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PENILAIAN ALUMINA DAN MUSKOVIT SEBAGAI PENGISI UNTUK 

BAHAN SUBSTRAT EPOKSI 

ABSTRAK 

 

 Kajian melaporkan tentang penyediaan dan sifat-sifat komposit epoksi yang terisi 

pelbagai komposisi pengisi menggunakan kaedah pengacuanan. Dua jenis pengisi 

digunakan iaitu muskovit dan alumina. Rawatan pada permukaan pengisi-pengisi 

dilakukan  untuk meningkatkan daya kelekatan permukaannya dan penyerakannya di 

dalam matrik epoksi. Pengisi-pengisi berjaya dirawat berdasarkan pencirian Perubahan 

Gelombang Infra Merah (FTIR). Kesan rawatan dan komposisi pengisi telah dikaji 

melalui sifat mekanikal komposit. Didapati kekuatan dan modulus regangan meningkat 

pada semua komposisi kedua-dua jenis pengisi. Modulus regangan meningkat daripada 

3GPa (epoksi kosong) kepada 7GPa (40wt% pengisi) bagi komposit muskovit dengan 

modulus regangan yang diperlukan ialah 15GPa. Komposit muskovit dengan rawatan 

penukaran ion memberikan sifat-sifat terma yang lebih baik berbanding dengan 

komposit muskovit tanpa rawatan. Angkali haba pengembangan (CTE) telah berjaya 

diturunkan dari 69.4 ppm/°C (epoksi kosong) kepada 32 ppm/°C (40wt% pengisi) 

dengan nilai CTE yang dikehendaki ialah 16-20ppm/°C. Komposit epoksi terisi alumina 

dirawat menunjukkan nilai modulus regangan yang lebih tinggi iaitu 9GPa (50wt% 

pengisi) dan nilai CTE lebih rendah 22 ppm/°C berbanding epoksi kosong. Nilai CTE 

yang rendah diperlukan untuk mengurangkan tekanan dalaman dan rekahan pada 

substrat. 
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ASSESSMENT OF ALUMINA AND MUSCOVITE AS FILLERS FOR EPOXY 

SUBSTRATE MATERIAL 

ABSTRACT 

 

The research reports the preparation and performance of particulate filled epoxy 

composites at various filler loading using casting method. Two types of fillers were used 

in this study; muscovite and alumina. Surface treatments were carried out to muscovite 

and alumina particles in order to improve the interfacial adhesion and dispersion in 

epoxy matrix. The treatments were characterized using Fourier Transmission Infra Red 

(FTIR), which indicate both particles have successfully treated. Mechanical properties 

were investigated in order to evaluate the effect of treatments and filler loading on the 

composites. It was found that the flexural strength and the flexural modulus increase 

over the range of filler loading investigated for both composites. In terms of flexural 

modulus, treated muscovite composite increase from 3GPa (neat epoxy) to 7.5GPa 

(40wt% treated muscovite) with targeted flexural modulus 15GPa. It was observed that 

muscovite composites with ion exchange treatment give better performance in terms of 

thermal properties as compared with untreated muscovite composites. In addition, the 

coefficient of thermal expansion (CTE) has successfully reduced from 69.4 ppm/°C 

(neat epoxy) to 32 ppm/°C (40wt% treated muscovite) with targetted CTE value of 

around 16-20ppm/°C. Apparently, the treated alumina exhibit high flexural modulus; 

9GPa (50wt% treated alumina) and low CTE at as low as 22 ppm/°C compared with neat 

epoxy. The closer the CTE value of the substrate to the chips is preferable in order to 

minimize the internal stress and fatigue cracking.  
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CHAPTER 1 

 

 1.1 INTRODUCTION 

The electronic industry is one of the fastest growing industries in the world 

today. As this market continues to grow, the demand for packaging processes in 

electronic packaging also increases. The packaging however requires a minimal cost and 

maximum efficiency. For many years, the ceramic substrate materials were used due to 

the low difference on coefficient of thermal expansion (CTE) between the silicon die (2-

3 ppm/°C) and the substrate (15 – 18 ppm/°C). However, ceramic substrate materials are 

expensive and thus are undesirable in electronic application. In 1997, Intel proved that 

the same connection density and superior dielectric properties could be achieved by 

sequential build-up (SBU) laminate organic substrate (Veldevit, 2008). Therefore, 

organic substrates are preferable as reported by previous works (Veldevit, 2008, Petefish 

et al., 1998). In addition, the polymer composites are typically favored for their cost-

effectiveness and design flexibility, while they can meet the processing and reliability 

requirement (Fan et al., 2004).  

 

 Many of the most critical reliability attributes are related to silicon die size and 

packages construction. The CTE mismatch between the silicon die and the board induces 

plastic strain in the solder joint during operation resulting in lower fatigue life and 

eventually cause solder joint failure (Bank et al., 2005, Tummala et al., 2004). The 

factors that influenced the performance of the substrate materials properties such as 

layer count, substrate thickness and even the metallization pattern on individual layers, 

also affect the stress condition and therefore reliability. Stress condition also causes 

 18



package warpage or nonflatness of the substrate material. Usually warpage and 

delamination are the main problems due to the continuous thermal cycle exposure (He et 

al. 2000). Therefore, the substrate material has to possess high thermal reliability during 

service. The warpage and the delamination problems are partly associated with the 

coefficient thermal expansion (CTE) mismatch as mentioned before between the solder 

and the substrate coupled with low flexural rigidity of substrate (Wakharhar et al., 2005 , 

Sun et al., 2005), Figure 1.1. 

