UNIVERSITI SAINS MALAYSIA

First Semester Examination
Academic Session 2000/2001
September/October 2000

CSI501 - Computer Organisation

Duration : [3 hours]

INSTRUCTION TO CANDIDATE:

- Please ensure that this examination paper contains FIVE questions in FOUR printed pages before you start the examination.
- Answer ALL questions.
- You can choose to answer either in Bahasa Malaysia or English.

1. (a) Using a truth table, prove the following theorem:

$$
\begin{equation*}
\operatorname{NOT}(\mathrm{X}+\mathrm{Y})=\operatorname{NOT}(\mathrm{X}) \cdot \operatorname{NOT}(\mathrm{Y}) \tag{5/100}
\end{equation*}
$$

(b) Draw a logic circuit diagram for the following Boolean function (without simplifying it):

$$
\begin{equation*}
\mathrm{Z}=(\mathrm{A} \oplus \mathrm{~B}) \cdot(\mathrm{NOT} \mathrm{C}) \cdot(\mathrm{A}+\mathrm{B}) \tag{5/100}
\end{equation*}
$$

2. Complete the following, showing all the intermediate steps:
(a) Multiply 38105_{9} with 47_{9} directly (without using base 10), giving your answer in base 9 .
(b) Convert 1735.46_{8} into hexadecimal (without using base 10 as intermediate).
(c) Multiply 246_{BCD} with 7_{BCD} directly, giving your answer in BCD.
(d) Convert 11101.1_{2} into BCD.
3. (a) What is meant by related bases? Selected two other bases which are related to base 3. By using a suitable example, show how direct conversion can be done between base 3 and one of your selected base.
(b) Add the following numbers, using 2's complement binary format (4 bits, with first bit as sign bit). For each case, indicate if there's a carry and overflow. Comment on the result obtained, whether or not it is correct. Explain why.
(i) $4+6$
(ii) $(-4)-2$
(iii) $(-4)-6$
(c) One format for storing a floating point number is SEEMMMMM 7 , where all the digits are in base 7. The sign digit (S) is 0 for a positive number and 6 for negative number. Exponents (EE) are stored in base 7 using excess-Z method. The decimal point is at the beginning of the mantissa. What is a suitable value that can be chosen for Z? Explain your answer.
(5/100)
4. (a) Explain briefly the role played by registers MAR, MDR, IR and PC in program execution. Use suitable example(s) to explain your answer.
(b) Consider the following memory contents:

Location	Content
100	500
200	400
300	800
400	700
500	300
600	200
700	900
800	1000
900	100
1000	600

Register	Content
X	500
Base	100
PC	700
Index	400

When instruction LOAD 200 or LOAD X is given (where appropriate), what is the value loaded (from the memory) for each of the addressing mode below:
(i) immediate
(ii) direct or absolute
(iii) register
(iv) base offset
(v) relative
(vi) indirect
(vii) register indirect
(viii) indexed
(ix) indexed indirect
(x) indirect indexed
5. (a) What is an interrupt? Briefly explain who uses it, and how.
(b) What is Direct Memory Access (DMA)? Explain your answer in terms of implementation, usage and benefits obtained, when compared to other related techniques.
(c) Compare the workings of cache memory, virtual memory and disk cache.
(10/100)

