2 =0.94. 

Proses pengoptimum telah dijalankan untuk mengenalpasti penghasilan xilitol yang 

tertinggi dengan menggunakan kaedah permukaan sambutan (RSM). Keadaan 

optimum bagi penghasilan xilitol telah dilihat pada pH 3.5, 250 rpm (kadar 

goncangan) dan saiz inokulum 10 g/L.  

  

Xilitol telah dihablurkan pada -10 oC menggunakan kepekatan media sintetik 

dan media fermentasi yang berbeza. Proses penghabluran bagi kedua-dua media 

mengambil masa 4 jam dan 10 jam, masing-masing. Ini mungkin disebabkan 

kehadiran bahan asing di dalam media. Pada  kepekatan xilitol yang tertinggi 597 

g/L, 0.49 g/g, hablur xilitol telah diperolehi dengan 91.05% penulenan. 
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XYLITOL FROM OIL PALM EMPTY FRUIT BUNCH BY CANDIDA 
GUILLIERMONDII: FERMENTATION AND KINETIC STUDY 

 

ABSTRACT 

 

Oil palm empty fruit bunch (OPEFB) is one of the main wastes generated by 

palm oil mills. This waste is widespread, cheap and renewable and be selected as raw 

materials for xylitol production as it contains hemicellulose, comprising xylan that 

can be hydrolysed to xylose. As the xylitol content is very low in other natural 

sources, a low cost material with high content of xylose is identified as the starting 

material.  

 

Analysis of oil palm empty fruit bunch fibers showed that there were 5 main 

compounds namely xylose, glucose, lignin, acetic acid and furfural. The highest 

compound concentration was detected for xylose at 36.54 g/L. This showed that an 

oil palm empty fruit bunch was a suitable material for the production of xylitol. 

 

In hydrolysis process, the highest xylose production was detected at 120 oC, 

15 min reaction time with 6% sulphuric acid at 28.97 g/L. The hydrolysis process 

was prolonged up to 300 min in order to determine the production of inhibitor 

components such as acetic acid and furfural, and also the presence of other sugar 

component such as glucose. In neutralization and detoxification process, the 

combination of calcium oxide and activated charcoal treatment showed the highest 

reduction of inhibitors, which was up to 69% on acetic acid and 61% on furfural 

concentration.  
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For fermentation process, Candida guilliermondii FTI 20037 was chosen as a 

biocatalyst for the conversion of  xylose to xylitol. In synthetic media, the highest 

xylitol production was obtained in Media 1 at pH 3.5, 250 rpm, initial substrate 

concentration 250 g/L and inoculum size at 10 g/L. Production of xylitol using 

detoxified and non-detoxified media showed that the yield of xylitol per xylose 

concentration (Yp/s) were 0.73g/g and 0.6 g/g, respectively. This showed that 

detoxified media was much better substrate compared to non-detoxified media.  

 

An unstructured model taking into account growth, xylitol production and 

substrate consumption were compared. It was found that Logistic model fitted well 

with C. guilliermondii growth and substrate consumption, while Leudeking-piret  

model was for xylitol production. For substrate inhibition, Andrew model fitted well 

with the experimental observation with R2 =0.94. The optimization process was 

performed to find out the optimum condition that lead to the highest production of 

xylitol using Random Surface Methodology (RSM). The optimum condition for 

xylitol production was observed at  pH 3.5, 250 rpm agitation rate and 10 g/L of 

inoculum size. 

 

Xylitol was crystallized at -10 oC using different concentration of synthetic 

and fermented media. The crystallization for both media took 4 hr and 10 hr, 

respectively. This could be due to the presence of other impurities in the media. At 

the highest xylitol concentration at 597 g/L, 0.49g/g xylitol crystal yield was 

obtained with 91.05% of crystal purity. 

 



 
 
 
 1 

CHAPTER 1 

INTRODUCTION 

 

1.1 OIL PALM INDUSTRIES IN MALAYSIA 

The Malaysian oil palm industries started in 1917 and grew slowly until 

1950, when the agricultural diversification policy switches over from rubber to palm 

oil. Malaysia became the largest producer and exporter of palm oil, which then 

became a major agricultural industry in the country. In 2006, Malaysia produced 

about 51% of the world's palm oil and 62% of world export, which will expand more 

a head (Ahmad et al., 2006). 

 

Palm oil or Elaeis guineensis act as number one fruit crops in terms of 

production  with 36.9 million tones for the year 2007 or 35.9% of the total edible oil 

in the world (MPOC, 2007). Malaysia’s palm oil production will hit 20 million tones 

by 2020 (FORBES 2007). The oil prices have reached a new price of around RM 

1800 to 1900/tonne (The Star, 2009). It was able to supply 12% of the global 

vegetable oil and 26% of the export trade in oils and fats (MPOC, 2006).    

