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(a)

(b)

(c)
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The voltage V at the output of a microphone is a uniform random variable
with limits -1 volt and 1 volt. The microphone voltage is processed by a
hard limiter with cut-off points -0.5 volt and 0.5 volt. The magnitude of the
limiter output L is a random variable such that

{V V| <0.5

0.5 otherwise

()  Whatis P[L =0.5] ?
(i)  Whatis F.(l) ?
(i)  Whatis E[L]?
(35%)

The amplitude V (as measured in volts) of a sinusoidal signal is a random
variable with PMF:

Pyv) ={1/7 v=-38-2..238
0 otherwise

Let Y = V42 watts denote the average power of the transmitted signal.

Find Py(y).
(25%)

The joint CDF of a bivariate random variable (X, Y) is given by;

Fiy(x,y) = { (I-e™)1-¢e?) x20,y>0,a,p)0
0

otherwise
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(a)

(b)
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(i) Find the marginal cdf's of X and Y
(i) Show that X and Y are independent
(iii) FindP(X>x, Y>y)
(40%)

The input to a digital filter is a sequence of random variables ...,
X4,X0,X1,..... The output is also a sequence of random variables ...,
W.,, Wy, W;,.... The relationship between the input and output is

W, =2(X, +X,.)
2
Let the input be a sequence of an identically independent random

variables with E[X] = 0 and Var[X] = 1. Find the following properties of
the output sequence:

0) EW]
(ii) Var{Wwj
(iii) Cov[Wi., W]
(iv) Pwir1, wi
(50%)

The wide sense stationary process X(t) with autocorrelation function Ry(7)
and power spectral density Sx(f) is the input to a tapped delay line filter

H(f)= ale"jz’?ﬁ1 + aze"ﬂ’*ﬁ2

Find the output power spectral density Sy(f) and the output
autocorrelation Ry(T).
(50%)

... 4/-
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(a) Let X(t) be a stationary continuous time random process. By sampling
X(t) every A seconds, we obtain the discrete time random sequence
Y,=X(nA). Is Y, a stationary random sequence ?

(25%)

(b) X(t) is a wide sense stationary random processes with average power
equal to 1. Let © denote a random variable with uniform distribution over
[0, 2m] such that X(t) and © are independent.

(i) What is E[X?(t)]?
(i) What is Efcos(2mf t + ©)]?
(iii) Let Y(t) = X(t)cos(2nft + ©). What is E[Y(1)]?
(iv) What is the average power of Y(t)?
(75%)

Consider the input process to the system in Figure 1 to have an exponential
autocorrelation function of the form R, (t) = 6. . The transfer function of the

system filter is given by

T
G(s)=———
(1+Ts)
f(t) x(t)
O— > G(s) —
f(t) =input
x(t) = output
G(s) = X—(Sz = transfer function
F(s)
Figure 1

...5l-
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(a) Find the output spectral function, Sx. (50%)

(b) Find the mean-squared value of the output x. (50%)

Consider a Wiener filter problem as shown in Figure 2, where input f(t) is a
combination of Gauss-Markov signal s(t) with exponential auto correlation

function R, (1) = o’.™*"* and white-noise n(t) with S_(jo) = %o— .

f(t) x(t)

O— G(s) >
Figure 2
If the filter transfer function is chosento be  G(s) = EE—B ;
s+

where K is a constant for the filter.

(a) Find the mean-squared error for the output x(t).
(25%)

(b) Determine the x for the filter so that the mean-squared error is minimum.
(25%)

(c) For the same Markov signal and white-noise combination input to system
in Figure 2, find the optimal noncausal filter (i.e. « = 0). For your
calculations use No =2, 6*=4, = 1.

(50%)

...6/-
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Consider a stationary Gauss-Markov process having an autocorrelation function

of the form R (1) = le. The shaping filter that shapes white-noise into the

process is shown in Figure 3.

u(t) x(t)
o " G(s) >

Unity Gaussian Gauss-Markov
white noise process

Figure 3

Suppose we have a sequence of noisy measurements of this process taken .02
sec apart starting at t = 0. The measurement error will be assumed to have a
variance of unity. We need to process these via a Kalman filter and obtain an
optimal estimate of x(t). Determine the followings.

(a) Spectral function for the process (25%)
(b) State equation (25%)
(c) The filter parameter ¢y, Hy, Qx and Ry. (25%)

(d) Find the optimal estimate of x(t) for only 3 steps with intial conditions for
X, =0and P,” =1.

