

DEVELOPMENT OF AN AUTOMATED TEST DATA GENERATION AND

EXECUTION STRATEGY USING COMBINATORIAL APPROACH

By

MOHAMMAD FADEL JAMIL KLAIB

Thesis submitted in fulfilment of the

requirements for the degree of

Doctor of Philosophy

June 2009

 ii

ACKNOWLEDGEMENTS

The work described in this thesis was undertaken under the main supervision of Dr.

Kamal Zuhairi Zamli, to whom I am grateful for his support, his interest during all

levels of my PhD study, and for his insightful and critical comments in writing the

published papers and the following thesis. To say the least, without Dr.Kamal’s

encouragement and enthusiasm, I will probably would not have gone this far. Also,

even though Dr.Kamal is very busy, he took an enormous task of revising my thesis

word by word. His efforts are greatly appreciated and will never be forgotten. Thanks

again Dr.Kamal.

 I also wish to thank my co-supervisor Dr. Nor Ashidi Mat Isa, who gave me his ever

devotion and all valuable information which I really require to finish my thesis.

I am also thankful to all my friends in Malaysia, who gave their support and help

through many helpful and enjoyable discussions. In particular, I am thankful to all

academic staffs in the School of Electrical and Electronic Engineering, USM, and all

those persons who have encouraged me to complete my study. Thanks!

I will never forget to be thankful to whom my love will never end, to my father and

my mother, to my brothers and sisters, uncles and aunts, they all gave me their

lasting encouragement in my studies, so that I could be successful in my life. Dad

and mom, thank you for the prayers – this thesis is for both of you.

Finally, I would like to thank my loving wife (Haneen). To my daughter (Felesteen),

even with her disturbing cry, she enters the joy to my heart and keeps me going;

thanks for being patient all along. I am sorry to have sometimes neglected all of you

to pursue my dream.

 iii

The work reported here would have not been possible without the e-science fund

grant entitled “Development of a Fault Injection Tool to Ensure Dependability of

Commercial-off-the-shelf Components (COTs) for Embedded System Applications”,

and fellowship support from Universiti Sains Malaysia.