 

 The total area under oil palm cultivation is over 2.65 million hectares, 

producing over 8 million tones of oil annually (Basiron, 2006). The oil consists of 

only 10% of the total biomass produced in the plantation. The remainder consists of 

a huge amount of lignocellulosic materials such as oil palm fronds, trunks and empty 

fruit bunches. According to Mahmudin and Puad (1999), the projection figures of 

these residues are 7.0 million tonnes of oil palm trunks, 26.2 million tonnes of oil 
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palm fronds and 23% of empty fruit bunch (EFB) per tonnes of fresh fruit bunch 

(FFB) processed in oil palm mill. 

An average oil palm mill can handle about 100 million tones of fresh fruit 

bunches daily. Figure 1.1 shows the extraction process in one of the palm oil mills. 

At the mills where oil extraction took place, solid and liquid wastes were generated.  

The solid residues, mainly EFB were more than 20% of the fresh fruit weight (Ma et 

al. 1993). For the liquid wastes, more than 500 kg (around 0.5 m3) is produced, 

which is mainly in the form of palm oil mill effluent (POME), and are discharged 

during the processing of 1.0 million tones of fresh fruit bunches (Ma et al. 1996). 

Meaning that, 20 million tones of EFB and more than 50 m3 of POME will be 

expected to be produced from a mill after processing 100 million tones of fresh fruit 

bunches. 

 

The EFB is a lignocellulosic raw material and act as renewable resources, 

which is a valuable commodity in the market (MPOC 2007). Currently these fibers 

are used as boiler fuel and potassium fertilizer. The transformation of these fibers to 

a valuable food and pharmaceutical products is an advantage to the Malaysian 

economics. One of the valuable products that can be produced from these fibers are 

xylitol. Xylitol is a sugar alcohol, act as an artificial sweetener, which has dietary 

and high technological properties (Pepper and Olinger, 1988). 
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Figure 1.1 Palm oil milling process ( ____ )process (------) waste (MPOC, 2008) 

 

Due to the need of industrial scale production and subsequent low down of 

the xylitol prices, EFB represents as a low-cost starting material for sugar 

production. In recent years, there has been an increasing trend towards more efficient 

utilization of agro industrial residues to xylitol such as sugarcane baggase ( Marton 

et al., 2006), rice straw (Mussatto and Roberto, 2004), corn cobs (Dominguez et al., 
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1997) and sorghum straw (Herera et al., 2003)  they provide a good substrate for 

microbial cultivation.  

 

1.2 SUGAR INDUSTRY 

Sugar production was established in the seventh century AD. Since then, the 

sugar industry has grown immensely. In 2008, Malaysia’s sugar production was only 

84 thousand metric tons while the overall sugar consumption was 1,343 thousand 

metric tons (FAPRI, 2008). Increasing demand of sugar leads to imported sugar to 

meet the rising demand and compensate for the stagnant domestic production. For 

example, imports for the first 5 years of the 1990s averaged 885 000 tonnes per year, 

compared with 494 000 tonnes for the first-half of the 1980s, a 79 percent increase. 

In recent years, sugar has been Malaysia's largest agricultural imports, with annual 

sugar imports valued between US$200 to 300 million (FOA, 1997). 

 

Sugar is an important source of food energy. During digestion, all food 

carbohydrates (starches and sugars) broke down into single molecule sugars. These 

sugars are absorbed from the intestine into the blood stream and travel to the cells, 

where they are used to provide energy for cellular functions. In parts of the world 

where people suffer from energy malnutrition and are undernourished, sugar is 

valued as an inexpensive source of energy to support human activities. 

 

But regularly eating large amounts of sugar will cause serious harm. Sugar 

can cause hyperglycemia and weight gain, leading to diabetes and obesity in both 

children and adults. It leached the body vital minerals and vitamins and raised blood 
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pressure, triglycerides, and the bad cholesterol (LDL), thus increasing the risk of 

heart disease. It causes tooth decay and periodontal disease, which leads to tooth loss 

and systemic infections. Besides that, it also make a child's difficult to learn, 

resulting in a lack of concentration. Both children and adults exhibit disruptive 

behavior, learning disorders, and forgetfulness from sugar consumption. It initiates 

auto-immune and immune deficiency disorders such as arthritis, allergies, and 

asthma. It also upsets hormonal balance and supports the growth of cancer cells 

(FAO, 1997). Therefore, the increasing amount of sugar in food, sweets and soft 

drinks could raised some concern about health effect. World Health Organization 

(2003) reported that the number of people suffer from diabetes, obesity, cancer and 

cardiovascular diseases are increasing every year especially in the developing world. 

