UNIVERSITI SAINS MALAYSIA

Stamford College

First Semester Examination 2004/2005 Academic Session October 2004

External Degree Programme Bachelor of Computer Science (Hons.)

CPT102 – Discrete Structures

Duration : 3 hours

INSTRUCTIONS TO CANDIDATE:

- Please ensure that this examination paper contains FOUR questions in SIX printed pages before you start the examination.
- Answer **ALL** questions.
- This is an "Open Book" Examination.
- On each page, write only your Index Number.

- - (i) Change the given sequence to decimal representation (write only the first five (5) terms).

(10/100)

(ii) Based on answer in (i), find J_n where J_n is the implicit formula for the given sequence.

(10/100)

(iii) Based on answer in (ii), use substitution method, to find S_n where S_n is the explicit formula for the sequence.

(10/100)

(iv) Is $3 | S_n$ for $n \in \mathbb{Z}^+$? If true, prove it using mathematical induction.

(10/100)

- (b) In a football league there are 4 clubs (club A, club B, club C, club D) competing.
 - (i) If each club competing has 20 players (4 strikers, 8 midfielders, 8 defenders), how many ways are there to choose a national team of 15 players from the clubs if the 15 players consist of 4 strikers, 5 midfielders and 6 defenders.

(10/100)

(ii) A club has brought 10 balls to a field. The club buys balls from only 3 well-know ball manufacturers. How many combinations of balls are there that can be brought to the field.

(10/100)

(iii) Between club A and club B, club A has twice the chance to be a winner. Between club B and club C, club B has three times chance to be a winner. Club C and club D has the same chance to be a winner. What are the chances for each club to be a winner?

(10/100)

(c) Mathematical Structure $S = (Integer matrices size 1 \times 2, \nabla)$, where

$$\begin{bmatrix} x & y \end{bmatrix} \nabla \begin{bmatrix} w & z \end{bmatrix} = \begin{bmatrix} x+w & (y+z)/2 \end{bmatrix}$$

(i) Show that *S* is closed

(10/100)

(ii) Based on S, shows that ∇ is commutative.

(10/100)

- (iii) Based on S, shows that ∇ is not associative. (10/100)
- (a) In an examination schedule, there are only two types of exam, exam for graduate students and exam for undergraduate students. Only one exam will be conducted in a day. All undergraduate exams are not allowed to be conducted in two or more days in row. If there are n exam days,
 - (i) Find the implicit formula for the sequence that shows how many schedules that can be generated?

(5/100)

- (ii) Write a recursive pseudocode based on answer in 2(a)(i). (20/100)
- (iii) Write an iterative (loop) pseudocode based on answer in 2(a)(i).

(20/100)

(b) Given the following function:

```
Function Goo(a,b)
a,b: integer.
Begin
    If (a = 0) then
        return (b)
    If (b = 0) then
        return (a)
    If (a < b)
            Goo(a, b mod a)
        else
            Goo(a mod b, b)
End</pre>
```

[CPT102]

(i)	Trace the given pseudocode with $Goo(15,3)$ and $Goo(14,5)$.	(10/100)
(ii)	What is the task of the given function?	(5/100)
(iii)	Rewrite the pseudocode using loop.	(20/100)

(c) Given the NAND operation as follows:

Р	9	p NAND q
0	0	1
0	1	1
1	0	1
1	1	0

- (i) Show that $\neg p \Leftrightarrow p \text{ NAND } q.$ (5/100)
- (i) Show that $p \lor q \Leftrightarrow (p \text{ NAND } p) \text{ NAND } (q \text{ NAND } q).$ (5/100)
- (iii) Using only NAND find the equivalent proposition to $p \wedge q$.

(10/100)

- 3. (a) If aRb is a relation of congruent modulo n, $a \equiv b \pmod{n}$. Show that R is:
 - (i) reflexive.
 - (ii) symmetric. (10/100)
 - (10/100)
 - (iii) transitive. (10/100)

(b)	A is a set and $ A = 8$. R is a relation on A, $R \subseteq A \times A$.		
	(i)	How many different <i>R</i> can be produced?	(10/100)
	(ii)	How many R are reflexive?	(10/100)
	(iii)	How many R are symmetric?	(10/100)
	(iv)	How many <i>R</i> are reflexive and symmetric?	(10/100)

(c) A computer application consists of 9 modules. The given table shows the relation on the modules with time required to produce the modules.

Module	Should be done after this module(s)	Time required (week)
1	-	5
2	1	4
3	1	1
4	2	4
5	2,3	3
6	4	1
7	2,3	3
8	4,5	2
9	6,7,8	5

(i) Draw the Hasse diagram for this project.

(10/100)

(ii) How long it takes to complete the project? (Assume there is no constraint on human resources but each module should be done by one person).

(10/100)

(iii) Draw the matrix representation of the relation represented by the Hasse diagram in 3(c)(i).

(10/100)

(10/100)

4.	(a) Based on question 2 above.			
		(i)	Draw the simplest finite state machine which accepts only the define schedule.	d
			(15/100))
		(ii)	Write the simplest Phase Structured Grammar based on answer in 4(a)(i).	
			(15/100))
	(b)	b) For each of the following, draw the respective tree or explain why the cannot be produced.		
		(i)	Complete binary tree with 5 internal nodes.	
			(5/100)
		(ii)	Complete binary tree with 5 internal nodes and 7 leaves. (5/100))
		(iii)	Complete binary tree with 9 nodes.	
			(5/100))
		(iv)	Complete binary tree with height 3 and having 7 leaves. (5/100))
		(v)	A binary tree with height 3 and 7 leaves.	
			(5/100))
		(vi)	Complete binary tree with height 3 and 6 leaves. (5/100)	Ň
	(c)) For each of the given function $(f, g \text{ and } h)$, determine if the function is 1-to-1 then find its inverse, otherwise name the function typ		2
		(i)	$f = \{(a,b) \mid b = a^{100}, a \in \mathbb{R}, b \in \mathbb{R}\}$	

(i)
$$f = \{ (a,b) \mid b = a^{100}, a \in \mathbb{R}, b \in \mathbb{R} \}$$

(10/100)
(ii) $g = \{ (a,b) \mid b = 2^a, a \in \mathbb{R}, b \in \mathbb{R} \}$

(iii)
$$h = \{(a,b) \mid a \ge 5, b = a+3, a \in \mathbb{R}, b \in \mathbb{R}\}$$

(iv) Show that
$$f(n) = O(g)$$
 and $g(n) \neq O(f)$ (10/100)

- 6 -

- 0000000 -52