 iv

Table of Contents

Acknowledgment …………………………...………………………………….. ii

Table of Contents ………………………………………………………………. iv

List of Tables …………………………………………………………………… vii

List of Figures ………………………………………………………...………... ix

Abstrak ………………………………………………………………...……….. xi

Abstract ………………………………………………………………...………. xiii

CHAPTER 1 - INTRODUCTION 1

1.1 Overview of Software Testing…………………………………………….. 2

1.2 Problem Statements ………………………….…………………...………. 3

1.3 Thesis Aim and Objectives ……………………………………………….. 7

1.4 Thesis Outline …………………………………………………………….. 8

CHAPTER 2 – LITERATURE REVIEW 10

2.1 Overview ………………………………………………………………….. 10

2.2 Classification and Issues on T-Way Strategies …………………………… 19

2.3 Analysis of T-Way Testing Strategies …………...……………………….. 23

 2.3.1 Algebraic strategies …….………………..…………………………. 23

 2.3.1.1 Orthogonal Arrays (OA) ………………...……………………. 23

 2.3.1.2 Covering Arrays (CA) …………………..……………………. 26

 2.3.1.3 Mixed Level Covering Arrays (MCA)…..……………………. 28

 2.3.2 Computational Strategies ………………………...…………………. 29

 2.3.2.1 TConfig ……………………………………...………………... 30

 2.3.2.2 AllPairs ………………………………..……………………… 31

 2.3.2.3 Combinatorial Test Services (CTS) ………...………………… 32

 v

 2.3.2.4 Automatic Efficient Test Generator (AETG) …...……………. 33

 2.3.2.5 mAETG ……………………………………………………….. 34

 2.3.2.6 Test Case Generator (TCG) …………………...……………… 35

 2.3.2.7 mTCG …………………………………………..…………….. 37

 2.3.2.8 Genetic Algorithms (GA) ……………………..……………… 38

 2.3.2.9 Ant Colony Algorithm (ACA) ………………...……………… 39

 2.3.2.10 In Parameter Order (IPO) ……………………..…………….. 42

 2.3.2.11 IPOG ………………………………………...………………. 43

 2.3.2.12 Jenny ………………………………………...………………. 44

 2.3.2.13 Test Vector Generator (TVG) ……………...………………... 45

 2.3.2.14 Intelligent Test Case Handler (ITCH) ………..……………... 47

2.4 Discussion …………………………………………….…………………... 48

2.5 Summary ……………………………………………….…………………. 51

CHAPTER 3 - GTWAY DESCRIPTION AND IMPLEMENTATION 52

3.1 Design Consideration ……………………………………………………... 52

3.2 Description of GTWay Strategy ………………………………………….. 53

 3.2.1 The Parser Algorithm in GTWay …………………...……………. 56

 3.2.2 The T-Way Pair Generation Algorithm ……...…………………… 57

 3.2.3 The Backtracking Algorithm in GTWay ………...……………….. 60

 3.2.4 Execution Algorithm in GTWay …………………………………. 64

3.3 GTWay as a Pairwise Strategy (G2Way) ……………...…………………. 65

3.4 Implementation Summary for GTWay ………………...…………………. 69

3.5 Summary ………………………………………………..………………… 72

CHAPTER 4 - EVALUATION OF GTWAY STRATEGY 74

4.1 Applicability and Effectiveness of the GTWay Strategy for T-Way
Test Planning and Execution ……………………….…………………….. 74

4.2 Comparison GTWay with Other Strategies ……………...……………….. 80

 vi

4.3 Evaluation of GTWay as a Pairwise Strategy (G2Way) …………………. 87

 4.3.1 Effectiveness of GTWay Strategy for Pairwise Test Data
Generation ……………………………………...…………………. 88

 4.3.2 Comparison G2Way with Other Pairwise Strategies …..…………. 91

4.4 Summary ………………………………………………………………….. 95

CHAPTER 5 – CONCLUSION 96

5.1 Overview ………………………………………………………………….. 96

5.2 Discussion …………..…………………………………………………….. 97

5.3 Future Work …………….………………………………………………… 102

5.4 Closing Remarks ………………………………….……………………..... 104

REFERENCES 105

APPENDICES 115

Appendix A: Demonstration of Correctness……………………….…………… 115

Appendix B: Testing GTWay Itself…………………………….………….…… 122

Appendix C: Predicting the Test Size…………………………….……..……… 126

Appendix D: The GTWay Markup Language………………………...………… 127

List of Publications and Awards…………………………….………………….. 130

 vii

LIST OF TABLES

 Page

Table 2-1 Running Example

11

Table 2-2 Exhaustive Combinations (at t=4)

12

Table 2-3 3-Way Combinations for ABC

13

Table 2-4 3-Way Pair Combinations

16

Table 2-5 Analysis of 3-Way Combination Occurrences

17

Table 2-6 Characteristics of T-Way Strategies

22

Table 2-7 Summary of the Analysis of Algebraic and Computational
Strategies

49

Table 3-1 Base Test Values

57

Table 3-2 Index Search for a 4 Parameter System

58

Table 3-3 Row Index for a 4 Parameter System

59

Table 3-4 Index Search for a 3 Parameter System

65

Table 3-5 Row Index for a 3 Parameter System (Multi-Valued)

67

Table 4-1 Base Test Cases

76

Table 4-2 Number of Test Cases with Coverage for college_acceptance
Implementation

79

Table 4-3 Group 1(Size): P & V constants (10, 5), but t varied up to 6

82

Table 4-4 Group 1 (Time): P & V constants (10, 5), but t varied up to 6

82

Table 4-5 Group 2 (Size): t & V constants (4, 5), but P varied (from 5 up
to 15)

83

Table 4-6 Group 2 (Time): t & V constants (4, 5), but P varied (from 5 up
to 15)

83

Table 4-7 Group 3 (Size): P & t constants (10, 4), but V varied (from 2 up
to 10)

84

 viii

Table 4-8 Group 3 (Time): P & t constants (10, 4), but V varied (from 2
up to 10)

84

Table 4-9 Group 4 (Size): TCAS Module (12 multi-valued parameters, t
varied from 2 to12)

85

Table 4-10 Group 4(Time): TCAS Module (12 multi-valued parameters, t
varied from 2 to12)

85

Table 4-11 Suggested Test Set

90

Table 4-12 Percentage Coverage

90

Table 4-13 Comparison Based on the Test Size

93

Table 4-14 Comparison Based on Execution Time (in seconds)

94

Table 5-1 Summary of the Analysis of Algebraic and Computational
Strategies

100

Table A-1 Web Based System

115

Table A-2 Suggested Test Set at t=2

116

Table A-3 Pairwise Coverage

117

Table A-4 Suggested Test Set for Web-Based Configuration Example at
t=3

119

Table A-5 3-Way Combinations Coverage

120

Table B-1 Generated Test Suite for GTWay Interface

124

Table B-2 Percentage Coverage for GTWay Generator Engine Interface

124

Table D-1 Keywords Description

128

Table D-2 Specifying Input with Basic Data Types

129

Table D-3 Specifying Input with Array of Basic Data Types

129

Table D-4 Specifying Input with Class

129

Table D-5 Specifying Input with Array of Class

129

 ix

LIST OF FIGURES

 Page

Figure 1-1 Software Engineering Product Lifecycle

2

Figure 1-2 Microsoft Excel View Tab Options

5

Figure 2-1 All 3-Way Combinations for ABC, ABD, ACD, and BCD

14

Figure 2-2 Merging of all 3-Way Combinations for ABC, ABD,
ACD, and BCD

15

Figure 2-3 Orthogonal Latin Squares

25

Figure 2-4 ACA Search Space (Shiba et al., 2004)

40

Figure 2-5 Input-Output (IO) Relationships (Schroeder and Korel,
2000a)

