UNIVERSITI SAINS MALAYSIA

First Semester Examination Academic Session 2004/2005

October 2004

CPT102 – Discrete Structures

Duration : 3 hours

INSTRUCTIONS TO CANDIDATE:

- Please ensure that this examination paper contains **FOUR** questions in **SIX** printed pages before you start the examination.
- Answer **ALL** questions.
- This is an "Open Book" Examination.
- You can choose to answer either in Bahasa Malaysia or English.

ENGLISH VERSION OF THE QUESTION PAPER

- 1. (a) Given is a sequence on binary numbers: 11_2 , 1111_2 , 11111_2 , 11111_2 , 1111_2 , 11111_2 , 1111_2
 - (i) Change the given sequence to decimal representation (write only the first five (5) terms).

(10/100)

(ii) Based on answer in (i), find J_n where J_n is the implicit formula for the given sequence.

(10/100)

(iii) Based on answer in (ii), use substitution method, to find S_n where S_n is the explicit formula for the sequence.

(10/100)

(iv) Is $3 | S_n$ for $n \in A^+$? If true, prove it using mathematical induction.

(10/100)

- (b) In a football league there are 4 clubs (club A, club B, club C, club D) competing.
 - (i) If each club competing has 20 players (4 strikers, 8 midfielders, 8 defenders), how many ways are there to choose a national team of 15 players from the clubs if the 15 players consist of 4 strikers, 5 midfielders and 6 defenders.

(10/100)

(ii) A club has brought 10 balls to a field. The club buys balls from only 3 well-know ball manufacturers. How many combinations of balls are there that can be brought to the field.

(10/100)

(iii) Between club A and club B, club A has twice the chance to be a winner. Between club B and club C, club B has three times chance to be a winner. Club C and club D has the same chance to be a winner. What are the chances for each club to be a winner?

(10/100)

(c) Mathematical Structure $S = (Integer matrices size 1 \times 2, \nabla)$, where

$$[x \ y] \nabla [w \ z] = [x+w \ (y+z)/2]$$

- (i) Show that S is closed (10/100)
- (ii) Based on *S*, shows that ∇ is commutative.

(10/100)

(iii) Based on S, shows that
$$\nabla$$
 is not associative. (10/100)

- (a) In an examination schedule, there are only two types of exam, exam for graduate students and exam for undergraduate students. Only one exam will be conducted in a day. All undergraduate exams are not allowed to be conducted in two or more days in row. If there are n exam days,
 - (i) Find the implicit formula for the sequence that shows how many schedules that can be generated?

(5/100)

- (ii) Write a recursive pseudocode based on answer in 2(a)(i). (20/100)
- (iii) Write an iterative (loop) pseudocode based on answer in 2(a)(i).

(20/100)

(b) Given the following function:

```
Function Goo(a,b)
a,b: integer.
Begin
    If (a = 0) then
        return (b)
    If (b = 0) then
        return (a)
    If (a < b)
            Goo(a, b mod a)
        else
            Goo(a mod b, b)
End</pre>
```

[CPT102]

(i)	Trace the given pseudocode with $Goo(15, 3)$ and $Goo(14, 5)$.	(10/100)
(ii)	What is the task of the given function?	(5/100)
(iii)	Rewrite the pseudocode using loop.	(20/100)

(c) Given the *NAND* operation as follows:

р	q	p NAND q
0	0	1
0	1	1
1	0	1
1	1	0

(i) Show that $\neg p \Leftrightarrow p \text{ NAND } q.$ (5/100)

(i) Show that
$$p \lor q \Leftrightarrow (p \text{ NAND } p) \text{ NAND } (q \text{ NAND } q)$$
.

(5/100)

- (iii) Using only *NAND* find the equivalent proposition to $p \land q$. (10/100)
- 3. (a) If *aRb* is a relation of congruent modulo *n*, $a \equiv b \pmod{n}$. Show that *R* is:
 - (i) reflexive. (10/100)
 - (ii) symmetric. (10/100)
 - (iii) transitive. (10/100)

- 4 -

(b)	A is a set and $ A = 8$. R is a relation on A, $R \subseteq A \times A$.		
	(i)	How many different <i>R</i> can be produced?	(10/100)
	(ii)	How many <i>R</i> are reflexive?	(10/100)
	(iii)	How many <i>R</i> are symmetric?	(10/100)
	(iv)	How many <i>R</i> are reflexive and symmetric?	(10/100)

(c) A computer application consists of 9 modules. The given table shows the relation on the modules with time required to produce the modules.

Module	Should be done after this module(s)	Time required (week)
1	-	5
2	1	4
3	1	1
4	2	4
5	2,3	3
6	4	1
7	2,3	3
8	4,5	2
9	6,7,8	5

(i) Draw the Hasse diagram for this project.

(10/100)

(ii) How long it takes to complete the project? (Assume there is no constraint on human resources but each module should be done by one person).

(10/100)

(iii) Draw the matrix representation of the relation represented by the Hasse diagram in 3(c)(i).

(10/100)

4.	(a)	Based on question 2 above.		
		(i)	Draw the simplest finite state machine which accepts only the defined schedule.	
			(15/100)	
		(ii)	Write the simplest Phase Structured Grammar based on answer in 4(a)(i).	
			(15/100)	
	(b)	For cann	each of the following, draw the respective tree or explain why the tree of be produced.	
		(i)	Complete binary tree with 5 internal nodes.	
			(5/100)	
		(ii)	Complete binary tree with 5 internal nodes and 7 leaves. (5/100)	
		(iii)	Complete binary tree with 9 nodes.	
			(5/100)	
		(iv)	Complete binary tree with height 3 and having 7 leaves. (5/100)	
		(v)	A binary tree with height 3 and 7 leaves.	
			(5/100)	
		(vi)	Complete binary tree with height 3 and 6 leaves. (5/100)	
		-		

(c) For each of the given function (f, g and h), determine if the function is 1-to-1. If the function is 1-to-1 then find its inverse, otherwise name the function type.

(i)
$$f = \{ (a,b) \mid b = a^{100}, a \in A, b \in A \}$$
 (10/100)

(ii)
$$g = \{ (a,b) \mid b = 2^a, a \in A, b \in A \}$$
 (10/100)

(iii)
$$h = \{(a,b) \mid a \ge 5, b = a+3, a \in A \}, b \in A \}$$
 (10/100)

(iv) Show that
$$f(n) = O(g)$$
 and $g(n) \neq O(f)$ (10/100)