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1. (a) Three dimensional continua problem could be specialized to two well-known cases of 

plane stress and plane strain problems.   Explain clearly with the help of suitable sketches 

the difference between plane stress and plane strain problems.    

(6 marks) 

 

(b) Figure 1.0 shows the stress components acting on an infinitesimal volume in a three 

dimensional body.   Using the notation of : 

 

 = [ x  y  z  xy  yz  zx ] 
T
     

 

and  

 

 = [ x  y  z  xy  yz zx ] 
T
      

 

for the Cartesian components of stress and the corresponding strain, respectively, derive 

the constitutive equation =D  for the case of a homogeneous isotropic body.   

Specialize it to the case of a plane stress problem. 

(8 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.0 
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(c) The sets of equilibrium equations and strain-displacement equations for an infinitesimal 

volume in a three dimensional body as shown in Figure 1.0 are given as follows, 

respectively : 

 

Equilibrium equations :  

  

 

 

 

 

 

 

 

 

 

 

 

where Rx, Ry and Rz are body forces per unit volume in x, y and z-directions, respectively;  

 

Strain-displacement equations : 
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where u, v and w are components of displacement in x, y and z-directions, respectively, of 

a point within the three dimensional body.  

 

Using the above sets of equations together with the general constitutive equations for a 

homogeneous isotropic body derived in (b) earlier,   specialize them to the case of a 1D 

bar loaded with uniformly distributed body force as shown in Figure 2.0.   Explain 

clearly all assumptions made in the process of specialization.   State also the boundary 

condition for the problem. 

(6 marks) 

 

 

 

 

 

 

 

  

 

 

Figure 2.0 
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2. (a)  Prove that identical equilibrium equation will be obtained for the elastic spring subjected 

to a load f as shown in Figure 3.0 by using both :  

 

i. principle of virtual displacement and 

ii. principle of minimum potential energy.    

 

Express the equation of equilibrium in terms of k and f, where k is the spring constant.  

(6 marks) 

 

 

 

 

 

Figure 3.0 

 

(b) By specializing the equation of principle of virtual displacement to the case of 1D-

problem, derive the governing equation of equilibrium for the problem of a tapered bar 

subjected to concentrated load as shown in Figure 4.0, where A, L and P are the cross-

sectional area, length of the bar and concentrated load, respectively.    State also the force 

and displacement boundary conditions.    Young modulus of the bar is E.       

(6 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.0 
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(c) Figure 5.0 shows a simply supported beam with an elastic spring prop at point C.  The 

beam is subjected to a point load P acting at the mid-span.   The following expression for 

lateral displacement field v has been suggested : 

 

v = A sin (x /L)  

 

where A is a constant.    Show that the above displacement field is admissible.   Next, 

solve for the constant A by applying the principle of minimum potential energy.  Flexural 

rigidity of beam is EI and spring constant for elastic spring is k.             

(8 marks) 

 

 

 

   

 

 

 

  

 

 

 

 

Figure 5.0 

 

 

3.  (a) Write down the element stiffness matrices and global matrix for the two bar assembly which 

is loaded with force P, and constrained at the two ends in terms of E, A and L as shown in 

Figure 6.0 (a). 

( 5 marks) 

 

 

 

 

 

 

 

 

Figure 6.0 (a) 
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(b) Show clearly in a step by step manner the development process of a stiffness matrix,  [K]
e
 , 

for a triangular element in a state of plane stress as shown in  Figure 2.0. Given E = 200 

GN/m
2
 ,    = 0.3   and  t = 2 cm. 

( 15 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.0 (b) 

 

 

4. (a)  Clearly define the difference between a bar and beam in the analysis using Finite Element 

Method. 

(5 marks) 

 

    (b) Figure 7.0 shows a system of two beams labeled as node 1, 2 and 3 and a spring labeled as 

node 3 and 4 subjected to a nodal forces of  P = 50 kN at node 3. The beam is fixed at node 

1, simply supported at node 2 and spring support at node 3.   The spring system can only 

displace in axial direction and is supported at node 4.   Given the value of k = 200 kN/m, L1 

= L2 = 3m, E = 210GPa and I = 2x10
-4

 m
4
 .  

 

i. Obtain the element stiffness matrix  for the beam and  the spring. 

ii. Derive the global stiffness matrix for the system.  

iii. Evaluate the deflection v3 , 2 and 3  in  unit metre and radian respectively. 

(15 marks) 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.0 
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Given the stiffness of the beam element in dimensional space:  

 vi θi vj θj 
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5. (a)  Describe the plan stresses and plane strain structures in the analysis of finite element 

method. 

 

( 5 marks) 

 

(b) Explain what is the Variational Method (Rayleigh-Ritz) and the Weighted-Residual Method 

(Galerkin) 

(5 marks) 

              

(c) Figure 8.0 (b) shows a cantilever beam carrying a concentrated load of 100N at point B.The 

beam is modeled with linear four-noded rectangular elements (    ) and three nodded 

triangular elements (    ). Given Elastic Modulus E = 200 GPa, thickness, t = 10 mm and the 

Poisson ratio, v = 0.3. The results for the percentage of deflection error is shown in Figure 

8.0 (c). Give 3 suggestions that can be done to improve the result of the deflection. If  the 

deflection at B  has converged, discuss about the convergence of stresses at A.  

 

(5 marks) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 8.0 (b)     Figure 8.0 (c) 
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(d) Derive the stiffness matrix for an element shown in Figure 8.0 (d) in terms of  applied axial 

loads F1, F2, displacements u1, u2 , axial rigidity EA and initial length, L. 

(5 marks) 

 

 

 

 

 

 

 

  

Figure 8.0 (d) 
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