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PEMBANGUNAN PENJANAAN DATA UJIAN DAN STRATEGI PELARIAN 
AUTOMATIK MENGGUNAKAN PENDEKATAN BERGABUNGAN 

 
 

ABSTRAK 
 
 

Untuk memastikan tahap piawaian jaminan kualiti dan keboleharapan sesuatu 

perisian, pengujian hendaklah dijalankan untuk setiap konfigurasi. Tetapi, masalah 

letupan konfigurasi tidak memungkinkan pertimbangan keseluruhan terhadap semua 

nilai data ujian. Kekangan sumber, masalah kos, dan masa untuk dipasarkan yang 

ketat adalah merupakan antara faktor yang menghalang terhadap pertimbangan 

keseluruhan itu.  Penyelidikan terdahulu menyimpulkan bahawa strategi persampelan 

berdasarkan interaksi t-cara antara parameter adalah sangat efektif.  Berdasarkan 

kesimpulan ini, terdapat banyak strategi t-cara yang sedia ada telah dihasilkan. 

Bidang penyelidikan ini mengalami pertumbuhan yang pesat sejak 10 tahun yang 

lalu dalam membantu proses perancangan ujian, terutamanya dalam mengurangkan 

data ujian yang perlu digunakan secara sistematik berdasarkan sesuatu interaksi t-

cara yang terpilih. Walaupun terdapat banyak kemajuan, integrasi dan automasi 

strategi daripada proses perancangan dan pengujian amat tidak dititik beratkan. 

Dalam praktis sekarang, data ujian yang disampel perlu diekstrak secara manual dan 

ditukarkan dalam format tertentu sebelum ia boleh dilaksanakan (sama ada oleh 

penguji sendiri, atau alatan perisian daripada pihak ketiga). Masalah integrasi dan 

automasi ini amat menyusahkan kerja jurutera pengujian terutamanya apabila modul 

yang perlu diuji adalah bersaiz besar. 

Selain daripada isu berkaitan integrasi dan automasi, perancangan untuk persampelan 

dan pembinaan data ujian yang paling minima daripada keseluruhan data ujian adalah 

juga masalah lengkap NP.  Oleh yang demikian, tidak mungkin akan ada strategi bagi 



 xii

menghasilkan data ujian yang optimal untuk setiap kes data ujian.  Bagi menyahut 

cabaran yang digariskan di atas, tesis ini membincangkan rekabentuk, implementasi, 

dan penilaian, strategi GTWay untuk menerbitkan data ujian t-cara yang optimum. 

Tidak seperti strategi yang lain, GTWay dapat membantu proses perancangan dan 

larian data ujian secara automatik (serentak) yang diintegrasikan sebagai sebahagian 

daripada implementasinya. Keputusan empirikal membuktikan GTWay, dalam banyak 

keadaan, mengatasi strategi sedia ada dalam aspek penghasilan data ujian yang 

minima. Julat masa penghasilan ujian data juga adalah berpatutan seiring dengan 

perancangan dan larian ujian yang diintegrasikan.  
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DEVELOPMENT OF AN AUTOMATED TEST DATA GENERATION AND 
EXECUTION STRATEGY USING COMBINATORIAL APPROACH 

 
 

ABSTRACT 

To ensure acceptable level of quality and reliability of a typical software product, it 

is desirable to test every possible combination of input data under various 

configurations. Due to combinatorial explosion problem, considering all exhaustive 

testing is practically impossible. Resource constraints, costing factors as well as strict 

time-to-market deadlines are amongst the main factors that inhibit such 

consideration. Earlier work suggests that sampling strategy (i.e. based on t-way 

parameter interaction) can be effective. As a result, many helpful t-way sampling 

strategies have been developed in the literature.  

Much useful advancement has been achieved in the last 10 years particularly to 

facilitate the test planning process, that is, in terms of systematically minimizing the 

test data to be considered for testing (i.e. based on some t-way parameter 

interactions). Despite such a significant progress, the integration and automation of 

the strategies from the planning process to execution appears to be lacking. In the 

current practice,  the sampled test data need to be manually extracted and converted 

to some acceptable format before they can be executed (e.g. by a human tester, a 

code driver or a third party execution tool). This lack of integration and automation 

between test planning and execution can potentially burden the test engineers 

especially if the software module to be tested is significantly large. 