In fact, about 1.2 million peoples in Malaysia are suffering from diabetes (The Star, 

2006). 

 

The Polyols sweetener industry is experiencing a rapid growth because of the 

increasing consumer demand for sugar-free and reduced calorie products (Mussatto 

et al., 2006a). The sweeteners experiencing this rapid growth are the sugar alcohols 

such as xylitol, sorbitol, mannitol and maltitol. The name polyols refers to chemical 

compounds containing multiple hydroxyl groups. Sugar alcohols, a class of polyols, 

are commonly added to foods because of their lower caloric content than sugars; 

however they are also generally less sweet, and are often combined with high 

intensity sweeteners (Emodi, 1978). 

 

 

http://thestar.com.my/health/story.asp?file=/2007/1/3/health/16340464&sec=health
http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Sugar_alcohol
http://en.wikipedia.org/wiki/Sugar
http://en.wikipedia.org/wiki/Sweetener
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Sugar alcohols are usually incompletely absorbed into the blood stream from 

the small intestines which generally results in a smaller change in blood glucose than 

sucrose. This property makes them become a popular sweetener among diabetics and 

people on low-carbohydrate diets. However, as for many other incompletely 

digestible substances (such as dietary fiber), over consumption of sugar alcohols can 

lead to bloating, diarrhea and flatulence because they are not absorbed in the small 

intestine. Some individuals experience such symptoms even in a single-serving 

quantity. With continuous use, most people develop a degree of tolerance to sugar 

alcohols and no longer experience these symptoms (Parajo et al., 1998) 

 

In Asia, xylitol is particularly in demand from the gum manufacturers; it was 

estimated that 80 to 90 per cent of chewing gum sold in the region now has the 

xylitol in their formulations.  The China based company Futaste currently produces 

35,000 tons of xylitol each year, as well as 20,000 tons of xylose and other types of 

sweeteners from corn cobs. The xylitol are now available in the market with the 

prices at RM 50 per kg (Charlotte, 2008). Hopefully with the development of 

biotechnological production of xylitol, the prices could be cheaper as consumer can 

use xylitol rather than other ordinary sweetener.  

 

1.3 PROBLEM STATEMENT 

Among various agriculture wastes in Malaysia, oil palm empty fruit bunch 

(EFB) is regarded as a promising agricultural resource as it is rich in cellulose and 

hemicellulose but is not effectively utilized. The industrial use of oil palm empty 

fruit bunch contributes to a reduction of an environmental pollution caused by their 

disposal and lost of potentially valuable resources. EFB on the other hand is known 

http://en.wikipedia.org/wiki/Small_intestine
http://en.wikipedia.org/wiki/Blood_glucose
http://en.wikipedia.org/wiki/Sucrose
http://en.wikipedia.org/wiki/Diabetes_mellitus
http://en.wikipedia.org/wiki/Low-carbohydrate_diet
http://en.wikipedia.org/wiki/Dietary_fiber
http://en.wikipedia.org/wiki/Bloating
http://en.wikipedia.org/wiki/Diarrhea
http://en.wikipedia.org/wiki/Flatulence
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to give rise to deposits and corrosion problems. The hydrolysis of EFB to produce 

xylose solution can be a good alternative for this abandone product. This process has 

a double consequentces, i.e: the elimination of a waste and the production of a value-

added product. 

 

The industrial production of xylitol is based on the catalytic hydrogenation of 

xylose. This process requires the use of high pressure and temperature and extensive 

xylose purification steps, thus making a final product with a relatively high 

production cost. An alternative way to produce xylitol is by the biotechnological 

route, which can be more economically viable because it requires only a mild 

condition of temperature and pressure, and it eliminates the purification step since 

the microorganism specifically acts on xylose-to-xylitol bioconversion 

(Winkelhausen and Kusmanova, 1998). Microbial production of xylitol from 

agriculture wastes containing hemicellulose could be the best approach because it 

has a potential to realize cheaper production of xylitol with low environmental effect 

by effective utilization of renewable resources such as agricultural waste, oil palm 

empty fruit bunch (OPEFB) fibers. 

 

1.4 RESEARCH OBJECTIVE  

The main objective of this project is to study xylitol production by C. 

guilliermondii using oil palm empty fruit bunch hydrolysate as a substrate. The 

measurable objectives are: 

 

1. to study the effect of multiple hydrolysis variable (reaction temperature, 

acid concentration and time) on the formation of xylose 
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2. to investigate the effect of various fermentation parameters for the 

production of xylitol by C. guilliermondii using synthetic and oil palm 

empty fruit bunch hydrolysate 

 

3. to optimize fermentation variables for the production of xylitol in oil 

palm hydrolysate using Design of Experiment (DoE) 

 

4. to compare kinetic models of microbial growth, xylitol production, xylose 

consumption and substrate inhibition by the tested yeast 

 

5. To crystallize xylitol using synthetic and fermented media 

 

1.5 ORGANIZATION OF THE THESIS 

This thesis consists of five chapters that covers important details regarding 

this research. 