(25%)

0000000
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Table of Integrals

I S G O )
" 2mj Jjx d(s)d(—s)
€8 = CpoS" N s+ + g
ds)=d;s" +d,_s""'+ -+ + d,

ds

], = =5
2dyd,
I = cidy + cid,
* 2dydd,
1w cdyd, + (c] — 2c4c))dod; + cidyd,
: Zdods(dldz = dydy)

I c(—did, + dyd,d,) + (¢ — 2¢,c3)dyd \d, + (¢ — 2c4C,)dydd, + C%(—d.d3 + dydyd,) -
‘o 2dd(—dyd; —did, + d\d,d;)
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THE STATIONARY OPTIMIZATION
PROBLEM—WEIGHTING
FUNCTION APPROACH?*

We now consider the filter optimization problem that Wiener first solved in the
1940s (1). Referring to Fig. 4.3, we assume the following:

1. The filter input is an additive combination of signal and noise, both of
which are covariance stationary with known auto- and crosscorrelation
functions (or corresponding spectral functions).

2. The filter is linear and not time-varying. No further assumption is made
as to its form.

3. The output is covariance stationary. (A long time has elapsed since any
switching operation.)

4. The performance criterion is minimum mean-square error, where the
error is defined as e(?) = s(t + a) — x(o).

In addition to the generalization relative to the form of the filter transfer function,
we are also generalizing by saying the ideal filter output is to be s(t + «) rather
than just s(f). The following terminology has evolved relative to the choice of
the o parameter:

1. @ positive: This is called the prediction problem. (The filter is trying to
- predict the signal value « units ahead of the present time 1.)

2. a = 0: This is called the filter problem. (The usual problem we have
considered before.)

s(e) + n(l)x(() =5t + a)

Figure 4.3 Wiener filter problem.
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3. « negative: This is called the smoothing problem. (The filter is trying
to estimate the signal value « units in the past.)

This is an important generalization and there are numerous physical applications
corresponding to all three cases. The a parameter is chosen to fit the particular
application at hand, and it is fixed in the optimization process.

We begin by defining the filter error as

e®) = st + a) — x(r) “4.3.1)
The squared error is then
(1) = 2(t + @) — 25(t + a)x(r) + x(1) 4.3.2)

We next write x(7) as a convolution integral:

f_ gw)s(t — w) + n(t — u)] du 4.3.3)
This can be substituted into Eq. (4.3.2) and both sides averaged to yield*
E(®) = f_ fn gw)gW)R,, (u — v) du dv

-2 f 8()R; ., (a + u) du + R,(0) (4.3.4)

where
R, = autocorrelation function of s(t)
R,,, = autocorrelation function of s(®) + n(®
R,,,, = crosscorrelation between s(t) + n(r) and s(z)
Note that if signal and noise have zero crosscorrelation,

R.r+n
R:+ ns R.r

R, + R"} (for zero correlation) (4.3.5)

We wish to find the function g(u) in Eq. (4.3.4) that minimizes E(e?). This
will be recognized as a problem in calculus of variations (5). Following the
usual procedure, we replace g(u) with a perturbed weighting function g(u) +
en(u)

* We have chosen here to write the mean-square error in terms of the filter weighting function and
input autocorrelation functions. In the stationary problem, one can also write E(€?) in terms of the
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where

g(u) = optimum weighting function [Note: From this point on in the
solution, g(u) will denote the optimal weighting function.]
7(u) = an arbitrary perturbing function
& = small perturbation factor such that the perturbed function ap-
proaches the optimum one as & goes to zero

The optimum and perturbed weighting functions are sketched in Fig. 4.4. Re-
placing g(u) with g(u) + en(u) in Eq. (4.3.4) then leads to

5 = [ [ [0 + enwlls®) + en@)]R,,u(u - v) du do

-2 f: [gw) + enW]R,,,(a + ©) du + R,(0) (4.3.6)

Note that E(e?) is now a function of ¢, and it is to be a minimum when ¢ = 0.
Now, using differential calculus methods, we differentiate E(e?) with respect to
€ and set the result equal to zero for ¢ = 0. After interchanging dummy variables
of integration freely, the result is

Jt; n(7) [—R”,,_,(a + 7+ [c gWR,, (u— 7 du] dr=0 (43.7)

A subtlety in the solution arises at this point; therefore, it is convenient to look
at the causal and noncausal cases separately.