Apart from integration and automation issues, strategizing to sample and construct 

minimum test set from the exhaustive test space is also a NP complete problem (i.e. 

nondeterministic polynomial). As such, it is often unlikely that efficient strategy 

exists that can always generate optimal test set. Motivated by such challenges, this 
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paper discusses the design, implementation, and validation of an efficient strategy, 

called GTWay. GTWay, unlike other strategies, supports both t-way test generation 

and automated (concurrent) execution integrated within the strategy itself. Empirical 

evidences demonstrate that GTWay, for some cases, outperforms other strategies in 

terms of the number of generated test data. The test generation time is also within 

reasonable value considering the fact that some overhead is required to permit the 

integration between test generation and execution.  
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CHAPTER 1 

INTRODUCTION 

Computing technology has gone a long way since the first Babbage computer. 

Today, many chores that were once manual have been taken over by computers. 

Factories use computers to control manufacturing equipments. Electronics 

manufacturing use computers to test everything from microelectronics to circuit card 

assemblies.   

Software is one of the major components that drive the functionality and automation 

of computers. Here, software can be viewed as a collection of written program, 

functions, and procedures that enable the user to accomplish the task at hand.  From 

washing machine controllers, mobile phone applications to sophisticated airplane 

control systems, software is becoming an indispensable part of our lives.  

Imagine the world without software. For instance, our household washing machine 

may still be bulky as the controls may be composed of all mechanical switches. 

Similarly, our hand phone without software may have too limited capabilities to be 

useful. As these two examples illustrate, software (whenever possible) are becoming 

increasingly popular replacement for its hardware counter parts. 

Our growing dependency on software can be attributed to a number of factors. 

Unlike hardware, software does not wear out. Thus, the use of software can help to 

control maintenance costs. Additionally, software is also malleable and can be easily 

customized as the need arises. 

Nevertheless, the fact that software is malleable and can be easily customized can 

also be a burden.  Here, testing is often sought for to ensure quality (i.e. whether or 
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not the software is reliable and meets its specification). In the next section to come, 

this chapter will highlight an overview of software testing and the problem statement 

in order to set the scene of the work undertaken in this research work. Additionally, 

this chapter also highlights the roadmap of the thesis. 

1.1 Overview of Software Testing 

Covering as much as 40% to 50% of the development costs, software testing is an 

integral part of software engineering lifecycle. In a nut shell, software testing can be 

viewed as the process of executing a program with the intent to find error (Myers, 

2004). Putting the overall picture as far as the overall software engineering product 

lifecycle is concerned, software testing can be viewed as the following (see Figure 1-

1). 

 

Figure 1-1 Software Engineering Product Lifecycle  
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Referring to Figure 1-1, software engineering product lifecycle starts with the 

requirement elicitation phase. Here, the customers and stakeholders interact with the 

requirement engineers to produce the software specifications.  Based on the 

specifications, software engineers and programmers collaborate to produce software 

design and implementations. This activity occurs in the implementation phase. 

Software testing falls under the validation phase which may occur in parallel with the 

requirement elicitation phase and implementation phase. The independent 

verification and validation (V&V) team needs to consult the requirement engineers 

for software specification. Based on the software specification, the V&V team 

produces the test cases to be executed against the software implementation. If the 

execution results satisfy the requirement specification, then the software is ready to 

be released, otherwise, some additional work need to be done to the design and 

implementation until conformance is achieved.  

As seen above, the purpose of testing is not to prove anything, rather to reduce the 

perceived risk of not working to an acceptable value. The key challenges in software 

testing are not only dependent on the actual execution of the test cases but also the 

production of quality test cases. 

1.2 Problem Statements 

Covering as much as 40 to 50 percent of the development costs and resources 

(Beizer, 1990, Kaner et al., 1999, Pan, 1999), testing can be considered as one of the 

most important activities in product development for both software and hardware 

(Bryce et al., 2005, Tsui and Karam, 2007). In order to ensure accepted quality and 

reliability, many combinations of possible input parameters, hardware/software 
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environments, and system conditions are tested and verified against for conformance 

based on system’s specification (Cohen et al., 2007a, Cohen et al., 2007b). 