 

Figure 1.1: Schematic of package in reliability stress illustrating CTE mismatch a) 
Illustration of flip chip packaging b) cooling by relative humidity c) heating by 
temperature will cause warpage and thermo mechanical stresses in package. 
 
 
 
 

 19



1.2 Problem statement 

As mentioned before, the major problem in electronic packaging is the CTE 

mismatch between the silicon die and organic substrate in zeroth level package. The 

mismatch usually resulted in warpage and delamination of the organic substrate during 

thermal cycle. In addition, after the thermal cycle, the substrate will not be flat enough 

due to the rigidity of the substrate. To solve these problems, the CTE must be reduced 

and at the same time improved the rigidity of the substrate in order to avoid the failure in 

the package. Hence, low CTE fillers and high rigidity were chosen. With those 

requirements as stated above, in this study was decided to choose alumina and 

muscovite as fillers. Alumina is rigid particles with modulus >350GPa and good in 

thermal properties. While muscovite has platelet shape and expected will given better 

performance in mechanical properties. In addition, both fillers have low CTE 

(<6ppm/°C). 

  

1.3 Objective of the study 

There are a few objectives in this research:  

1. To investigate the various fillers like alumina and muscovite filled epoxy 

composites in terms of mechanical and thermal properties. 

2. To study the effect of silane coupling agent on the properties of alumina filled 

epoxy composite. 

3. To study the effect of ion exchange treatment in muscovite filled epoxy 

composite. 

4. To improve the rigidity of alumina and muscovite filled epoxy composites and to 

reduce the CTE mismatch.  
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1.4 Scope of research 

 To solve the warpage and CTE mismatch, underfills are applied in packaging 

industry to improve the reliability. However, they tremendously increase the assembly 

costs and assembly complexity in processing [Veldevit, 2008, Tummala et al., 2004]. In 

order to attain the required reliability without underfill, the CTE of the substrate material 

has to match exactly with the silicon die and high modulus. The substrate of most rigid 

boards is made from FR-4 epoxy resin impregnated fiberglass cloth with 20GPa in 

modulus with CTE value between 16-20 ppm/°C [Blackwell, 2000]. However, FR-4 

have the limitation which is it will not be flat enough to meet the requirements during 

thermal cycle. Therefore, particulate fillers in epoxy resin are applied in order to obtain 

the required properties and hence improved the warp and reliability of the package. 

 

In this research, particulate fillers such as alumina and muscovite with layered 

silicates structure was selected in order to study the performance of the particulate in 

thermal and mechanicals properties. Beside that, surface treatment was done using silane 

coupling agent on the alumina surface. The effect of the surface treatment will be 

investigate. Meanwhile, for muscovite filler, ion exchange treatment was carried out. 

There have been several works on ion exchange treatment for montmorillonite (MMT) 

and a few studied was reported for muscovite [Agag et al., 2007]. In this study , 

muscovite are selected to done ion exchange treatment and the properties will be 

investigate. 
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 CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction of electronic packaging 

 In electronic packaging, the effectiveness of electrical function such as the 

reliability and cost of the system, not only depends on the electrical design but also by 

the packaging materials. According to Pecht et al., (1999) electronic packaging refers to 

the packaging of integrated circuit (IC) chips (die), their interconnections for signal and 

power transmission and heat dissipation. 

 

 In package materials, there are designed to enable the electrical and thermal 

performance requirement such as provide thermal paths and as electrical conductor or 

insulator. In addition, the package materials must provide high-reliability performance in 

order to keep pace with silicon and package technology advances and to protect circuit 

from environmental factors such as moisture, hostile chemicals etc (Wakharhar et al., 

2005). 

 

 In order to classify materials in the electronic packaging, these packaging 

materials are separated in four levels of packaging such as chip, components, printed 

wired board and assembly level packaging that are referred as the zeroth, first, second 

and third level packaging as shown in Figure 2.1. The details about these levels are 

summarized as below: 
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a)  Zeroth level packaging 

 This level focuses on semiconductor die materials, die attach materials and 

substrates. 

 

b) First level packaging 

Also known as, component level packaging is designed to enable interconnection 

between the devices and packages while providing the protection for the device 

against mechanical stress and chemical attack. 

 

c) Second level packaging 

Another name for this is Printed Wired Board (PWB). A typical PWB provides 

good in mechanical, thermal and electrical properties in an electronic system. In 

terms of mechanical, it is provide support for the component and a thermal 

conduction path for the heat dissipated by components. While electrical provides 

an insulator for the conductors. 

 

d) Third level packaging 

This level includes the interconnections and hardware required to realize an 

electronic system after the PWB have been assembled. Required electrical 

interconnections are primarily achieved using backpanels, connectors and cable. 
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Figure 2.1: A diagram of packaging materials with consist zeroth, first and second levels 
packaging (Tummala et al., 2004) 

 
 

2.1.1 Flip chip technology 

 In the traditional IC packaging, the silicon chip is wire-bonded to a leadframe 

and sealed by a ceramic substrate or plastic shell (He et al., 2000). Following Luo 

(2000), IC devices have moved to higher level and higher input/output (I/O) counts 

pushing the limit of the peripheral array of distributing the leads of an IC. Flip chip 

technology uses an area array of solder balls to provide a much longer I/O count over a 

given area of the IC. Figure 2.2 is an illustration of the flip chip package. 

 

Figure 2.2: A schematic of flip chip packaging 
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