Noncausal Solution

If we put no constraint on the filter weighting function, we will very likely
obtain a g(x) that is nontrivial for negative as well as positive u. This weighting
function is noncausal because it requires the filter to “look ahead” of real time
and use data that are not yet available. This is, of course, not possible if the
filter is operating on-line. However, in off-line applications, such as postflight
analysis of recorded data, the noncausal solution is possible and very much of
interest. Thus, it should not be ignored.

g(t) + en(e)

£(t)

0
Figure 4.4 Optimal and perturbed weighting functions.
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If there are no restrictions on 8(u), then, similarly, there are no constraints
on the perturbation function n(7). It is arbitrary for all values of its argument,
Thus, if the integral with respect to 7 in Eq. (4.3.7) is to be zero, the bracketed
term must be zero for all . This leads to

fj 8W)R,, (u — 7) du = Ry + 1), —< r< oo (4.3.8)

~ This is an integral equation of the first kind, and in this case it can be solved
readily using Fourier transform methods. Since R, ., is symmetric, the term on
the left side of Eq. (4.3.8) has the exact form of a convolution integral. Therefore,
transforming both sides yields

G(5)S, . .(s) = S ins(8)e* “4.3.9)
or
i S.r+n (s)eas
G(s) = —-:S‘::,(T) 4.3.10)

Remember that the transforms indicated in Eq. (4.3.10) are two-sided transforms
rather than the usual single-sided transforms. Of course, if we wish to find the
weighting function g(u), we simply take the inverse transform of the expression
given by Eq. (4.3.10).

The filter mean-square error is given by Eq. (4.3.4). If g(u) is the optimal
weighting function satisfying Eq. (4.3.8), the mean-square error equation may
be simplified as follows. First write the second term of Eq. (4.3.4) as the sum
of two equal terms and combine one of these with the double integral term.
After we rearrange terms, this leads to

E(e®) = R,(0) — f_: 8(WR,,, (a + u) du

# [ 80 [Renstat 0+ [ gormo - 0 a]a @3

The bracketed quantity in Eq. (4.3.11) is zero for optimal g(v) for all u. There-
fore, the mean-square error is

E(e?) = R(0) — f: 8WR, ., (a + u) du (4.3.12)
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THE DISCRETE KALMAN FILTER

R. E. Kalman’s paper describing a recursive solution of the discrete-data linear
filtering problem was published in 1960 (1). About this same time, advances in
digital computer technology made it possible to consider implementing his re-
cursive solution in a number of real-time applications. This was a fortuitous
circumstance, and Kalman filtering caught hold almost immediately. We will
consider some examples shortly, but we must first develop the Kalman filter
recursive equations, which are, in effect, the “filter.”

We begin by assuming the random process to be estimated can be modeled
in the form

Xes) = bX, + W, (5.5.1)

The observation (measurement) of the process is assumed to occur at discrete
points in time in accordance with the linear relationship

z, = Hx, + v, (5.5.2)

Some elaboration on notation and the various terms of Egs. (5.5.1) and (5.5.2)
is in order:
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X, = (n X 1) process state vector at time ¢,

&, = (n X n) matrix relating x, to x,,, in the absence of a forcing function (if
X, is a sample of continuous process, ¢, is the usual state transition matrix)

W, = (n X 1) vector—assumed to be a white sequence with known covariance
structure

zZ, = (m X 1) vector measurement at time #,

H, = (m X n) matrix giving the ideal (noiseless) connection between the mea-
surement and the state vector at time t

Ve = (m X 1) measurement error—assumed to be a white sequence with known
covariance structure and having zero crosscorrelation with the w, sequence

The covariance matrices for the W, and v, vectors are given by

ElwwT] = {gk' o (5.5.3)
E[vyT] = {(I)l’k, o (5.5.4)
E[lwyT] = 0, for all k and i (5.5.5)

We assume at this point that we have an initial estimate of the process at
some point in time ¢,, and that this estimate is based on all our knowledge about
the process prior to % This prior (or @ priori) estimate will be denoted as X,
where the “hat” denotes estimate, and the “super minus” is a reminder that this
is our best estimate prior to assimilating the measurement at 1,. (Note that super
minus as used here is not related in any way to the super minus notation used
in spectral facton‘zatioq.) We also assume that we know the error covariance
matrix associated with X; . That is, we define the estimation error to be