46

Figure 3-1 Overview of the GTWay Strategy

54

Figure 3-2 Sample Base Test Case Definition

55

Figure 3-3 The Parser Algorithm

56

Figure 3-4 The T-Way Pair Generation Algorithm

60

Figure 3-5 The Backtracking Algorithm

63

Figure 3-6 The Executor Algorithm

64

Figure 3-7 The Pair Generation Algorithm

66

Figure 3-8 The Backtracking Algorithm in G2Way

68

Figure 3-9 GTWay Tool

72

Figure 4-1 Snapshot of Test Data Specification for
college_acceptance Program

77

Figure 4-2 Concurrent Execution Snapshot for t-way Test Suite

78

Figure 4-3 Percentage Coverage Chart for college_acceptance

79

 x

Figure 4-4 FileChooserDemo Interface

88

Figure B-1 GTWay Generator Engine Interface

123

Figure B-2 Percentage Coverage Chart for GTWay Generator Engine
Interface

125

Figure D-1 Sample Keywords Definition in a Fault File

127

 xi

PEMBANGUNAN PENJANAAN DATA UJIAN DAN STRATEGI PELARIAN
AUTOMATIK MENGGUNAKAN PENDEKATAN BERGABUNGAN

ABSTRAK

Untuk memastikan tahap piawaian jaminan kualiti dan keboleharapan sesuatu

perisian, pengujian hendaklah dijalankan untuk setiap konfigurasi. Tetapi, masalah

letupan konfigurasi tidak memungkinkan pertimbangan keseluruhan terhadap semua

nilai data ujian. Kekangan sumber, masalah kos, dan masa untuk dipasarkan yang

ketat adalah merupakan antara faktor yang menghalang terhadap pertimbangan

keseluruhan itu. Penyelidikan terdahulu menyimpulkan bahawa strategi persampelan

berdasarkan interaksi t-cara antara parameter adalah sangat efektif. Berdasarkan

kesimpulan ini, terdapat banyak strategi t-cara yang sedia ada telah dihasilkan.

Bidang penyelidikan ini mengalami pertumbuhan yang pesat sejak 10 tahun yang

lalu dalam membantu proses perancangan ujian, terutamanya dalam mengurangkan

data ujian yang perlu digunakan secara sistematik berdasarkan sesuatu interaksi t-

cara yang terpilih. Walaupun terdapat banyak kemajuan, integrasi dan automasi

strategi daripada proses perancangan dan pengujian amat tidak dititik beratkan.

Dalam praktis sekarang, data ujian yang disampel perlu diekstrak secara manual dan

ditukarkan dalam format tertentu sebelum ia boleh dilaksanakan (sama ada oleh

penguji sendiri, atau alatan perisian daripada pihak ketiga). Masalah integrasi dan

automasi ini amat menyusahkan kerja jurutera pengujian terutamanya apabila modul

yang perlu diuji adalah bersaiz besar.

Selain daripada isu berkaitan integrasi dan automasi, perancangan untuk persampelan

dan pembinaan data ujian yang paling minima daripada keseluruhan data ujian adalah

juga masalah lengkap NP. Oleh yang demikian, tidak mungkin akan ada strategi bagi

 xii

menghasilkan data ujian yang optimal untuk setiap kes data ujian. Bagi menyahut

cabaran yang digariskan di atas, tesis ini membincangkan rekabentuk, implementasi,

dan penilaian, strategi GTWay untuk menerbitkan data ujian t-cara yang optimum.

Tidak seperti strategi yang lain, GTWay dapat membantu proses perancangan dan

larian data ujian secara automatik (serentak) yang diintegrasikan sebagai sebahagian

daripada implementasinya. Keputusan empirikal membuktikan GTWay, dalam banyak

keadaan, mengatasi strategi sedia ada dalam aspek penghasilan data ujian yang

minima. Julat masa penghasilan ujian data juga adalah berpatutan seiring dengan

perancangan dan larian ujian yang diintegrasikan.

 xiii

DEVELOPMENT OF AN AUTOMATED TEST DATA GENERATION AND
EXECUTION STRATEGY USING COMBINATORIAL APPROACH

ABSTRACT

To ensure acceptable level of quality and reliability of a typical software product, it

is desirable to test every possible combination of input data under various

configurations. Due to combinatorial explosion problem, considering all exhaustive

testing is practically impossible. Resource constraints, costing factors as well as strict

time-to-market deadlines are amongst the main factors that inhibit such

consideration. Earlier work suggests that sampling strategy (i.e. based on t-way

parameter interaction) can be effective. As a result, many helpful t-way sampling

strategies have been developed in the literature.

Much useful advancement has been achieved in the last 10 years particularly to

facilitate the test planning process, that is, in terms of systematically minimizing the

test data to be considered for testing (i.e. based on some t-way parameter

interactions). Despite such a significant progress, the integration and automation of

the strategies from the planning process to execution appears to be lacking. In the

current practice, the sampled test data need to be manually extracted and converted

to some acceptable format before they can be executed (e.g. by a human tester, a

code driver or a third party execution tool). This lack of integration and automation

between test planning and execution can potentially burden the test engineers

especially if the software module to be tested is significantly large.

Apart from integration and automation issues, strategizing to sample and construct

minimum test set from the exhaustive test space is also a NP complete problem (i.e.

nondeterministic polynomial). As such, it is often unlikely that efficient strategy

exists that can always generate optimal test set. Motivated by such challenges, this

 xiv

paper discusses the design, implementation, and validation of an efficient strategy,

called GTWay. GTWay, unlike other strategies, supports both t-way test generation

and automated (concurrent) execution integrated within the strategy itself. Empirical

evidences demonstrate that GTWay, for some cases, outperforms other strategies in

terms of the number of generated test data. The test generation time is also within

reasonable value considering the fact that some overhead is required to permit the

integration between test generation and execution.

 1

CHAPTER 1

INTRODUCTION

Computing technology has gone a long way since the first Babbage computer.

Today, many chores that were once manual have been taken over by computers.

Factories use computers to control manufacturing equipments. Electronics

manufacturing use computers to test everything from microelectronics to circuit card

assemblies.

