UNIVERSITI SAINS MALAYSIA

Peperiksaan Semester Kedua
Sidang Akademik 1993/94
April 1994

CSI502 - Functional Programming

Masa: [3 jam]

ARAHAN KEPADA CALON:

- Sila pastikan bahawa kertas peperiksaan ini mengandungi EMPAT muka surat yang bercetak sebelum anda memulakan peperiksaan ini.

Answer ALL questions.

1. (a) (i) Define briefly the notions of:

- Cartesian product of A and B sets,
- relations and functions,
- graph of function,
- domain and range of function,
- functional term, value of term.
(ii) Let $\mathrm{z}=\mathrm{f} 1(\mathrm{x}, \mathrm{y}), \quad \mathrm{x}=\mathrm{f} 2(\mathrm{z}, \mathrm{x} 1)$ be total functions and $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{x} 1$ be variables. Given the following words:
$\mathrm{f} 1(\mathrm{x}, \mathrm{y})$
f2(x $1, z$)
$\mathrm{fl}(\mathrm{f} 2(\mathrm{x} 1, \mathrm{f} 1(\mathrm{x}, \mathrm{y}))$
f1 f2($\mathbf{x} 1, \mathrm{z}$)
f2($\mathrm{x} 1, \mathrm{z}, \mathrm{x}$)
Indicate which of these words are terms (Yes/No)
(25/100)
(b) (i) Define an operator of primitive recursion $f=\mathbf{R}(\mathrm{g}, \mathrm{h})$.
(ii) Give an example of a primitive recursive function.
(iii) Is the function $\mathrm{z}=\mathrm{x}^{\mathrm{y}}$ a primitive recursive function (Yes/No).
(25/100)
(c) Define an operator of unbounded minimization $\mathbf{M}(\mathrm{f})$
(d) (i) Define the class of primitive recursive functions.
(ii) State and discuss the meaning of Church-Kleene thesis.
(iii) Prove that $\mathrm{x}+\mathrm{y}$ is a primitive recursive function.
(iv) What are the functions $\mathrm{f5}$ and f 6 given by the schema of recursive derivation? The answer must be written as elementary function, for example, $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})=\mathrm{x} * \mathrm{y}$. Will you compute, please, the value $\mathrm{f}(2)$ realizing the schema of recursive derivation.

Recursive schema

$\mathrm{f} 1=\lambda \mathrm{x}[\mathrm{x}]$
$\mathrm{f} 2=\lambda \mathrm{x}[\mathrm{x}+1]$
$\mathrm{f} 3=\lambda \times 1 \times 2 \times 3[\times 2]$
f4=f2 f3
f5 to satisfy

$$
\begin{aligned}
& \mathrm{f} 5(0, \mathrm{x} 2)=\mathrm{f} 1(\mathrm{x} 2) \\
& \mathrm{f} 5(\mathrm{y}+1, \mathrm{x} 2)=\mathrm{f} 4(\mathrm{y}, \mathrm{f} 5(\mathrm{y}, \mathrm{x} 2), \mathrm{x} 2)
\end{aligned}
$$

$\mathrm{f}=\mathrm{f} 6=\mathrm{f} 5(\mathrm{f} 1, \mathrm{f} 1)$
END of recursive schema
(35/100)
2. (a) Give the definition of the following objects and notions:
(i) variables, operations, algorithm representation,
(ii) direct and data flow controle,
(iii) mapping of an algorithm,
(iv) realization of an algorithm.
(v) comparative nonprocedurality of an algorithm representations
(25/100)
(b) (i) Give a definition of an asynchronous block, trigger and control functions.
(ii) Define an asynchronous program.
(iii) Give an example of asynchronous program
(25/100)
(c) Define the rules of asynchronous program execution, including the following:
(i) rules of asynchronous block execution,
(ii) condition of asynchronous program completion,
(iii) rules of asynchronous program execution.
(d) Develope an asynchronous program of pipe-line execution of the algorithm (Fig. 1) Procedures input (v, n) and output (v, n) can be used to take or to put a value from/in n-values box v If you want, instead of trigger and control functions you can use Petri nets to define a control.

y - 5 values box $\quad x, t-$ unlimited boxes
$z-3$ values box
f - 3 values box
Fig. 1.
3. (a) Define a formal model of computations including:
(i) computational model, terms and their attributes,
(ii) non-interpreted computations (notion of (V,W)-plan),
(iii) algorithm of (V, W)-plan building with minimum number of terms,
(iv) notion of interpretation.
(40/100)
(b) Describe the derivation algorithm, including:
(i) the formulation of problem of program synthesis,
(ii) a bottom-up part of algorithm,
(iii) an up-down part of algorithm,
(iv) feasible modifications of problem of program synthesis
(c) Describe an algorithm to buid an application problem solution algorithm, including:
(i) an algorithm of choice,
(ii) list basic strategies of operation choice.