Lack of testing can lead to disastrous consequences including loss of data, fortunes, 

and even lives. For instance, consider the accident that occurred during the European 

Space Agency’s launching of Ariane 5 in 1996. Investigation by independent 

researchers from Massachusetts Institute of Technology reveals that the disaster is 

caused by the mismatch of the hardware and software component faults (Lions, 

1996). The component erroneously puts a 64 bit floating point number in to a 16 bit 

space, causing overflow error. This overflow error affected the rocket’s alignment 

function, and hence, causing the rocket to veer off course and eventually exploded a 

mere 37 seconds after lift off. 

Despite its importance, exhaustive testing is impossible due to the fact that the 

number of test cases can be exorbitantly large (Chaudhuri and Zhu, 1992, Copeland, 

2004, Roper, 2002) even for simple software and hardware products. Consider a 

hardware product with 20 on/off switches. To test all possible combination would 

require 220 = 1,048,576 test cases. If the time required for one test case is 5 minutes, 

then it would take nearly 10 years for a complete test.  

The same argument is applicable for any software system.  As illustration, consider 

the option dialog in Microsoft Excel software (see Figure 1-2). Even if only View tab 

option is considered, there are already 20 possible configurations to be tested. With 

the exception of Gridlines colour which takes 56 possible values, each configuration 

can take two values (i.e. checked or unchecked). Here, there are 220x56 (i.e. 

58,720,256) combinations of test cases to be evaluated. Using the same calculation as 
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the previous example, it would require nearly 559 years for a complete test of the 

View tab option. 

 

Figure 1-2 Microsoft Excel View Tab Options  
 

The above mentioned examples highlighted the common combinatorial explosion 

problem in software testing. Given limited time and resources, the research questions 

are: 

• What are the smaller optimum sets of (sampled) test data to be considered for 

testing? 

• How can one decide (i.e. the strategy) on which combination of data values to 

choose over large combinatorial data sets? 

• Will the test coverage be significantly affected by using lesser combinatorial data 

sets? 
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Combinatorial explosion problem (Cohen et al., 1997, Cohen et al., 2006b, Colbourn 

et al., 2004, Tai and Lei, 2002) poses one of the biggest challenges in modern 

computer science due to the fact that it often kills traditional approaches to analysis, 

verification, monitoring and control. A number of techniques have been explored in 

the past to address the combinatorial explosion problem. Undoubtedly, parallel 

testing (e.g. (ITL/NIST, 2008, Younis et al., 2009)) can be employed to reduce the 

time required for performing the tests. Nevertheless, as software and hardware are 

getting more complex than ever, parallel testing approach becomes immensely 

expensive due to the need for faster and higher capability processors along state-of-

the-art computer hardware. Apart from parallel testing, systematic random testing 

could also be another option (Antony, 2003, Duran and Ntafos, 1984, Schroeder et 

al., 2004, Tseng et al., 2001). However, systematic random testing (e.g. (Ammann 

and Offutt, 1994)) tends to dwell on unfair distribution of test cases.  

Earlier work (e.g. (Bryce and Colbourn, 2006, Dalal et al., 1999, Kuhn and Okum, 

2006, Kuhn and Reilly, 2002, Kuhn et al., 2004, Yan and Zhang, 2008)) suggests 

that from empirical observation, the number of input variables involved in software 

and hardware failures is relatively small (i.e. in the order of 3 to 6), in some classes 

of system.  If t or fewer variables are known to interact and cause fault (Ellims et al., 

2008b), test data can be generated on some t-way combinations (i.e. resulting into a 

smaller set of test data for consideration). 

As will be seen in Chapter 2, a number of useful strategies have been reported to 

facilitate the test planning process, that is, in terms of systematically minimizing the 

test data to be considered for testing (i.e. based on some t-way parameter 

interactions). However, the integration and automation of the existing strategies from 

the planning process to execution appears to be lacking. In the current practice,  the t-
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way sampled test data need to be manually extracted and converted to some 

acceptable format before they can be executed (e.g. by a human tester (Binder, 2000, 

Dustin et al., 1999, Fewster and Graham, 1999), a code driver or a third party 

execution tool (Li and Wu, 2004)). This lack of integration and automation between 

test planning and execution can potentially burden the test engineers especially if the 

software module to be tested is significantly large. 