Software is one of the major components that drive the functionality and automation

of computers. Here, software can be viewed as a collection of written program,

functions, and procedures that enable the user to accomplish the task at hand. From

washing machine controllers, mobile phone applications to sophisticated airplane

control systems, software is becoming an indispensable part of our lives.

Imagine the world without software. For instance, our household washing machine

may still be bulky as the controls may be composed of all mechanical switches.

Similarly, our hand phone without software may have too limited capabilities to be

useful. As these two examples illustrate, software (whenever possible) are becoming

increasingly popular replacement for its hardware counter parts.

Our growing dependency on software can be attributed to a number of factors.

Unlike hardware, software does not wear out. Thus, the use of software can help to

control maintenance costs. Additionally, software is also malleable and can be easily

customized as the need arises.

Nevertheless, the fact that software is malleable and can be easily customized can

also be a burden. Here, testing is often sought for to ensure quality (i.e. whether or

 2

not the software is reliable and meets its specification). In the next section to come,

this chapter will highlight an overview of software testing and the problem statement

in order to set the scene of the work undertaken in this research work. Additionally,

this chapter also highlights the roadmap of the thesis.

1.1 Overview of Software Testing

Covering as much as 40% to 50% of the development costs, software testing is an

integral part of software engineering lifecycle. In a nut shell, software testing can be

viewed as the process of executing a program with the intent to find error (Myers,

2004). Putting the overall picture as far as the overall software engineering product

lifecycle is concerned, software testing can be viewed as the following (see Figure 1-

1).

Figure 1-1 Software Engineering Product Lifecycle

 3

Referring to Figure 1-1, software engineering product lifecycle starts with the

requirement elicitation phase. Here, the customers and stakeholders interact with the

requirement engineers to produce the software specifications. Based on the

specifications, software engineers and programmers collaborate to produce software

design and implementations. This activity occurs in the implementation phase.

Software testing falls under the validation phase which may occur in parallel with the

requirement elicitation phase and implementation phase. The independent

verification and validation (V&V) team needs to consult the requirement engineers

for software specification. Based on the software specification, the V&V team

produces the test cases to be executed against the software implementation. If the

execution results satisfy the requirement specification, then the software is ready to

be released, otherwise, some additional work need to be done to the design and

implementation until conformance is achieved.

As seen above, the purpose of testing is not to prove anything, rather to reduce the

perceived risk of not working to an acceptable value. The key challenges in software

testing are not only dependent on the actual execution of the test cases but also the

production of quality test cases.

1.2 Problem Statements

Covering as much as 40 to 50 percent of the development costs and resources

(Beizer, 1990, Kaner et al., 1999, Pan, 1999), testing can be considered as one of the

most important activities in product development for both software and hardware

(Bryce et al., 2005, Tsui and Karam, 2007). In order to ensure accepted quality and

reliability, many combinations of possible input parameters, hardware/software

 4

environments, and system conditions are tested and verified against for conformance

based on system’s specification (Cohen et al., 2007a, Cohen et al., 2007b).

Lack of testing can lead to disastrous consequences including loss of data, fortunes,

and even lives. For instance, consider the accident that occurred during the European

Space Agency’s launching of Ariane 5 in 1996. Investigation by independent

researchers from Massachusetts Institute of Technology reveals that the disaster is

caused by the mismatch of the hardware and software component faults (Lions,

1996). The component erroneously puts a 64 bit floating point number in to a 16 bit

space, causing overflow error. This overflow error affected the rocket’s alignment

function, and hence, causing the rocket to veer off course and eventually exploded a

mere 37 seconds after lift off.

Despite its importance, exhaustive testing is impossible due to the fact that the

number of test cases can be exorbitantly large (Chaudhuri and Zhu, 1992, Copeland,

2004, Roper, 2002) even for simple software and hardware products. Consider a

hardware product with 20 on/off switches. To test all possible combination would

require 220 = 1,048,576 test cases. If the time required for one test case is 5 minutes,

then it would take nearly 10 years for a complete test.

The same argument is applicable for any software system. As illustration, consider

the option dialog in Microsoft Excel software (see Figure 1-2). Even if only View tab

option is considered, there are already 20 possible configurations to be tested. With

the exception of Gridlines colour which takes 56 possible values, each configuration

can take two values (i.e. checked or unchecked). Here, there are 220x56 (i.e.

58,720,256) combinations of test cases to be evaluated. Using the same calculation as

 5

the previous example, it would require nearly 559 years for a complete test of the

View tab option.

Figure 1-2 Microsoft Excel View Tab Options

The above mentioned examples highlighted the common combinatorial explosion

problem in software testing. Given limited time and resources, the research questions

are:

• What are the smaller optimum sets of (sampled) test data to be considered for

testing?

• How can one decide (i.e. the strategy) on which combination of data values to

choose over large combinatorial data sets?

• Will the test coverage be significantly affected by using lesser combinatorial data

sets?