 

Chapter One introduces the oil palm industries and the sugar industries in 

Malaysia. The problem statement is stated to give clear aims followed by the 

objectives of the study. 

 

Chapter Two describes the fundamental characteristic of biomass residues 

and lignocellulosic materials. Explanations on hydrolysis process and neutralization 

and detoxification process were also discussed. In addition, the importance of xylitol 

production, fermentation process and xylitol recovery were also looked at. The last 
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section discussed in details on the fermentation kinetics and Design of Experiments 

(DOE) for optimization and process parameters. 

 

Chapter Three refers to the material and methods describing the experimental 

procedures of the present study. This chapter also covers the acid hydrolysis process, 

fermentation, kinetic and optimization studies, crystallization and analytical 

procedures. 

 

Chapter Four discussed the experimental result together with the data analysis 

of various operating condition and process parameters. The detail explanations of the 

result are been divided into three main processes; hydrolysis, fermentation and 

crystallization. The kinetics and optimization of fermentation process using 

Response Surface Methodology have been discussed through this section. Each of 

the result will be followed by the discussion and comparison between the present 

results and the results obtained by others researchers.  

 

Chapter five gives the overall conclusion based on the result obtained in 

Chapter 4. Recommendations for future research are also given in the chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 OIL PALM RESIDUES 

2.1.1 Processing and residues characteristic 

Oil palm is a multipurpose plantation and also a prolific biomass producer 

which can be used as raw materials for value added industries (Basiron and Simeh, 

2005). Fresh fruit bunch contains only 21% palm oil, while the rest are 6-7% palm 

kernel, 14-15% fiber, 6-7% shell and 23% empty fruit bunch (EFB) left as biomass 

(Umikalsom et al., 1997). Oil palm residues (including shell, fibre and kernel) are 

cheap and abandoned materials produced during palm oil milling process (Figure 

2.1). About 80% of these solid wastes were used as boiler fuel in many industries 

and 20% were left behind (Pansamut et al., 2003). 

 

 

Figure 2.1 Palm oil residues generated from oil palm plantation (Sumathi et al., 
2008) 
 

Oil palm plantation 

Fresh fruit bunch Oil palm trunk 

Empty fruit bunch 

Oil palm frond 

Palm press fiber 

Palm kernel cake  Palm kernel shell 

Mesocarp fiber 
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Oil palm empty fruit bunch (OPEFB) is generated as waste material by palm 

oil mills which consist of fibers. The fibrous materials were physically stick together 

to form vascular bundles. EFB from the mill contains 30.5% lignocellulose, 2.5% oil 

and 67% water. The main constituents of the lignocellulose were cellulose (45%), 

hemicellulose (32.8%) and lignin (20.5%). Of the hemicellulose, pentosan was 

27.3%. It is estimated that oil palm empty fruit bunch comprises of 24% xylan, a 

sugar polymer made of pentose sugar (Muthurajah, 1981; Husin et al., 1985; Ellis 

and Paszner, 1994). 

 

Oil palm fiber is a non-hazardous biodegradable material extracted from oil 

palm empty fruit bunch (EFB) through decortication process. The fibers are clean, 

non-carcinogenic, free from pesticide and soft parenchyma cells. The empty fruit 

bunch is normally composed of a main stalk and numerous sharp and spines 

spikelets. The fresh sterilized EFB holds about 65% moisture, 30% dry matter and 2-

5% crude palm oil (Husin et al., 2002). 

 

Oil palm fronds are available daily throughout the year when the palms were 

pruned during the harvesting of fresh fruit bunch. Oil palm trunk is obtained during 

the replanting of the oil palm trees. EFB, mesocarp fiber and shell were collected 

during the pressing of sterilized fruits (Gurmit et al., 1999). 

 

2.1.2 Oil palm residues in environmental matrices: general consideration 

The oil palm industries produced more than one hundred million tonnes of 

residues worldwide. One hectare of oil palm plantation generates about 21.62 tonnes 

per year of biomass residues. Fronds and EFB were the most residues produced 
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which was 50.31% and 20.44%, respectively (Singh et al., 1999; Saka, 2005; Goyal 

et al., 2006). 

 

The utilization of biomass residues from palm oil by-products (fiber & shell) 

as fuel source were identified as the main cause of the emission released. 