In addition to integration and automation issues, strategizing to sample and construct 

minimum test set from the exhaustive test space is also a NP complete problem 

(Shiba et al., 2004, Tai and Lei, 2002). As such, it is often unlikely that efficient 

strategy exists that can always generate optimal test set. Motivated by such 

challenges, this research work is devoted to investigate an optimum strategy, called 

GTWay, for systematic t-way test data generation (and reduction).  Unlike earlier 

work, GTWay supports both the test planning process and the automated 

(concurrent) execution integrated within the strategy itself. In short, using t-way 

strategy is useful to systematically detect faults in a particular software system is the 

main hypothesis on this thesis.    

1.3 Thesis Aim and Objectives 

The main aim of this research is to develop and evaluate a general t-way test data 

generation and execution strategy, called GTWay, for software configuration testing.   

The main objectives of the work undertaken were: 

i. To develop and implement the GTWay strategy as a prototype 

implementation tool. 
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ii. To investigate automatic execution, when actual values are used, as part of 

the GTWay strategy. 

iii. To investigate and compare the performance of GTWay strategy in terms of 

test size as well as execution time against existing works. 

1.4 Thesis Outline 

The remainder of this thesis is organised into five chapters as follows. 

Chapter 2 presents an overview as well as highlights the main characteristics of t-

way strategies. Using the characteristics, a survey of existing t-way strategies is 

provided including that of a special case for t-way strategies, the pairwise testing. 

Towards the end of Chapter 2, an analysis of existing work is presented which 

provides the requirements and justification for the development of GTWay.  

Chapter 3 discusses and justifies the detailed algorithms and implementation for 

GTWay based on the requirements from Chapter 2. Here, issues related to the 

enabling automated execution are also explained. Additionally, the prototype 

implementation is also discussed in order to highlight its usage. 

In Chapter 4, a detailed account for evaluating GTWay is presented. Here, the 

correctness of GTWay strategy will be evaluated. Apart from the correctness 

evaluation, a comparative study on the effectiveness of pairwise testing versus t-way 

testing will be highlighted using suitable case studies.  Additionally, GTWay will 

also be compared against existing strategies in terms of the number of generated test 

data as well as execution time both as a pairwise strategy and as a general t-way 

strategy. 
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The conclusion of this work is given in Chapter 5, where the achievements, 

contributions and problems are summarised. Additionally, the main research 

hypothesis is revisited and the usefulness of GTWay is debated. Conclusions are 

drawn from the experience gained from this work and the significance of findings 

along with considerations for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

The previous chapter has established the needs for software testing (i.e. for 

evaluating conformance and ensuring reliability), and highlighted the possible 

catastrophic aftermaths due software failure (i.e. including fortune and data losses as 

well as human fatality).  In doing so, the previous chapter has also advocated the fact 

that testing for all combination of parameters, although desirable, is infeasible due to 

lack of resources as well as strict time-to-market constraints.  Thus, systematic 

strategies are required to reduce the number of test cases by selecting a subset of 

these combinations for sampling, executing and analyzing.  

In this chapter, these systematic strategies will be elaborated based on the t-way 

interaction of variables. Specifically, this chapter begins by giving an overview of 

the concept and terminology that will be used throughout this thesis. Next, the main 

characteristics of the combinatorial strategies will be identified in order to facilitate 

their survey and analysis. This survey and analysis is then used to provide 

justification for the development of GTWay, the strategy that is the basis of this 

thesis. Finally, this chapter closes by providing a short summary. 

2.1   Overview 

As discussed earlier, the main focus of the work described in this thesis is on the 

development of systematic test data minimization strategy based on (t-way) 

parameter interaction testing (or termed t-way testing). Here, the parameter 

interaction can be specified using a variable (t) indicating how strong the interaction 

is. 
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In order to illustrate how the variable t works, and hence demonstrate test data 

reduction, consider the following running example. 