 6

Combinatorial explosion problem (Cohen et al., 1997, Cohen et al., 2006b, Colbourn

et al., 2004, Tai and Lei, 2002) poses one of the biggest challenges in modern

computer science due to the fact that it often kills traditional approaches to analysis,

verification, monitoring and control. A number of techniques have been explored in

the past to address the combinatorial explosion problem. Undoubtedly, parallel

testing (e.g. (ITL/NIST, 2008, Younis et al., 2009)) can be employed to reduce the

time required for performing the tests. Nevertheless, as software and hardware are

getting more complex than ever, parallel testing approach becomes immensely

expensive due to the need for faster and higher capability processors along state-of-

the-art computer hardware. Apart from parallel testing, systematic random testing

could also be another option (Antony, 2003, Duran and Ntafos, 1984, Schroeder et

al., 2004, Tseng et al., 2001). However, systematic random testing (e.g. (Ammann

and Offutt, 1994)) tends to dwell on unfair distribution of test cases.

Earlier work (e.g. (Bryce and Colbourn, 2006, Dalal et al., 1999, Kuhn and Okum,

2006, Kuhn and Reilly, 2002, Kuhn et al., 2004, Yan and Zhang, 2008)) suggests

that from empirical observation, the number of input variables involved in software

and hardware failures is relatively small (i.e. in the order of 3 to 6), in some classes

of system. If t or fewer variables are known to interact and cause fault (Ellims et al.,

2008b), test data can be generated on some t-way combinations (i.e. resulting into a

smaller set of test data for consideration).

As will be seen in Chapter 2, a number of useful strategies have been reported to

facilitate the test planning process, that is, in terms of systematically minimizing the

test data to be considered for testing (i.e. based on some t-way parameter

interactions). However, the integration and automation of the existing strategies from

the planning process to execution appears to be lacking. In the current practice, the t-

 7

way sampled test data need to be manually extracted and converted to some

acceptable format before they can be executed (e.g. by a human tester (Binder, 2000,

Dustin et al., 1999, Fewster and Graham, 1999), a code driver or a third party

execution tool (Li and Wu, 2004)). This lack of integration and automation between

test planning and execution can potentially burden the test engineers especially if the

software module to be tested is significantly large.

In addition to integration and automation issues, strategizing to sample and construct

minimum test set from the exhaustive test space is also a NP complete problem

(Shiba et al., 2004, Tai and Lei, 2002). As such, it is often unlikely that efficient

strategy exists that can always generate optimal test set. Motivated by such

challenges, this research work is devoted to investigate an optimum strategy, called

GTWay, for systematic t-way test data generation (and reduction). Unlike earlier

work, GTWay supports both the test planning process and the automated

(concurrent) execution integrated within the strategy itself. In short, using t-way

strategy is useful to systematically detect faults in a particular software system is the

main hypothesis on this thesis.

1.3 Thesis Aim and Objectives

The main aim of this research is to develop and evaluate a general t-way test data

generation and execution strategy, called GTWay, for software configuration testing.

The main objectives of the work undertaken were:

i. To develop and implement the GTWay strategy as a prototype

implementation tool.

 8

ii. To investigate automatic execution, when actual values are used, as part of

the GTWay strategy.

iii. To investigate and compare the performance of GTWay strategy in terms of

test size as well as execution time against existing works.

1.4 Thesis Outline

The remainder of this thesis is organised into five chapters as follows.

Chapter 2 presents an overview as well as highlights the main characteristics of t-

way strategies. Using the characteristics, a survey of existing t-way strategies is

provided including that of a special case for t-way strategies, the pairwise testing.

Towards the end of Chapter 2, an analysis of existing work is presented which

provides the requirements and justification for the development of GTWay.

Chapter 3 discusses and justifies the detailed algorithms and implementation for

GTWay based on the requirements from Chapter 2. Here, issues related to the

enabling automated execution are also explained. Additionally, the prototype

implementation is also discussed in order to highlight its usage.

In Chapter 4, a detailed account for evaluating GTWay is presented. Here, the

correctness of GTWay strategy will be evaluated. Apart from the correctness

evaluation, a comparative study on the effectiveness of pairwise testing versus t-way

testing will be highlighted using suitable case studies. Additionally, GTWay will

also be compared against existing strategies in terms of the number of generated test

data as well as execution time both as a pairwise strategy and as a general t-way

strategy.

 9

The conclusion of this work is given in Chapter 5, where the achievements,

contributions and problems are summarised. Additionally, the main research

hypothesis is revisited and the usefulness of GTWay is debated. Conclusions are

drawn from the experience gained from this work and the significance of findings

along with considerations for future work.

 10

CHAPTER 2

LITERATURE REVIEW

The previous chapter has established the needs for software testing (i.e. for

evaluating conformance and ensuring reliability), and highlighted the possible

catastrophic aftermaths due software failure (i.e. including fortune and data losses as

well as human fatality). In doing so, the previous chapter has also advocated the fact

that testing for all combination of parameters, although desirable, is infeasible due to

lack of resources as well as strict time-to-market constraints. Thus, systematic

strategies are required to reduce the number of test cases by selecting a subset of

these combinations for sampling, executing and analyzing.

In this chapter, these systematic strategies will be elaborated based on the t-way

interaction of variables. Specifically, this chapter begins by giving an overview of

the concept and terminology that will be used throughout this thesis. Next, the main

characteristics of the combinatorial strategies will be identified in order to facilitate

their survey and analysis. This survey and analysis is then used to provide

justification for the development of GTWay, the strategy that is the basis of this

thesis. Finally, this chapter closes by providing a short summary.

2.1 Overview

As discussed earlier, the main focus of the work described in this thesis is on the

development of systematic test data minimization strategy based on (t-way)

parameter interaction testing (or termed t-way testing). Here, the parameter

interaction can be specified using a variable (t) indicating how strong the interaction

is.