Economically, the usage of palm residues as fuel is seen as productive as this 

material will not be wasted. However the combustion process in the furnace of the 

boiler released the emission of particulate matters (PM), carbon monoxide (CO), 

nitrogen oxide (NOx) and sulphur dioxide (SOx). Due to that, monitoring and control 

of these pollutants from the palm oil mill is of great concern to the community 

(Prasertsan and Prasertan, 1996). 

 

The residues generated at the palm oil mills such as empty fruit bunches, 

fibres and kernel shells can be used to produce electricity to supply the national grid. 

Technologies are now available to harness the biogas from effluent ponds of the 

mills for power generation. If the biogas is fully exploited, more of the fibre and 

kernel shell can be alternatively used for power generation to supply the national grid 

or for composite fibreboard production. In the future, the carbon credit derived from 

the use of biogas and biomass for power generation may contribute further revenue 

to the country. For example, methane (biogas) fetches USD 10/tonne of tradable 

carbon under the Kyoto Protocol when it came into effect in the year 2008 (Basiron 

and Simeh, 2005). 

 

MPOB research has also shown that palm oil is a good source for liquid fuel. 

It has been established that CPO can be burnt as fuel. During the 2001 downturn in 
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palm oil prices, it was also shown that CPO can be blended with medium fuel oil to 

be used as fuel for boilers. Up to 6518 tons of CPO was burnt as fuel in the national 

utilities power plant at Prai, Pulau Pinang. The bigger potential is in respect of 

conversion of palm oil into methyl esters (palm diesel). Road trials involving buses 

have shown that it can be used as a diesel substitute with positive environmental 

effects. The palm diesel plant can also produced beta carotenes and vitamin E that 

can contribute to the viability of the biodiesel project. The other option that MPOB 

research has unfolded is the possibility of blending processed palm oil with diesel 

(5%-10%). Malaysia is currently in the process of preparing the regulatory 

framework to enable the government to mandate the use of biofuel when the 

situation warrants such an intervention (MPOC, 2008). 

 

2.1.3 Oil palm residues and potential utilization 

The supply of oil palm residues from the oil palm and palm oil processing by-

products is seven times the availability of natural timber. Each year, the oil palm 

industries in Malaysia generate more than 30 million tonnes of residues in the forms 

of empty fruit bunches, oil palm trunks and oil palm fronds. Palm residues such as 

empty fruit bunches and trunks are being used for commercial products (e.g. pulp 

and paper, medium density fibreboard, automotive components etc.). Effective 

utilization of palm residues into value-added products has the potential to generate 

another RM 20 billion in the next 10-15 years (Basiron and Simeh, 2005). 

 

Currently, oil palm residues are converted into various types of value added 

products via several conversion technologies that are readily available. For example, 

fibers from EFB were found to be an ideal material for the making of mattresses, 
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seats, insulation and etc (Basiron and Simeh, 2005). EFB has been investigated as a 

raw material for building materials, solid fuel pellets, chemical products, 

particleboard, fiberboards, blockboard, and pulp and paper (Muthurajah, 1981; 

Kobayashi et al.,1985; Husin et al., 1985; Gabriele, 1995). 

 

The latest researches by MPOB onto EFB are to convert EFB into paper-

making pulp. The pulp is then bleached using the total chlorine-free (TCF) methods 

to obtain sheets of paper. Pulp and paper from oil palm biomass can be used in many 

ways such as cigarette paper and bond paper for writing (Gurmit et al., 1999; MPOC 

2006). 

 

Palm fibers are versatile and stable and can be processed into various 

dimensional grades to suit specific applications such as mattress cushion production, 

erosion control, soil stabilization/compaction, landscaping and horticulture, ceramic 

and brick manufacturing, thermoplastic filler, flat board manufacturing, paper 

production, acoustics control, livestock care, compost, fertilizer and animal feed 

(Sumathi et al., 2008). 

 

Oil Palm Ash (OPA) produced from incinerating the empty fruit bunch were 

used as fertilizer due to its high organic and nutrient content beneficial to crop. In the 

other cases, fibers, shell and empty fruit bunches were used as a source of energy for 

the processing mill itself to generate heat and electricity (Yusoff, 2006). 

 

The research by local scientist proved that palm kernel, EFB, palm shells and 

stones can be converted to oil palm activated carbon (Jia and Aik, 2002; Jia and Aik, 
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2000). The oil palm activated carbon has been used to treat toxic air such as carbon 

monoxide (CO) and SOx (Sumathi et al.,2008). 

 

The oil palm trunk is converted to various types of wood such as saw-wood 

and ply-wood or lumber. Oil palm lumber has been successfully utilized as core 

residues in the production of blackboard. The sawn-wood produced from oil palm 

can be used to make furniture but not for building structure due to its low specific 

density. Oil palm trunk also has been used to produce particleboard with chemical 

binders. Some of the trunks were mixed with EFB and oil palm press fiber to be 

combusted and produced energy (Gurmit et al., 1999). 