€ =X, — X; (5.5.6)
and the associated error covariance matrix is*

Pi = Ele;e;™] = E[(x, — %)(x, — %)7] (5.5.7)

Tt We tacitly assume here that the estimation error has zero mean, and thus it is proper to refer to

e;e;7] as a covariance matrix. It is also, of course, a moment matrix, but it is usually not referred
to as such.
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In many cases, we begin the estimation problem with no prior measurements.
Thus, in this case, if the process mean is zero, the initial estimate is zero, and
the associated error covariance matrix is just the covariance matrix of X itself.
With the assumption of a prior estimate X;, we now seek to use the mea-
surement z, to improve the prior estimate. We choose a linear blending of the
noisy measurement and the prior estimate in accordance with the equation

x, = x; + Kz, - Hxp) - (55.8)

where

X, = updated estimate
K, = blending factor (yet to be determined)

The justification of the special form of Eq. (5.5.8) will be deferred until Section
5.8. The problem now is to find the particular blending factor K, that yields an
updated estimate that is optimal in some sense. Just as in the Wiener solution,
we use minimum mean-square error as the performance criterion. Toward this
end, we first form the expression for the error covariance matrix associated with
the updated (a posteriori) estimate.

P, = Efeel] = E[(x, — X)(x, — x)7] (5.5.9)

Next, we substitute Eq. (5.5.2) into Eq. (5.5.8) and then substitute the resulting
expression for %, into Eq. (5.5.9). The result is

P, = E{[(x, - x;) — K(Hx, + v, - Hx;)]
[x — x0) — K,Hx, + v, — Hx)]T) (5.5.10)

Now, performing the indicated expectation and noting the (x, — x;) is the a
priori estimation error that is uncorrelated with the measurement error v,, we
have

P, = 0 - KHYP;(d - KH)" + KRKT (5.5.11)

Notice here that Eq. (5.5.11) is a perfectly general expression for the updated
error covariance matrix, and it applies for any gain K, suboptimal or otherwise.

Returning to the optimization problem, we wish to find the particular K,
that minimizes the individual terms along the major diagonal of P,, because
these terms represent the estimation error variances for the elements of the state
vector being estimated. The optimization can be done in a number of ways. We
will do this using a straightforward differential calculus approach, and to do so
we need two matrix differentiation formulas. They are
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d["—a‘;f&)] = B™ (AB must be square) (5.5.12)
d[trace(ACA |
W = 2AC (C must be symmetric) (5.5.13)
where the derivative of a scalar with respect to a matrix is defined as
s ds
da,, da,
ds _|4d as (5.5.14)

dA ~ | da, day,

Proof of these two differentiation formulas will be left as an exercise (see Prob-
lem 5.16). We will now expand the general form for P,, Eq. (5.5.11), and rewrite
it in the form:

P, =P, - KHP, - PFHK] + KHPH] + R)K]  (55.15)

Notice that the second and third terms are linear in K, and that the fourth term
is quadratic in K. The two matrix differentiation formulas may now be applied
to Eq. (5.5.15). We wish to minimize the trace of P because it is the sum of the
mean-square errors in the estimates of all the elements of the state vector. We
can use the argument here that the individual mean-square errors are also min-
imized when the total is minimized, provided that we have enough degrees of
freedom in the variation of K,, which we do in this case. We proceed now to
differentiate the trace of P, with respect to K,, and we note that the trace of
P, H/K] is equal to the trace of its transpose K,H,P;. The result is

% = —2(H,P;)" + 2K, (H,P;H] + R)) (5.5.16)
k

We now set the derivative equal to zero and solve for the optimal gain. The
result is

K, = P{HI(HP;H? + R)"' (5.5.17)

This particular K,, namely, the one that minimizes the mean-square estimation
error, is called the Kalman gain.

The covariance matrix associated with the optimal estimate may now be
computed. Referring to Eq. (5.5.11), we have

[EEE 503]
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P, = - KH)P, A - KH)" + K,RK{ (5.5.18)
- P; - KH,P; - P;HK] + K(HP;H] + R)K]  (5.5.19)

Routine substitution of the optimal gain expression, Eq. (5.5.17), into Eq.
(5.5.19) leads to

P, = P; — P;HI(H,P;H! + R)'H,P; (5.5.20)

or
P, = P; — K(H,P;H! + R)K (5.5.21)

or
P, = 0 - KH)P; (5.5.22)

Note that we have four expressions for computing the updated P, from the
prior P;. Three of these, Egs. (5.5.20), (5.5.21), and (5.5.22), are only valid for
the optimal gain condition. However, Eq. (5.5.18) is valid for any gain, optimal
or suboptimal. All four equations yield identical results for optimal gain with
perfect arithmetic. We note, though, that in the real engineering world Kalman
filtering is a numerical procedure, and some of the P-update equations may
perform better numerically than others under unusual conditions. More will be
said of this later in Chapter 6. For now, we will list the simplest update equation,
that is, Eq. (5.5.22), as the usual way to update the error covariance. One shculd
remember, though, that there are alternative equations for implementing the error
covariance update.