 

Table 2-1 Running Example  

Input Variables 

A B C D 

a1 b1 c1 d1 Base Values 

a2 b2 c2 d2 

 

Here, let the input variable consists of a set X ={A,B,C,D}.  For simplicity, let us 

assume that the starting test case for X, termed base test case, has been identified in 

Table 2-1 (with 4 parameters and 2 values). Here, symbolic values (e.g. a1, a2, b1, 

b2, c1, c2) are used in place of real data values to facilitate discussion. 

In this case, at full interaction strength t= 4 (i.e. exhaustive combinations), the 

number of test cases = (the number of values) the number of parameters = 24 = 16. These 16 

exhaustive combinations can be generated based on a simple technique (see Table 2-

2). Here, one can view each variable as a column matrix. For column A, one must 

repeat the input a1 8 times followed by a2 (also 8 times) to reach 16. This is because 

there are 16 combinations with 2 specified inputs (i.e. 16/2 = 8 times). Now for 

column B, one must alternately repeat the input b1 4 times followed by b2 (also 4 

times) to reach 16.  Similarly, for column C, one must repeat c1 2 times followed by 

c2 (also 2 times) to reach 16. Finally, for column D, one can alternately repeat d1 and 

d2 to reach 16. 
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Table 2-2 Exhaustive Combinations (at t=4) 

Input Variables 

A B C D 

a1 b1 c1 d1 
 

Base Values 

a2 b2 c2 d2 

a1 b1 c1 d1 

a1 b1 c1 d2 

a1 b1 c2 d1 

a1 b1 c2 d2 

a1 b2 c1 d1 

a1 b2 c1 d2 

a1 b2 c2 d1 

a1 b2 c2 d2 

a2 b1 c1 d1 

a2 b1 c1 d2 

a2 b1 c2 d1 

a2 b1 c2 d2 

a2 b2 c1 d1 

a2 b2 c1 d2 

a2 b2 c2 d1 

Exhaustive 

Combinations

a2 b2 c2 d2 

 
 

Referring to Table 2-2, if parameter D is known to have insignificant effects on the 

system, then D input could be treated as don’t care value. Thus, D could randomly 

take either d1 or d2 respectively. Based on this premise, one can select only one 

instance of each input combination to cover 3-way combination for ABC at least 

once (at t=3). In this case, there are two possible combinations for 3-way covering of 

ABC. For instance, consider the input variable {a1,b1,c1}. The first ABC 

combination would be {a1,b1,c1,d1} and the second combination would be 
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{a1,b1,c1, d2}. In order to cover for t-way combination for ABC, one can randomly 

select any one of the aforementioned combinations. 

Using this technique, the number of combination can be reduced significantly. For 

instance, for 3-way combination ABC, the total test data can be reduced to merely 8 

(see Table 2-3). 

 

Table 2-3 3-Way Combinations for ABC 

Input Variables 

A B C D 

a1 b1 c1 d1 Base Values 

a2 b2 c2 d2 

a1 b1 c1 d1 

a1 b1 c2 d2 

a1 b2 c1 d1 

a1 b2 c2 d2 

a2 b1 c1 d1 

a2 b1 c2 d2 

a2 b2 c1 d1 

 

 

 

3-Way 

Combinations 

for ABC 

a2 b2 c2 d1 

 

In reality, nevertheless, it is often difficult to establish for certain which variable has 

insignificant effect on the system. Thus, it is necessary to consider the impact of 

other 3-way combinations as well. In this example, there are 4 possibilities for 3-way 

interactions: ABC, ABD, ACD, and BCD. Having considered ABC and using similar 

approach as before, we can also generate the values for other 3-way combinations 

ABD, ACD, and BCD (see Figure 2-1).   
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Figure 2-1 All 3-Way Combinations for ABC, ABD, ACD, and BCD 
  

Rather than considering each selective 3-way combinations separately, we can also 

consider the merger of all 3-way combinations (e.g. ABC, ABD, ACD, and BCD) in 

order to reduce the duplicates, hence, improving the interaction coverage (see Figure 

2-2). 
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Figure 2-2 Merging of all 3-Way Combinations for ABC, ABD, ACD, and BCD 

 

Referring to Figure 2-2, an obvious observation is the fact that the total test data has 

been minimized from 16 (at full interaction strength t=4) to 13 (at t=3), a reduction 

of 18.75%. While the reduction technique (or strategy) illustrated here can be helpful 

as far as minimizing the testing costs, a closer analysis reveals a number of 

limitations that can be improved further. 

