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INSTRUCTION TO CANDIDATE:

Please ensure that this examination paper contains NINE (9) printed pages including
Appendices ( 8 pages) and ONE (1) page FINAL ANSWERING FORMAT (FOJA) and
SIX (6) questions before answering.

This question paper has two sections, Section A and Section B.

Answer TWO (2) questions in Section A and TWO (2) questions in Section B and
~ ONE (1) question from any Section. Answer FIVE (5) questions.

The Answering Format for this examination is

[i] You are required to show all the working solution in Answer Booklet.

[ii] All the final answers to each questions [B4, B5, B6] must be fulfilled in final
' answer format paper (FOJA) which is provided and must be enclosed together

with your Answer Booklet.

Use two separate ‘answer booklets which are provided for answering questions in
Section A and Section B respectively. '

Distribution of marks for each question is given accordingly.

All questions must be answered in English.
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A2. In the circuit shown in Figure 3 a source follower using a wide transistor and a
small bias current is inserted in series with the gate of M3 so as to bias M2 at the
edge of saturation region. Assuming M0-M3 are identical and 4 # 0, estimate

the mismatch between lgyr and Iggr if

@ =0 - (50%)
b 7#0 (50%)
...5/-
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A3.  Assuming all of the circuits shown in Figure 3 are symmetric sketch Voyr:

(a) Vine and Vi, vary differentially from zero to Vpp (50%)
(b) Vin1 and V., are equal and vary from zero to Vpp (50%)
...6/-
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Section B: Answer TWO (2) question

B4.

If there are no dominant zeros in the circuit transfer function and if there is a
dominant pole p4, then »-3dB frequency is given by

where ZTO is the sum of the zero value time constants. (see Appendix A for

details). Calculate the — 3-dB frequency of the circuit of Figure 4, assuming the
following parameter values:

Rs = 10kQ RL1 = 10kQ R = 5k
Cgs1 =5 pF Cgsz =10 pF ng1 = ngz =1pF
Cab1 = Capz = 2 pF gmt = 3 MANV Qm2 = 6 MA/V

Ignore Cqy, (Which is in parallel with Cys and is much smaller than Cgys). The smali-
signal equivalent circuit of Figure 4(a) is shown in Figure 4(b).

Use the zero-
value time constants method in your calculation.

(100%)

+0

M, Ry
= = -t 0 Figure 4(=) Two-stage,
common-source cascade
amplifier.
Figure 4(a)
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B5. (a)

Figure 5(a) is a single-stage feedback circuit. Its small-signal model is

shown in Figure 5(b), which includes a dependent current source. Find

the return ratio.

Use the following parameter values.

r. =5kQ
Rr = 19.5kQ
Rc=10kQ
mA
=40—
€ v

ro,=1MQ
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B6.
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The simplest and the most common method of compensation is to reduce the
bandwidth of the amplifier which is often called narrow banding
(see Appendix B).
The low-frequency gain of the 702 op amp is a,=3600 and the circuit has poles at
~(p:/2n) = 1 mHZ, -(p)/2x) = 4mHz and -(pa/2n) = 40 mHZ. Calculate the
dominant-pole magnitude required to give unity-gain compensation for this 702
op amp with a phase margin of 45°.

(100%)

0000000
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7.3 Multistage Amplifier Frequency Response

The above analysis of the frequency behavior of single-stage circuits indicates the com-
plexity that can arise even with simple circuits. The complete analysis of the frequency
response of multistage circuits with many capacitive elements rapidly becomes very dif-
ficult and the answers become so complicated that little use can be made of the results.
“ For this reason approximate methods of analysis have been developed to aid in the circuit
design phase, and computer simulation is used to verify the final design. One such method
of analysis is the zero-value time constant analysis that will now be described. First some
ideas regarding dominant poles are developed. ' :

7.3.1 Dominant-Pole Approximation

For any electronic circuit we can derive a transfer function A(s) by small-signal analysis
to give
N(s) _ ag+ais+ aps® + - + ams™

AS) = B = THbis + bast + oo + bys”

(7.83)

where ag, ay, . . . @m, and by, b, ... by are constants. Very often the transfer function con-
tains poles only (or the zeros are unimportant). In this case we can factor the denominator
of (7.83) to give

K

AG) = (1 - i)(l - -l-f;)(l - _;_)

where K is a constant and py, P2, . .. Pa are the poles of the transfer function.
It is apparent from (7.84) that

(7.84)

by = i(nl-) (7.85)

i\ Pi
An important practical case occurs when one pole is dominant. That is, when

S(2)

i=2 :

Ipil << |pah lpsl ... sothat

—1—‘ >
§ 5

- This situation is shown in the s plane in Fig. 7.23 and in this case it follows from (7.85) that

by = 1l (7.86)

P

s plane

Figure 7.23 Pole diagram for a circuit
with a dominant pole. e
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If we return now to (7.84) and calculate the gain mégxﬁtude in the frequency domain, we
obtain '
: K
\AGw)| = (7.87)
w 2 w 2 w 2
GG e
\P1 P2 Pn
If a dominant pole exists, then (7.87) can be approximated by
lAGje)] = (7.88)

K
. w
1+ (.-)
14
This approximation will be quite accurate at least until ® = |pi|, and thus (7.88) will
accurately predict the —3-dB frequency and we can write

w-3s = |pil (7.89)

Use of (7.86) in (7.89) gives
1 ) N
w-38 = 3 , (7.90)

for a dominant-pole situation.

