UNIVERSITI SAINS MALAYSIA

First Semester Examination
Academic Session 2003/2004

September/October 2003

EEE 504 - NONLINEAR DYNAMIC SYSTEMS

Time: 3 Hours

INSTRUCTION TO CANDIDATE:-

Please ensure that this examination paper contains <u>SEVEN</u> (7) printed pages with **2 Appendix** and <u>SEVEN</u> (7) question before answering.

Answer **FIVE** (5) questions.

Distribution of marks for each question is given accordingly.

All questions must be answered in English.

1. (a) The circuit shown in Figure 1.1 has the input, $u = i_s$ and the output, $y = i_{L1}$. Select v_{C1}, v_{C2}, i_{L1} and i_{L2} as the state variables and obtain the state equations.

(b) Determine X(t) and the output, y(t) for a time-invariant system represented by the following state equations:

$$x_1 = -2x_1 + x_2 + 3u$$

$$x_2 = -x_1 + u$$

$$y = x_1 + x_2$$

where
$$x_1(0) = 10, x_2(0) = 1$$
 and $u(t) = e^{2t}$ (60%)

2. (a) Determine the equilibrium points and phase portraits of the following non-linear system:

$$y-2(1-y^2)y+|y|=0$$
 (35%)

(b) Determine the piecewise linear isocline equations for the non-linear system shown in Figure 2.1 with unit step input. Assume, the system constants as T = 1 and K = 4, $e_0 = 0.2$, $M_0 = 0.2$.

Figure 2.1

Draw the sketch of approximate trajectory for linear operation (65%)

3. (a) Derive and show that the Describing Function of saturation non linearity as:

$$N = \frac{2k}{\pi} \left[\sin^{-1} \frac{s}{X} + \frac{s}{X} \sqrt{1 - \left(\frac{s}{X}\right)^2} \right]$$

where k = slope and s = input at saturation X = amplitude of the input sinusoidal signal.

(50%)

(b) A nonlinear system is shown in Figure 3.1 with r = 0 and $f(u) = 2 u^3$. Determine the condition for limit cycles when the input to the non-linear element, $u(t) = U_0 + U_1 \sin \omega t$.

Figure 3.1

(50%)

4. Using Single Input Describing Function Technique, determine the amplitude and frequency of the limit cycle, if any, for the system shown in Figure 4.1.

Figure 4.1

$$x = X \sin \omega t$$
Where $N = \frac{4}{\pi X} \int -\sin^{-1} \frac{0.2}{X}$

$$G(s) = \frac{2.5}{s(s+1)^2}$$
(100%)

5. (a) Explain with suitable diagrams the meaning of stability, asymptotic stability and asymptotic stability in the large of an equilibrium state of a system in the sense of Lyapunov.

(25%)

(b) For the following system:

$$\dot{x}_1 = -x_1 - \frac{3}{16}x_2$$

$$x_2 = x_1$$

Determine

- (i) the matrix P which verifies the Lyapunov function
- (ii) the Lyapunov function
- (iii) the stability of equilibrium state of the system.

(50%)

...5/-

(c) Investigate the stability of the following non-linear system by the method of Lyapunov:

$$x_1 = x_2$$

$$x_2 = -f(x_1) - g(x_2)$$

A possible Lyapunov function, $V(X) = \frac{1}{2}x_2^2 + \int_0^{x_1} f(\sigma)d\sigma$ (25%)

6. (a) Determine the state transition matrix from the recurrence relations:

$$x_1(k+1) = x_2(k)$$

 $x_2(k+1) = -x_1(k)$ (20%)

(b) For a linear time-invariant discrete-time system, X(k+1) = AX(k), select a positive definite Lyapunov function in quadratic form and prove that the necessary and sufficient conditions for the equilibrium state of the system to be asymptotically stable.

(30%)

(c) Investigate the stability of the following system by Lyapunov method:

$$x_{1}(k+1) = \frac{1}{2}x_{2}(k) + x_{1}^{2}(k) \quad x_{2}(k)$$

$$x_{2}(k+1) = -\frac{1}{2}x_{1}(k) + x_{1}(k) \quad x_{2}^{2}(k)$$
(50%)

- 7. Explain briefly any three of the following with suitable diagrams:
 - (a) Equilibrium points and phase-plane portraits.
 - (b) Variable structure systems.
 - (c) Feedback system stability.
 - (d) Adaptive control

(100%)

Table 1: Laplace Transform Pairs

	f(t)	F(s)
1	unit impulse $\delta(t)$	1
2	unit step 1(t)	1 5
3	1	$\frac{1}{s^2}$
4	e-ot	$\frac{1}{s+a}$
5	1e ^{-a1}	$\frac{1}{(s+a)^2}$
6	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
7	cos ω1	$\frac{s}{s^2 + \omega^2}$
8	$t^n (n = 1, 2, 3, \ldots)$	$\frac{n!}{s^{n+1}}$
9	$t^n e^{-at}$ $(n = 1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$
10	$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
11	$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{s}{(s+a)(s+b)}$
12	$\frac{1}{ab}\Big[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\Big]$	$\frac{1}{s(s+a)(s+b)}$
13	$e^{-at}\sin\omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
14	$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
15	$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$

Table 1.A: A Table of Z Transforms

		T	
	λ'(s)	x(t) or $x(k)$	$\lambda'(z)$.
1	1	δ(1)	1
2	c-kTs	$\delta(t-kT)$	z-k
3	1/s	1(t)	$\frac{z}{z-1}$
4	$\frac{1}{s^2}$	1	$\frac{Tz}{(z-1)^2}$
5	$\frac{1}{s+a}$	C-01	$\frac{z}{z - e^{-oT}}$
6	$\frac{a}{s(s+a)}$	1 c-oi	$\frac{(1-e^{-aT})z}{(z-1)(z-e^{-aT})}$
7	$\frac{\omega}{s^2 + \omega^2}$	sin ω <i>t</i>	$\frac{z \sin \omega T}{z^2 - 2z \cos \omega T - 1 - 1}$
8	$\frac{s}{s^2 + \omega^2}$	cos ω1	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$
9	$\frac{1}{(s+a)^2}$	(c-al	$\frac{Tze^{-\sigma T}}{(z-e^{-\sigma T})^2}$
10	$\frac{\omega}{(s+a)^2+\omega^2}$	$e^{-at}\sin \omega t$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
11	$\frac{s+a}{(s+a)^2+\omega^2}$	$e^{-\omega t}\cos\omega t$	$\frac{z^2 - ze^{-aT}\cos\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
12	$\frac{2}{s^3}$	<i>t</i> ²	$\frac{T^2z(z+1)}{(z-1)^3}$
13		a ^k	$\frac{z}{z-a}$
14		$a^k \cos k\pi$	$\frac{z}{z+a}$