We now have a means of assimilating the measurement at f, by the use of
Eq. (5.5.8) with K, set equal to the Kalman gain as given by Eq. (5.5.17). Note
that we need x; and P to accomplish this, and we can anticipate a similar need
at the next step in order to make optimal use of the measurement z,,,. The
updated estimated %, is easily projected ahead via the transition matrix. We are
justified in ignoring the contribution of w, in Eq. (5.5.1) because it has zero
mean and is not correlated with any of the previous w’s.* Thus, we have

Xen = b, (5.5.23)

* Recall that in our notation w, is the process noise that accumulates during the step ahead from 7,
to #,,,. This is purely a matter of notation (but an important one), and in some books it is denoted
as w,,, rather than w, (6, 9). Consistency in notation is the important thing here. Conceptually, we
are thinking of doing real-time filtering in contrast to smoothing, which we usually think of doing
offline (see Chapter 8). Therefore, if we begin with a discrete ARMA model, the white forcing
sequence w(k) must conform to this same step-ahead notation, and we need to restrict the order of
the MA part of the model to be at least one less than the AR part (see Section 5.3). This then assures
us that w(k) contributes only to the state vector after time #, and not before.
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The error covariance matrix associated with i,;, is obtained by first forming
the expression for the a priori error

N ™
= (dX, + W) — bx,
= de + W, (5.5.24)

We now note that w, and e, have zero crosscorrelation, because w, is the process
noise for the step ahead of #,. Thus, we can write the expression for Py, , as

P = E[ele—+lelc—4-rl] = E[(¢kek + wX(die, + w)7]
= o Pd] + Q, (5.5.25)

We now have the needed quantities at time %i+1» and the measurement z,,, can
be assimilated just as in the previous step.

Equations (5.5.8), (5.5.17), (5.5.22), (5.5.23), and (5.5.25) comprise the
Kalman filter recursive equations. It should be clear that once the loop is entered,
it can be continued ad infinitum. The pertinent equations and the sequence of
computational steps are shown pictorially in Fig. 5.8. This summarizes what is
now known as the Kalman filter.

Before we proceed to some examples, it is interesting to reflect on the
Kalman filter in perspective. If you were to stumble onto the recursive process
of Fig. 5.8 without benefit of previous history, you might logically ask, “Why
in the world did somebody call that a filter? It looks more like a computer
algorithm.” You would, of course, be quite right in your observation. The Kal-
man filter is just a computer algorithm for processing discrete measurements
(the input) into optimal estimates (the output). Its roots, though, go back to the

. . A
Enter prior estimate X5 and
its error covariance Pg

Compute Kalman gain:

/ K, = PJH] (H,PLHT + R,) \ r By By

Project ahead: Update estimate with
Na=0k measurement z,:

A A A
X=X+ K, (2, - HXp)

A A
Compute error covariance / I -Xp, X,
for updated estimate:

Py = (1 - K, HOP;

P;+l=¢APh’z.+qh

Figure 5.8 Kalman filter loop.
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days when filters were made of electrical elements wired together in such a way
as to yield the desired frequency response. The design was often heuristic. Wie-
ner then came on the scene in the 1940s and added a more sophisticated type
of filter problem. The end result of his solution was a filter weighting function
or a corresponding transfer function in the complex domain. Implementation in
terms of electrical elements was left as a further exercise for the designer. The
discrete-time version of the Wiener problem remained unsolved (in a practical
sense, at least) until Kalman’s paper of 1960. Even though his presentation
appeared to be quite abstract at first glance, engineers soon realized that this
work provided a practical solution to a number of unsolved filtering problems,
especially in the field of navigation. More than 35 years have elapsed since
Kalman’s original paper, and there are still numerous current papers dealing with
new applications and variations on the basic Kalman filter. It has withstood the
test of time!