~7.3.2 Zero-Value Time Constant Analysis

This is an approximate me hod of analysis that allows an estimate to be made of the dom-
inant pole (and thus the —3-dB frequency) of complex circuits. Considerable saving in
computational effort is achieved because a full analysis of the circuit is not required. The
method will be developed by considering a practical example.

Consider the equivalent circuit shown in Fig. 7.24. Thisis a single-stage bipolar tran-
sistor amplifier with resistive source and load impedances. The feedback capacitance is
split into two parts (Cy and C,) as shown. This is a slightly better approximation to the
actual situation than the single collector-base capacitor we have been using, but is rarely
used in hand calculations because of the analysis complexity. For purposes of analysis, the

(.
CX
.
+ | I_"‘i i
V3
./
R r Vo
i bA S | s
L \ B . | +
Cu
+
v; i ﬁl_—_cﬂ e = Vi 8mV1 () R v,

Figure 7.24 Small-signal equivalent circuit of a common-emitter stage with internal feedback -
capacitors C, and Cy.
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518 Chapter 7= Frequency Response of integrated Clrcuits

capacitor voltages vy, v2, and v; are chosen as variables. The external input v; is removed
and the circuit excited with three independent current sources i1, iz, and i3 across the
capacitors, as shown in Fig. 7.24. We can show that with this choice of variables the circuit
equations are of the form

iy = (gn +sCxv1 + g12v2 + &13V3 (7.91)
iy = g1 + (g2 + sCp)va + 823V3 ' (7.92)
iy = gyvi + gav2 + (g33 + 5CVs (7.93)

where the g terms are conductances. Note that the terms involving s contributed by the
capacitors are associated only with their respective capacitor voltage variables and only
appear on the diagonal of the system determinant. ; »
The poles of the circuit transfer function are the zeros of the determinant A of the
circuit equations, which can be written in the form '

A(s) = K38® + Kz + Kis + Ko (7.94)

where the coefficients K are composed of terms from the above equations. For example, K3
is the sum of the coefficients of all terms involving 53 in the expansion of the determinant.
Equation 7.94 can be expressed as

AGs) = Ko(l + bys + bas® + bss®) ' (7.95)

where this form corresponds to (7.83). Note that this is a third-order determinant because
there are three capacitors in the circuit. The term K in (7.94) is the value of A(s) if all ca-
pacitors are zero (Cx = Cp = Cr =0) This can be seen from (7.91), (7.92); and (7.93).
Thus . . '

Ko = Alc,=c,=c,=0
and it is useful to define
Ky 4 Ao (7.96)

Consider now the term K in (7.94). This is the sum of all the terms involving s that
are obtained when the system determinant is evaluated. However, from (7.91) to (7.93) it
is appatent that s only occurs when associated with a capacitance. Thus the term Kys can .
be written as

Kis = hsCr + hzscp, + h3sCy 1.97)

where the h terms are constants. The term k; can be evaluated by expanding the determi-
nant of (7.91) to (7.93) about the first row:

AGs) = (811 + SCa)Ay + gr2Aiz + g1381 (7.98)

where Ay, Aqp, and Ay are cofactors of the determinant. Inspection of (7.91), (7.92), and
(7.93) shows that C,, occurs only in the first term of (7.98). Thus the coefficient of Cps =
in (7.98) is found by evaluating A withCy = Cx = 0, which will eliminate the other
capacitive terms in Ay;. But this coefficient of Cys is just hy in (7.97), and so

h = Aule,=c,=0 (7.99)

Now consider expansion of the determinant about the second row. This must give the
same value for the determinant, and thus '

A(s) = g21a1 + (822 + sCu)Az2 + 823823 (7.100) 4

s

Smmdne
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7.3 Multistage Amplifier Frequency Response 519
In this case C,, occurs only in the second term of (7.100). Thus the coefficient of Cys

in this equation is found by evaluating Ay with C = Cy = 0, which will eliminate the
other capacitive terms. This coefficient of Cpsis just by in (7 .97), and thus

hy = Anlc,=c,=0 (7.101)
Similarly by expanding about the third row it follows that
hs = Asmlc,=c, =0 (7.102)

Combining (7.97) with (7.99), (7.101), and (7.102) gives
K1 = (Anile,=c,=0 X Ca) + (Az2lc, 2co=0 X Cp) + (Asslc, =c,=0 X Cx)  (7.103)
and