 11

In order to illustrate how the variable t works, and hence demonstrate test data

reduction, consider the following running example.

Table 2-1 Running Example

Input Variables

A B C D

a1 b1 c1 d1 Base Values

a2 b2 c2 d2

Here, let the input variable consists of a set X ={A,B,C,D}. For simplicity, let us

assume that the starting test case for X, termed base test case, has been identified in

Table 2-1 (with 4 parameters and 2 values). Here, symbolic values (e.g. a1, a2, b1,

b2, c1, c2) are used in place of real data values to facilitate discussion.

In this case, at full interaction strength t= 4 (i.e. exhaustive combinations), the

number of test cases = (the number of values) the number of parameters = 24 = 16. These 16

exhaustive combinations can be generated based on a simple technique (see Table 2-

2). Here, one can view each variable as a column matrix. For column A, one must

repeat the input a1 8 times followed by a2 (also 8 times) to reach 16. This is because

there are 16 combinations with 2 specified inputs (i.e. 16/2 = 8 times). Now for

column B, one must alternately repeat the input b1 4 times followed by b2 (also 4

times) to reach 16. Similarly, for column C, one must repeat c1 2 times followed by

c2 (also 2 times) to reach 16. Finally, for column D, one can alternately repeat d1 and

d2 to reach 16.

 12

Table 2-2 Exhaustive Combinations (at t=4)

Input Variables

A B C D

a1 b1 c1 d1

Base Values

a2 b2 c2 d2

a1 b1 c1 d1

a1 b1 c1 d2

a1 b1 c2 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c1 d2

a1 b2 c2 d1

a1 b2 c2 d2

a2 b1 c1 d1

a2 b1 c1 d2

a2 b1 c2 d1

a2 b1 c2 d2

a2 b2 c1 d1

a2 b2 c1 d2

a2 b2 c2 d1

Exhaustive

Combinations

a2 b2 c2 d2

Referring to Table 2-2, if parameter D is known to have insignificant effects on the

system, then D input could be treated as don’t care value. Thus, D could randomly

take either d1 or d2 respectively. Based on this premise, one can select only one

instance of each input combination to cover 3-way combination for ABC at least

once (at t=3). In this case, there are two possible combinations for 3-way covering of

ABC. For instance, consider the input variable {a1,b1,c1}. The first ABC

combination would be {a1,b1,c1,d1} and the second combination would be

 13

{a1,b1,c1, d2}. In order to cover for t-way combination for ABC, one can randomly

select any one of the aforementioned combinations.

Using this technique, the number of combination can be reduced significantly. For

instance, for 3-way combination ABC, the total test data can be reduced to merely 8

(see Table 2-3).

Table 2-3 3-Way Combinations for ABC

Input Variables

A B C D

a1 b1 c1 d1 Base Values

a2 b2 c2 d2

a1 b1 c1 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c2 d2

a2 b1 c1 d1

a2 b1 c2 d2

a2 b2 c1 d1

3-Way

Combinations

for ABC

a2 b2 c2 d1

In reality, nevertheless, it is often difficult to establish for certain which variable has

insignificant effect on the system. Thus, it is necessary to consider the impact of

other 3-way combinations as well. In this example, there are 4 possibilities for 3-way

interactions: ABC, ABD, ACD, and BCD. Having considered ABC and using similar

approach as before, we can also generate the values for other 3-way combinations

ABD, ACD, and BCD (see Figure 2-1).

 14

Figure 2-1 All 3-Way Combinations for ABC, ABD, ACD, and BCD

Rather than considering each selective 3-way combinations separately, we can also

consider the merger of all 3-way combinations (e.g. ABC, ABD, ACD, and BCD) in

order to reduce the duplicates, hence, improving the interaction coverage (see Figure

2-2).

 15

Figure 2-2 Merging of all 3-Way Combinations for ABC, ABD, ACD, and BCD

Referring to Figure 2-2, an obvious observation is the fact that the total test data has

been minimized from 16 (at full interaction strength t=4) to 13 (at t=3), a reduction

of 18.75%. While the reduction technique (or strategy) illustrated here can be helpful

as far as minimizing the testing costs, a closer analysis reveals a number of

limitations that can be improved further.

First of all, the aforementioned reduction strategy produces a non-optimum solution

as far as the 3-way interaction is concerned. Considering all possible 3-way pair

combinations for the aforementioned running example yields the following result

(see Table 2-4).

 16

Table 2-4 3-Way Pair Combinations

Interaction of
Variables

3-Way
Combinations

Interaction of
Variables

3-Way
Combinations

a1, b1,c1 a1,c1,d1

a1,b1,c2 a1,c1,d2

a1,b2,c1 a1,c2,d1

a1,b2,c2 a1,c2,d2

a2, b1,c1 a2, c1,d1

a2,b1,c2 a2,c1,d2

a2,b2,c1 a2,c2,d1

ABC

a2,b2,c2

ACD

a2,c2,d2

a1, b1,d1 b1,c1,d1

a1,b1,d2 b1,c1,d2

a1,b2,d1 b1,c2,d1

a1,b2,d2 b1,c2,d2

a2, b1,d1 b2, c1,d1

a2,b1,d2 b2,c1,d2

a2,b2,d1 b2,c2,d1

ABD

a2,b2,d2

BCD

b2,c2,d1

Analyzing the 3-way pair combinations (see Table 2-4) with the solution for all 3-

way combinations (given in Figure 2-2) gives the following 3-way pair occurrences

(see Table 2-5).