First of all, the aforementioned reduction strategy produces a non-optimum solution 

as far as the 3-way interaction is concerned. Considering all possible 3-way pair 

combinations for the aforementioned running example yields the following result 

(see Table 2-4). 
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Table 2-4 3-Way Pair Combinations 

Interaction of 
Variables 

3-Way 
Combinations 

Interaction of 
Variables 

3-Way 
Combinations 

a1, b1,c1 a1,c1,d1 

a1,b1,c2 a1,c1,d2 

a1,b2,c1 a1,c2,d1 

a1,b2,c2 a1,c2,d2 

a2, b1,c1 a2, c1,d1 

a2,b1,c2 a2,c1,d2 

a2,b2,c1 a2,c2,d1 

ABC 

a2,b2,c2 

ACD 

a2,c2,d2 

a1, b1,d1 b1,c1,d1 

a1,b1,d2 b1,c1,d2 

a1,b2,d1 b1,c2,d1 

a1,b2,d2 b1,c2,d2 

a2, b1,d1 b2, c1,d1 

a2,b1,d2 b2,c1,d2 

a2,b2,d1 b2,c2,d1 

ABD 

a2,b2,d2 

BCD 

 

b2,c2,d1 

 

Analyzing the 3-way pair combinations (see Table 2-4) with the solution for all 3-

way combinations (given in Figure 2-2) gives the following 3-way pair occurrences 

(see Table 2-5).  
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Table 2-5 Analysis of 3-Way Combination Occurrences 

 
 

Interaction 
of 

Variables 

 
 

3-Way 
Combinations 

 
 

Occurrences 
of the 3-Way 

Combinations
  

 
 

Interaction 
of 

Variables 

 
 

3-Way 
Combinations 

 
 

Occurrences 
of the 3-Way 

Combinations
  

a1, b1,c1 2 a1,c1,d1 2 

a1,b1,c2 1 a1,c1,d2 2 

a1,b2,c1 2 a1,c2,d1 1 

a1,b2,c2 2 a1,c2,d2 2 

a2, b1,c1 2 a2, c1,d1 2 

a2,b1,c2 1 a2,c1,d2 1 

a2,b2,c1 1 a2,c2,d1 1 

ABC 

a2,b2,c2 2 

ACD 

a2,c2,d2 2 

a1, b1,d1 1 b1,c1,d1 2 

a1,b1,d2 2 b1,c1,d2 2 

a1,b2,d1 2 b1,c2,d1 1 

a1,b2,d2 2 b1,c2,d2 2 

a2, b1,d1 1 b2, c1,d1 2 

a2,b1,d2 2 b2,c1,d2 1 

a2,b2,d1 2 b2,c2,d1 2 

ABD 

a2,b2,d2 1 

BCD 

b2,c2,d1 2 

 

In this case, the all the 3-way pair combinations are covered (at least once as evident 

in their occurrences), indicating that the solution given in Figure 2-2 is correct. Here, 

the term covered are used to imply the parameter coverage and should not be 

confused with other terms commonly used in software testing (i.e. class coverage, 

method coverage, block coverage and line coverage). In this case, parameter 

coverage refers to whether or not all the t-way pair combinations are covered by the 

generated test data whereas the latter terms are used as an indication for test stopping 
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criteria. More on these issues will be highlighted in Chapter 4 when the case studies 

are demonstrated. 

Going back to the discussion parameter coverage, it is desirable to have occurrences 

of each 3-way pair combinations of at most once (i.e. some of the 3-way pair 

combinations in Table 2-5 are covered more than once). In this manner, the given 3-

way pair combinations are guaranteed to be the most optimum, hence, resulting into 

fewer combination (i.e. more test reduction). As highlighted earlier in Chapter 1, one 

of the key challenges of this research to get the most optimum results in every case 

regardless of the values of t. 

Although not highlighted here, there could be infinitely many possibilities of 

parameter inputs to consider as far as the selection of t is concerned. For example, 

there could be a case where some of the parameters take non-uniform values. In this 

manner, there is often no exact optimum solution, a typical strategy needs to be 

intelligent enough to be select amongst the best optimum solution.  For this reason, 

the research for an efficient strategy for getting an optimum solution is considered 

NP complete.  