K _ élll_cli=cx=0 X Cp + Aple, =c,=0 X Cp
A

b‘=E5 Ag

+A33|c,, =Ca=0 % C, (7.104)
Ao

where the boundary conditions on the determinants are the same as in (7.103). Now con-
sider putting i, = i3 = 0inFig. 7.24. Solving (7.91) to (7.93) for v, gives

A
o)
and thus
% = AA(% (7.105)
Equation 7.105 is an expression for the driving-point impedance at the Cr node pair. Thus
Ao

is the driving-point resistance atthe Cr node pair with all capacitors equal to zero because

Aunle, <c=0 _ Au (7.106)
Ao A le,=c.=c,=0
We now define
Ryo = 51 (7.107)
Ao ¢, =c,=0
Similarly, .
Aplc, =c.=0
Ao

is the driving-point resistance at the C,, node pair with all capacitors put equal to zero and
is represented by Ry0. Thus we can write from (7.104)

by = RyoCr + RuoCp + RyoCx (7.108)

The time constants in (7.108) are called zero-value time constants because all capabi—
tors are set equal to zero to perform the calculation. Although derived in terms of a specific
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9.4 Compensation

9.4.1 Theory of Compensation
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Consider again the amplifier whose gain and phase is shown in Fig. 9.8. For the feedback
- circuit in which this was assumed to be connected, the forward gain was Ag, as shown in
Fig. 9.8, and the phase margin was positive. Thus the circuit was stable. It is apparent,
however, that if the amount of feedback is increased by making f larger (and thus Ag
smaller), oscillation will eventually occur. This is shown in Fig. 9.11, where fj is chosen to
give a zero phase margin and the corresponding overall gain is A1 = 1/ f. If the feedback

la(je)} dB

Ph a(jw)

|pel

20 logygag
20 logyg- = 20 logyod
fi
N 20 logig- =20 logiod
o log scale
{p2] |pal \
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I3

Figure 9.11 Gain and phase versus frequency for a three-pole basic amplifier. Feedback factor fi
gives a zero phase margin and factor f; gives a negative phase margin.
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is increased to f (and Ay = 1/f; is the overall gain), the phase margin is negative and
the circuit will oscillate. Thus if this amplifier is to be used in a feedback loop with loop
gain larger than ay f1, efforts must be made to increase the phase margin. This process is
known as compensation. Note that without compensation, the forward gain of the feedback
amplifier cannot be made less than Ay = 1/ fi because of the oscillation problem.

The simplest and most common method of compensation is to reduce the bandwidth
of the amplifier (often called narrowbanding). That is, a dominant pole is deliberately
introduced into the amplifier to force the phase shift to be less than —180° when the loop
gain is unity. This involves a direct sacrifice of the frequency capability of the amplifier.

If f is constant, the most difficult case to compensate is f = 1, which is a unity-gain
feedback configuration. In this case the loop-gain curve is identical to the gain curve of the
basic amplifier. Consider this situation and assume that the basic amplifier has the same
characteristic as in Fig. 9.11. To compensate the amplifier, we introduce a new dominant
pole with magnitude |pp), as shown in Fig. 9.12, and assume that this does not affect the
original amplifier poles with magnitudes |pi], |p2|, and |p3]. This is often not the case but
is assumed here for purposes of illustration.

The introduction of the dominant pole with magnitude |pp| into the amplifier gain
function causes the gain magnitude to decrease at 6 dB/octave until frequency |p1] is
reached, and over this region the amplifier phase shift asymptotes to ~90°. If frequency
|pol is chosen so that the gain |a(jw)| is unity at frequency |py| as shown, then the loop
gain is also unity at frequency |py| for the assumed case of unity feedback with f = 1.
The phase margin in this case is then 45°, which means that the amplifier is stable. The
original amplifier would have been unstable in such a feedback connection.
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~po5°|- \ AN 90
Phase margin S .
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-360°t— Phase after / h
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Figure 9.12 Gain and phase versus frequency for a three-pole basic amplifier. Compensation for
unity-gain feedback operation (f = 1) is achieved by introduction of a negative real pole with
magnitude |pp).
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9.4 Compensation 635

The price that has been paid for achieving stability in this case is that with the feed-
back removed, the basic amplifier has a unity-gain bandwidth of only |p;|, which is much
less than before. Also, with feedback applied, the loop gain now begins to decrease at a
frequency |pp), and all the benefits of feedback diminish as the loop gain decreases. For
example, in Chapter 8 it was shown that shunt feedback at the input or output of an am-
plifier reduces the basic terminal impedance by [1 + T(jw)]. Since T(jw) is frequency
dependent, the terminal impedance of a shunt-feedback amplifier will begin to rise when
|T(jw)| begins to decrease. Thus the high-frequency terminal impedance will appear in-
ductive, as in the case of zq for an emitter follower, which was calculated in Chapter 7.