 17

Table 2-5 Analysis of 3-Way Combination Occurrences

Interaction
of

Variables

3-Way
Combinations

Occurrences
of the 3-Way

Combinations

Interaction
of

Variables

3-Way
Combinations

Occurrences
of the 3-Way

Combinations

a1, b1,c1 2 a1,c1,d1 2

a1,b1,c2 1 a1,c1,d2 2

a1,b2,c1 2 a1,c2,d1 1

a1,b2,c2 2 a1,c2,d2 2

a2, b1,c1 2 a2, c1,d1 2

a2,b1,c2 1 a2,c1,d2 1

a2,b2,c1 1 a2,c2,d1 1

ABC

a2,b2,c2 2

ACD

a2,c2,d2 2

a1, b1,d1 1 b1,c1,d1 2

a1,b1,d2 2 b1,c1,d2 2

a1,b2,d1 2 b1,c2,d1 1

a1,b2,d2 2 b1,c2,d2 2

a2, b1,d1 1 b2, c1,d1 2

a2,b1,d2 2 b2,c1,d2 1

a2,b2,d1 2 b2,c2,d1 2

ABD

a2,b2,d2 1

BCD

b2,c2,d1 2

In this case, the all the 3-way pair combinations are covered (at least once as evident

in their occurrences), indicating that the solution given in Figure 2-2 is correct. Here,

the term covered are used to imply the parameter coverage and should not be

confused with other terms commonly used in software testing (i.e. class coverage,

method coverage, block coverage and line coverage). In this case, parameter

coverage refers to whether or not all the t-way pair combinations are covered by the

generated test data whereas the latter terms are used as an indication for test stopping

 18

criteria. More on these issues will be highlighted in Chapter 4 when the case studies

are demonstrated.

Going back to the discussion parameter coverage, it is desirable to have occurrences

of each 3-way pair combinations of at most once (i.e. some of the 3-way pair

combinations in Table 2-5 are covered more than once). In this manner, the given 3-

way pair combinations are guaranteed to be the most optimum, hence, resulting into

fewer combination (i.e. more test reduction). As highlighted earlier in Chapter 1, one

of the key challenges of this research to get the most optimum results in every case

regardless of the values of t.

Although not highlighted here, there could be infinitely many possibilities of

parameter inputs to consider as far as the selection of t is concerned. For example,

there could be a case where some of the parameters take non-uniform values. In this

manner, there is often no exact optimum solution, a typical strategy needs to be

intelligent enough to be select amongst the best optimum solution. For this reason,

the research for an efficient strategy for getting an optimum solution is considered

NP complete.

The second limitation of the aforementioned strategy is the fact that it is based on

exhaustive selection. If the number of parameters and its values are large,

considering exhaustive combination can be a painstakingly long process. In fact, in

some cases, it may be an impossible endeavour.

Apart from the above, a number of general issues as far as t-way testing is concerned

can be elaborated here. If t is relaxed, more and more reduction can be possible.

Here, the range of acceptable t values is between 2 and the maximum number of

defined parameters (i.e. exhaustive case). To obtain the most minimum reductions

 19

possible, there are significant efforts to focus only on t=2 (or termed pairwise

testing) as a special case for t-way testing. Thus, in order to give a complete

overview on t-way testing, pairwise testing will also be considered in detail later in

this chapter.

Finally, as demonstrated by the aforementioned running example, the overall t-way

testing strategy can be adopted to rely solely on black box consideration, that is, no

information of the source code is required for minimization. However, if the source

code is available, this testing strategy can usefully be tailored enabling both black

and white box supports (i.e. grey box). In this manner, more quality test input values

can be considered as the base test data.

Having given an overview of the issues relating to t-way testing, the next section

highlights the classification and main characteristics of the existing t-way strategies

in order to facilitate their survey and analysis.

2.2 Classification and Issues on T-Way Strategies

There have already been a number of attempts to classify the existing t-way

strategies. Cohen et al. has classified the combinatorial strategies into two main

groups (Cohen, 2004):

• Algebraic strategies – strategies that exploit mathematical methods to build

deterministic and optimal test suites.

• Computational strategies – strategies that utilize computerized/iterative methods

that generate (deterministic and non-deterministic) test suites.

 20

Building and expanding the classification by Cohen, Grindal et al. has identified

three main categories of combinatorial strategies (Grindal et al., 2005) based on the

randomness of the implemented solution:

• Non-deterministic – non-deterministic strategies share the property that for every

execution, there is always a randomly generated combination suite to cover all

the required t-way pairs.

• Deterministic – deterministic combination strategies share the property that they

produce the same test suite for every execution.

• Compound – two or more combination strategies are used together.

In their work, Grindal et al. also classifies the deterministic t-way strategies into

three sub-categories based on how the test suites are created (Grindal et al., 2003,

Grindal et al., 2005):

• Instant – Here, the strategy produces the complete test suite directly in a single

run.

• Iterative – In this case, the strategy generates one test case at a time and adds it to

the test suite.

• Parameter-based – The strategy starts by creating a test suite for a subset of the

parameters in the input parameter model. Then, one parameter at a time is added

and the test cases in the test suite are modified to cover the new parameter. Here,

completely new test cases may also need to be added in the end to ensure

parameter coverage.