The second limitation of the aforementioned strategy is the fact that it is based on 

exhaustive selection. If the number of parameters and its values are large, 

considering exhaustive combination can be a painstakingly long process. In fact, in 

some cases, it may be an impossible endeavour. 

Apart from the above, a number of general issues as far as t-way testing is concerned 

can be elaborated here.  If t is relaxed, more and more reduction can be possible. 

Here, the range of acceptable t values is between 2 and the maximum number of 

defined parameters (i.e. exhaustive case). To obtain the most minimum reductions 
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possible, there are significant efforts to focus only on t=2 (or termed pairwise 

testing) as a special case for t-way testing. Thus, in order to give a complete 

overview on t-way testing, pairwise testing will also be considered in detail later in 

this chapter.  

Finally, as demonstrated by the aforementioned running example, the overall t-way 

testing strategy can be adopted to rely solely on black box consideration, that is, no 

information of the source code is required for minimization. However, if the source 

code is available, this testing strategy can usefully be tailored enabling both black 

and white box supports (i.e. grey box). In this manner, more quality test input values 

can be considered as the base test data.  

Having given an overview of the issues relating to t-way testing, the next section 

highlights the classification and main characteristics of the existing t-way strategies 

in order to facilitate their survey and analysis. 

2.2   Classification and Issues on T-Way Strategies 

There have already been a number of attempts to classify the existing t-way 

strategies. Cohen et al. has classified the combinatorial strategies into two main 

groups (Cohen, 2004): 

• Algebraic strategies – strategies that exploit mathematical methods to build 

deterministic and optimal test suites. 

• Computational strategies – strategies that utilize computerized/iterative methods 

that generate (deterministic and non-deterministic) test suites. 
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Building and expanding the classification by Cohen, Grindal et al. has identified 

three main categories of combinatorial strategies (Grindal et al., 2005) based on the 

randomness of the implemented solution: 

• Non-deterministic – non-deterministic strategies share the property that for every 

execution, there is always a randomly generated combination suite to cover all 

the required t-way pairs. 

• Deterministic – deterministic combination strategies share the property that they 

produce the same test suite for every execution. 

• Compound – two or more combination strategies are used together. 

 

In their work, Grindal et al. also classifies the deterministic t-way strategies into 

three sub-categories based on how the test suites are created (Grindal et al., 2003, 

Grindal et al., 2005): 

• Instant – Here, the strategy produces the complete test suite directly in a single 

run. 

• Iterative – In this case, the strategy generates one test case at a time and adds it to 

the test suite. 

• Parameter-based – The strategy starts by creating a test suite for a subset of the 

parameters in the input parameter model. Then, one parameter at a time is added 

and the test cases in the test suite are modified to cover the new parameter. Here, 

completely new test cases may also need to be added in the end to ensure 

parameter coverage. 
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Here, unlike Cohen et al’s work, which are based on high level and external view of 

the t-way strategy, Grindal et al. capture the internal building of the existing t-way 

strategies (i.e. in terms of how the test suites the strategies works).  In this respect, 

Grindal’s work appears to be more focused than that of Cohen. 

Building and complementing from both Cohen et al and Grindal et al, this thesis 

presents an alternative and complementary characterization of the existing t-way 

strategies. Unlike Cohen et al and Grindal et al, our characterization solely takes the 

output test suite of each strategies into consideration (i.e. in terms of how random the 

test suite is), either as deterministic or non-deterministic. At a glance our 

characterization look similar to Grindal et al, however, a close look reveals some 

differences.  Unlike Grindal et al, our characterization does not deal with the internal 

building of the strategies (i.e. how the strategies are implemented as well as how they 

work) as we focus solely on the output (and not the strategy and its processes). In this 

manner, our characterization in itself, unlike Grindal et al, is atomic and does not 

require further elaboration.  