 

Oil palm fronds were also a source of food for ruminants (cattle and goats). 

Fronds were left to rot in between the rows of oil palm trees in the plantation for soil 

conservation, increased the fertility of the soil, increased the amount of water 

retained in the soil, erosion control and provide a source of nutrient to the growing 

oil palm trees (nutrients is recycled as a long term benefits) (Husin et al., 2002). 

 

Palm oil mill effluent (POME), a high volume liquid waste which are non 

toxic has been used for cellulase production. Cellulase was identified as one of the 

key enzyme degrading cellulose (Kotchoni et al., 2003). It finds extensive 

application in food, fermentation and textile industries (Muthuvelayudham and 

Viruthagiri, 2006). 

 

Oil palm biomass can also be potential feedstock raw materials to chemical 

and biochemical industry. The cellulose component can be hydrolyzed to yield 
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glucose from which ethanol, citric acid, butanol and other single cell protein can be 

obtained through chemical and microbiological transformation. Hemicelluloses, also 

present in the biomass can yield pentoses especially xylose which upon hydrolysis 

can be converted to xylitol, furfural, furan, resins and furfuryl alcohol. The lignin 

fraction of oil palm biomass is a potential source of phenolic resins (Basiron and 

Simeh, 2005). 

 

However, these renewable materials can be alternatively used for producing 

valuable chemical products (fuel, and chemical feedstock) by applying the 

thermochemical conversion process, including pyrolysis, liquefaction and 

gasification as well as supercritical fluid extraction methods (Yaman, 2004). 

 

2.2 LIGNOCELLULOSIC MATERIALS  

Lignocellulosic material is an abundant and inexpensive source of sugar 

which can be microbiologically converted to industrial products such as fuel alcohol, 

chemical and protein for food and feed purpose. Lignocellulosic biomass, such as 

corn stover, wheat bran, sugar cane baggase and oil palm empty fruit bunch were 

easily available and produced in a large scale in the agriculture developing country. 

It can be directly or indirectly used for the production of biomolecules and 

commodity chemicals. However, some of these applications were limited by the 

close association exist among the three main components in lignocellulosic: 

cellulose, hemicellulose and lignin. Therefore clear understandings of the chemistry 

towards identifying the reason why it was so resilient to biological process such as 

hydrolysis and fermentation is urgently needed (Ramos, 2003). 
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2.2.1 Cellulose 

Cellulose is a straight chain polymer that consists of glucose unit linked 

together by β (1-4) glycosidic bonds (Figure 2.2). It is an insoluble molecule 

consisting of 2000 - 14000 residues. The size of cellulose molecule is given in terms 

of its degree of polymerisation. However conformational analysis of cellulose 

indicated that cellobiose is the basic structural unit rather than glucose (Ramos, 

2003). 

Cellulose is found in large amounts in nearly all plants, and is potentially a 

major food source. The cellulose chain bristles with polar -OH groups. These groups 

form many hydrogen bonds with OH groups on adjacent chains, bundling the chains 

together. The chains also pack regularly in places to form hard, stable crystalline 

regions that give the bundled chains even more stability and strength. The effect of 

the bonding by hydrogen bond increased the rigidity of cellulose and causes the 

cellulose highly insoluble in most solvent (Jeoh, 1998). 
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Figure 2.2 Structure of cellulose (Xiang et al., 2004) 

2.2.2 Hemicellulose 

Hemicellulose is the second most abundant natural polysaccharides after 

cellulose. It comprises of one fourth to one third of most plant materials and this 

amount will vary according to the particular plant species. Hemicelluloses are linear 
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polymers composed of cyclic 5-carbon and 6-carbon sugars (polysaccharides).  They 

are mainly composed of pentose (xylose, rhamnose and arabinose) and hexose 

(glucose, mannose and galactose) sugars which can be reduced to monomeric sugars 

primarily to xylose and glucose by hydrolysis with mineral acid (Saha, 2003). 

 

 Hemicellulose is considerably easier to hydrolyze than cellulose. Studies 

have shown that hydrolysis of hardwood hemicellulose at 120-140 oC using 2.5% 

H2S04 gave xylose yields exceeding 80% in most cases (Kim and Lee, 1987).  

 

Many studies utilized the hemicellulose portion of agriculture residues like 

Eucalyptus grandis (Silva et al., 1998a), rice straw (Roberto et al., 1994), aspen 

wood hemicellulosic hydrolyzate ( Preziosi-Belloy et al., 2000), barley bran (Cruz et 

al., 2000), hybrid polar wood chips (Dominguez et al., 1997), and corn cobs (Rivas 

et al., 2003) for xylitol production. 