 21

Here, unlike Cohen et al’s work, which are based on high level and external view of

the t-way strategy, Grindal et al. capture the internal building of the existing t-way

strategies (i.e. in terms of how the test suites the strategies works). In this respect,

Grindal’s work appears to be more focused than that of Cohen.

Building and complementing from both Cohen et al and Grindal et al, this thesis

presents an alternative and complementary characterization of the existing t-way

strategies. Unlike Cohen et al and Grindal et al, our characterization solely takes the

output test suite of each strategies into consideration (i.e. in terms of how random the

test suite is), either as deterministic or non-deterministic. At a glance our

characterization look similar to Grindal et al, however, a close look reveals some

differences. Unlike Grindal et al, our characterization does not deal with the internal

building of the strategies (i.e. how the strategies are implemented as well as how they

work) as we focus solely on the output (and not the strategy and its processes). In this

manner, our characterization in itself, unlike Grindal et al, is atomic and does not

require further elaboration.

Additionally, our characterization also incorporates the parameter strength, t, into the

classification in order to clearly discern amongst the capabilities of each of the t-way

strategy is concerned (i.e. whether or not a particular strategy of interest is pairwise

or a general t-way in nature and how strong the support for t is). Here, we have

chosen to divide values of t. As will be seen later in Chapter 4, our experience and

the experience of others (Kuhn et al., 2008a, Kuhn et al., 2008b, Lei et al., 2007b,

Lei et al., 2007c) indicate that at t=6, as the rule of thumb, the effectiveness of the

generated test suite is as good as exhaustive combinations.

 22

Additionally, unlike Cohen et al and Grindal et al, we also consider automation

supports as one of the key criteria for characterization. If t-way strategies are going

to be useful, there must be a full automation support in terms of automatically being

able to execute all generated t-way test suite. In order to support this execution

facility, the strategy needs to be able to allow actual data to be used as input values

(i.e. not simply as symbolic variables) as well as permit the support for non-uniform

input values (i.e. non-uniform valued parameters). Table 2-6 summarizes our

characterization for existing t-way strategies.

Table 2-6 Characteristics of T-Way Strategies

Based on the aforementioned characteristics, the following section analyzes the

existing t-way strategies in order to highlight their strengths and limitations as well

as provide avenues for improvements.

Main Characteristics

Deterministic
Randomness

Non-deterministic

 [2]-way

 [3]-way

 [4,5,6]-way

 [7,8]-way

Combination

Strength

Higher order t

Permit both planning and execution

Allow actual data to be used as input values
Automation

Support
Support a non-uniform valued parameters

 23

2.3 Analysis of T-Way Testing Strategies

This section provides detailed analysis of t-way strategies based on the

characteristics given in Table 2-6. In particular, the discussion will first classify each

strategy based on their dominance approach: the algebraic strategies and the

computational strategies (Cohen, 2004). For each of these strategies, the discussion

will present:

1. A brief description, with a discussion on how t-way testing can be

supported;

2. Analysis of the strategy issues related to the randomness, combination

strength, and automation support;

3. A general observation.

2.3.1 Algebraic strategies

In general, algebraic strategies often yield minimum test suites under some specific

conditions. Because algebraic strategies are known to exploit some mathematical

properties of the inputs in order to permit the generation of test data, their

applications are often limited to pairwise testing (i.e. t=2). The common pairwise

strategies based on algebraic strategies are (Cohen, 2004): Orthogonal Arrays (OA),

Covering Arrays (CA), and Mixed Level Covering Arrays (MCA). Each of these

strategies is described and analyzed in the following subsections.

2.3.1.1 Orthogonal Arrays (OA)

Orthogonal Arrays are based on algebraic and the mathematical concepts (Bush,

1952, Chaudhuri and Zhu, 1997, Kuhfeld, Phadke, 1989, Sherwood, 2002, Sherwood

 24

et al., 2005, Yan and Zhang, 2008). Orthogonal Arrays generate test suites from

Latin squares, predominantly in compiler design (Mandl, 1985). Latin squares have

many forms of definitions as presented by different researchers (Anderson, 1997,

Cohen, 2004, Hedayat et al., 1999). Here, Cohen definitions for Latin square,

mutually orthogonal Latin squares (MOLS), and Orthogonal Arrays (OA) are used:

Definition 2.1: “ A Latin Square of order s is an s × s array with entries from a set S

of cardinality s with the condition that for all i in S, i appears exactly once in each

row and each column of the array. Two Latin Squares are orthogonal if, when

superimposed on each other, the ordered pairs created in each cell cover all s2

combinations of symbols” (Cohen, 2004).

Definition 2.2: “A set of Mutually Orthogonal Latin Squares or MOLS has the

property that the squares in the set are pairwise orthogonal. A MOLS(s,w) is a set of

w Latin squares of order s in which any pair are orthogonal” (Cohen, 2004).

Definition 2.3: “An orthogonal array OAλ (N; t, k, v) is an N × k array on v symbols

such that every N × t sub-array contains all ordered subsets of size t from v symbols

exactly λ times” (Cohen, 2004).

Where N represents the number of generated test cases, K represents the number of

parameters, V represents the number of values, t represents degree of interaction, and

λ is the index of the array that equal
tV

N

 , for software testing λ should equal 1.