Additionally, our characterization also incorporates the parameter strength, t, into the 

classification in order to clearly discern amongst the capabilities of each of the t-way 

strategy is concerned (i.e. whether or not a particular strategy of interest is pairwise 

or a general t-way in nature and how strong the support for t is).  Here, we have 

chosen to divide values of t. As will be seen later in Chapter 4, our experience and 

the experience of others (Kuhn et al., 2008a, Kuhn et al., 2008b, Lei et al., 2007b, 

Lei et al., 2007c) indicate that at t=6, as the rule of thumb, the effectiveness of the 

generated test suite is as good as exhaustive combinations. 
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Additionally, unlike Cohen et al and Grindal et al, we also consider automation 

supports as one of the key criteria for characterization. If t-way strategies are going 

to be useful, there must be a full automation support in terms of automatically being 

able to execute all generated t-way test suite. In order to support this execution 

facility, the strategy needs to be able to allow actual data to be used as input values 

(i.e. not simply as symbolic variables) as well as permit the support for non-uniform 

input values (i.e. non-uniform valued parameters). Table 2-6 summarizes our 

characterization for existing t-way strategies. 

 

Table 2-6 Characteristics of T-Way Strategies  

 

   

Based on the aforementioned characteristics, the following section analyzes the 

existing t-way strategies in order to highlight their strengths and limitations as well 

as provide avenues for improvements. 

Main Characteristics 

Deterministic 
Randomness 

Non-deterministic 

 [2]-way 

 [3]-way 

 [4,5,6]-way 

 [7,8]-way 

Combination 

Strength 

Higher order t 

Permit both planning and execution 

Allow actual data to be used as input values 
Automation 

Support 
Support a non-uniform valued parameters 
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2.3   Analysis of T-Way Testing Strategies 

This section provides detailed analysis of t-way strategies based on the 

characteristics given in Table 2-6. In particular, the discussion will first classify each 

strategy based on their dominance approach: the algebraic strategies and the 

computational strategies (Cohen, 2004). For each of these strategies, the discussion 

will present:  

1. A brief description, with a discussion on how t-way testing can be 

supported; 

2. Analysis of the strategy issues related to the randomness, combination 

strength, and automation support;   

3. A general observation. 

2.3.1   Algebraic strategies 

In general, algebraic strategies often yield minimum test suites under some specific 

conditions. Because algebraic strategies are known to exploit some mathematical 

properties of the inputs in order to permit the generation of test data, their 

applications are often limited to pairwise testing (i.e. t=2). The common pairwise 

strategies based on algebraic strategies are (Cohen, 2004): Orthogonal Arrays (OA), 

Covering Arrays (CA), and Mixed Level Covering Arrays (MCA). Each of these 

strategies is described and analyzed in the following subsections. 

2.3.1.1 Orthogonal Arrays (OA) 

Orthogonal Arrays are based on algebraic and the mathematical concepts (Bush, 

1952, Chaudhuri and Zhu, 1997, Kuhfeld, Phadke, 1989, Sherwood, 2002, Sherwood 
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et al., 2005, Yan and Zhang, 2008). Orthogonal Arrays generate test suites from 

Latin squares, predominantly in compiler design (Mandl, 1985).  Latin squares have 

many forms of definitions as presented by different researchers (Anderson, 1997, 

Cohen, 2004, Hedayat et al., 1999).  Here, Cohen definitions for Latin square, 

mutually orthogonal Latin squares (MOLS), and Orthogonal Arrays (OA) are used:  

 

Definition 2.1: “ A Latin Square of order s is an s × s array with entries from a set S 

of cardinality s with the condition that for all i in S, i appears exactly once in each 

row and each column of the array. Two Latin Squares are orthogonal if, when 

superimposed on each other, the ordered pairs created in each cell cover all s2 

combinations of symbols” (Cohen, 2004). 

 

Definition 2.2: “A set of Mutually Orthogonal Latin Squares or MOLS has the 

property that the squares in the set are pairwise orthogonal. A MOLS(s,w) is a set of 

w Latin squares of order s in which any pair are orthogonal” (Cohen, 2004). 

 

Definition 2.3: “An orthogonal array OAλ (N; t, k, v) is an N × k array on v symbols 

such that every N × t sub-array contains all ordered subsets of size t from v symbols 

exactly λ times” (Cohen, 2004). 

Where N represents the number of generated test cases, K represents the number of 

parameters, V represents the number of values, t represents degree of interaction, and 

λ is the index of the array that equal  
tV

N

 , for software testing λ should equal 1. 