 

The hemicellulose content of softwoods and hardwood differ significantly 

(Fengel and Wegener, 1989). Hardwood hemicellulose mainly composed of highly 

acetylated heteroxylan, generally classified as para-o-methyl glucoronoxylan. 

Hexosans were also present but only in small amount (Ramos, 2003). In contrast, 

softwoods have two principal hemicelluloses: galacto-glucomannan (70% mannan), 

which made up approximately 60% of the total hemicellulose content, and arabino-4-

0-methylglucuronoxylan (65% xylan), which constitutes the remaining 40%. The 

amount of galactose/mannan and arabinan/xylan was used to estimate the quantities 

of the major and minor hemicellulose component of the wall (Timell, 1967; Highley, 

1987). Softwood hemicellulose contained a high proportion of mannose units and 
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more galactose unit than hardwood hemicellulose whereas hardwood hemicellulose 

contained a high proportion of pentose (Fengel and Wegener, 1989). 

 

 Xylan is a major constituent of hemicellulose (Figure 2.3). It is a 

polysaccharide that can be hydrolyzed into D-xylose, which is also known as wood 

sugar. Xylan consists of about 200 β-xylopyranose residues, linked together by 1, 4-

glycosidic bonds. However they contain smaller propartions of uronic acid, but are 

more highly branched and contain large proportion of L-arabinofuranosyl unit (Saha, 

2003). 
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Figure 2.3 Structure of Xylan Hemicellulose (Sigma Aldrich, 2008) 

 

2.2.3 Lignin 

In plant tissues, hemicelluloses are generally combined with lignin (Fengel 

and Wegener, 1989). Lignin is a three dimensional polymer of aromatic compounds 

covalently linked with xylan in hardwood and galactoglucomannan in softwoods 
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(Garg et al., 2007). Its structure composed of phenylpropane monomer namely para-

coumaryl alcohol, coniferly alcohol and sinaply alcohol, which were generally 

referred as cinnamyl alcohol, and were commonly called lignin C9-units (Figure 

2.4). It contributes to approximately 15% to 35% of the dry mass of softwoods, 

hardwoods and woody grasses. Lignin is deposited between individual wood fibers 

and act as an intercellular adhesive, binding individual wood fibers together. Lignin 

was usually insoluble in all solvents, unless it is degraded by physical or chemical 

treatments (Ramos, 2003). 
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Figure 2.4 Structures of lignin monomer (Deacon, 1997) 

 

2.3 HYDROLYSIS OF LIGNOCELLULOSIC MATERIALS 

Hydrolysis is a process of splitting compound into fragment by the addition 

of water. In acid hydrolysis process, acid is used as a catalyst in the splitting process. 

The hydrolysis process in dilute acid medium is very complex, as the substrate is in a 

solid phase and the catalyst in a liquid phase. Dilute acids leads to a limited 

hydrolysis, this occurs in the hydrolysis of hemicellulosic fraction, leaving the 

cellulose and lignin fraction almost unaltered (Karimi et al., 2006) 
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Dilute acid hydrolysis appeared to be in the best position from the economic 

viewpoint (Wyman, 1994). Therefore using selected operational condition, it is 

possible to hydrolyze almost quantitatively hemicelluloses leaving the cellulose and 

lignin in the solid residue, which can be processed for the conversion of glucose 

solution to ethanol through fermentation process (Parajo et al., 1995) and the 

production of paper pulp (Grethlein and Converse, 1991). 

 

Sulphuric acid (Nguyen et al, 2000), hydrochloric acid (Springer, 1966), or 

acetic acid (Conner and Lorenz, 1986) are acids commonly employed as catalysts. 

These acids released protons that break the heterocyclic ether bonds between the 

sugar monomers in the polymeric chains formed by the hemicelluloses and cellulose. 

The breaking of these bonds released several compounds, mainly sugars such as 

xylose, glucose and arabinose. Other compounds released are oligomers, furfural and 

acetic acid. A quantitative hydrolysis of the hemicelluloses can be performed almost 

without damage to the cellulose because the bonds in hemicelluloses are weaker than 

in cellulose (Bungay, 1992). 

 

In dilute-acid hydrolysis the hemicellulose fraction is depolymerized at lower 

temperatures than the cellulose fraction. If higher temperatures (or longer residence 

times) were applied, the formed monosaccharide from the hemicellulose will degrade 

(Saeman, 1945), which gave rise to furan compounds and carboxylic acids 

(Taherzadeh et al., 1997; Larsson et al., 1999). 

 

The degradation of hemicellulose is a gradual process during acid hydrolysis 

treatment in which long polymers are gradually degraded to oligosaccharides and 
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finally monosaccharide. The oligosaccharides are rather short-lived (Lee et al., 

1999), and very often they are not analyzed. The liquid phase, containing the 

monosaccharide, is removed between the treatments, thereby avoiding degradation of 

the monosaccharide formed. Avoiding degradation of monosaccharide is important, 

not only to improve the yield, but also to avoid inhibition problems, since the 

degradation products are toxic to the fermenting microorganisms (Taherzadeh et al., 

2000; Larsson et al., 1999). 

 

Acid hydrolysis process was developed to use less severe condition to 

achieve high xylan to xylose conversion yields. Achieving high xylan to xylose 

conversion yield is necessary to achieve favorable overall process economics 

because xylan accounts for up to a third of the total carbohydrate in many 

lignocellulosic materials. It was also reported that the amount of sugar released 

during hydrolysis depend on the type of raw material and operating condition of the 

experiment. As a consequence, the amount of sugars recovered from the raw material 

is dependent on the reaction time, temperature and acid concentration (Pessoa et al., 

1996). According to Neureiter et al., (2002), acid concentration was the most 

important parameter affecting sugar yield, while for the formation of sugar 

degradation products, temperature had the highest impact. Normally, dilute acid 

hydrolysis was carried out at temperature between 120 oC and 200 oC.  

 

2.3.1 Inhibitors 

Hydrolysis process of hemicellulosic fraction produced pentose sugar mainly 

xylose and arabinose. However, this also results in the formation of inhibitory 

degradation by-products such as acetic acid, furfural and hydroxylmethylfurfural. 
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The amount and nature of inhibiting compounds depend on the raw material, the 

hydrolysis procedure and the reaction time in the hydrolysis process (Olsson and 

Hahn-Hagerdal, 1996). 

  

Leonard and Hajny (1945) reported that there are four classes of inhibitors 

which are: 

1. minerals and metals that contain in lignocellulosic materials or resulting 

from the corrosion of the hydrolysis equipment 

2. product derived from the hydrolysis of hemicellulose such as acetic acid, 

furfural and hydroxymethylfurfural 

3. product derived from lignin degradation such as phenolic compound, 

aromatic acid and aldehydes and 

4. compounds derived from extractives such as vanillic, syringic, caproic 

and palmitic acid  

 

Inhibitors contained in lignocellulose hydrolyzates could limit the 

consumption of the carbon source, reduced the growth kinetic, or even hinder the 

fermentation process. Occasionally, inhibition was a result of synergistic effects. The 

direct neutralization of neutralized hydrolyzates (without further processing) usually 

reduced the efficiency of fermentation, both the growth and the product formation 

being affected (Frazer and McCaskey, 1989; Olsson and Hahn-Hagerdal, 1996). 

 

Acetic acid (CH3COOH) was released from the hydrolysis of the acetyl group 

in the hemicellulose, as a consequence of deacetylation of acylated pentosan 

(Taherzadeh, 1999).  Since acid was not further hydrolyzed, the formation of acetic 
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acid depends on temperature and pressure of dilute acid hydrolysis until the acetyl 

group was fully hydrolyzed.  Its inhibitory action depends on the concentration of the 

undissociated form, which was a function of both concentration and pH. At acidic 

pH, acetic acid can diffuses into cell cytoplasm, where it dissociates and lower the 

intracellular pH, resulting in uncoupled energy production and impaired transport of 

various nutrients with increased ATP requirement. Acetic acid interference results in 

an increased in the ATP required for this maintenance function, as well as interferes 

with the cell morphology. Lawford and Rousseau (1998) reported that acetic acid 

toxicity is related to the ability of undissociated (protonated) weak acid (pKa= 4.75) 

to transverse the cell membrane and to act as a membrane protonophore, which 

causes acidification of the cytoplasm.  

 

Based on previous study on the bioconversion of xylose to xylitol, employing 

C. guilliermondii FTI20037 cultivated in semi synthetic medium revealed that the 

acetic acid concentration determined its degree to toxicity, since a concentration as 

low as 1.0 g/L favoured the bioconversion, while the concentration higher than 3.0 

g/L inhibited xylose consumption and xylitol formation. Studying the inhibitory 

effect of acetic acid (6 g/L) using a synthetic medium containing xylose, and found 

that the xylitol yield was 0.66 g/g with a volumetric productivity of 0.38 g/L/h 

(Felipe et al., 1995). 

 

Furfural and hydroxymethylfurfural were also released in the hydrolyzate 

from hexose degradation causing delayed of the fermentation process or ultimate 

death of the organism (Figure 2.5). Furfural has been shown to reduce the specific 


	cover
	front page
	thesis edit
	APPENDIX



