UNIVERSITI SAINS MALAYSIA

Second Semester Examination 2009/2010 Academic Session

April/May 2010

MSS 301 - Complex Analysis [Analisis Kompleks]

Duration : 3 hours
[Masa : 3 jam]

Please check that this examination paper consists of SEVEN pages of printed material before you begin the examination.
[Sila pastikan bahawa kertas peperiksaan ini mengandungi TUJUH muka surat yang bercetak sebelum anda memulakan peperiksaan ini.]

Instructions: Answer all thirteen [13] questions.
[Arahan: Jawab semua tiga belas [13] soalan.]

In the event of any discrepancies, the English version shall be used.
[Sekiranya terdapat sebarang percanggahan pada soalan peperiksaan, versi Bahasa Inggeris hendaklah diguna pakai].

1. Define a complex number, and the operations of addition and multiplication of complex numbers. Show that every complex number can be expressed in its Cartesian form $z=a_{+} i b$, where i is the unit imaginary number.
[20/250]
2. Solve each equation, and express the solution in its Cartesian form:
(a) $z^{3}=-8 i$
(b) $\cos z=2 i$
[20/250]
3. Show that the angle between two vectors z and w in the complex plane is given by $\arg z / w$. Use this fact to show that if α, β and γ are vertices of an equilateral triangle, then

$$
\arg \left(\frac{\beta-\alpha}{\gamma-\alpha}\right)=\frac{\pi}{3},
$$

and thus $\frac{\beta-\alpha}{\gamma-\alpha}=e^{i \pi / 3}$.

Consequently show that $\beta-\alpha \quad \beta-\gamma=\gamma-\alpha \quad \alpha-\gamma$. Thus deduce that if α, β and γ are vertices of an equilateral triangle, then

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=\alpha \beta+\beta \gamma+\alpha \gamma
$$

[20/250]
4. If $f z=u x, y+i v x, y$ is differentiable at z_{0}, show that the Cauchy-Riemann equations hold at $z_{0}=x_{0}+\dot{i} y_{0}$:

$$
u_{x} x_{0}, y_{0}=v_{y} x_{0}, y_{0} ; \quad u_{y} x_{0}, y_{0}=-v_{x} x_{0}, y_{0}
$$

Deduce that $f^{\prime} z_{0}=\frac{\partial f}{\partial x} z_{0}=-i \frac{\partial f}{\partial y} z_{0}$.

1. Define a complex number, and the operations of addition and multiplication of complex numbers. Show that every complex number can be expressed in its Cartesian form $z=a_{+} i b$, where i is the unit imaginary number.
[20/250]
2. Solve each equation, and express the solution in its Cartesian form:
(a) $z^{3}=-8 i$
(b) $\quad \cos z=2 i$
[20/250]
3. Show that the angle between two vectors z and w in the complex plane is given by $\arg z / w$. Use this fact to show that α, β and γ are vertices of an equilateral triangle, then

$$
\arg \left(\frac{\beta-\alpha}{\gamma-\alpha}\right)=\frac{\pi}{3},
$$

And thus $\frac{\beta-\alpha}{\gamma-\alpha}=e^{i_{\pi} / 3}$.

Consequently show that $\beta-\alpha \quad \beta-\gamma=\gamma-\alpha \quad \alpha-\gamma$. Thus deduce that if α, β and γ are vertices of on equilateral triangle, then

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=\alpha \beta+\beta \gamma+\alpha \gamma
$$

[20/250]
4. If $f z=u x, y+i v x, y$ is differentiable at z_{0}, show that the Cauchy-Riemann equations hold at $z_{0}=x_{0}+i y_{0}$:

$$
u_{x} x_{0}, y_{0}=v_{y} x_{0}, y_{0} ; \quad u_{y} x_{0}, y_{0}=-v_{x} x_{0}, y_{0}
$$

Deduce that $f^{\prime} z_{0}=\frac{\partial f}{\partial x} z_{0}=-i \frac{\partial f}{\partial y} z_{0}$.
[20/250]
5. Determine where $f z=f x_{+} i y=x^{3}+i y^{3}-2 i$ is differentiable, and find its derivative. Where is f analytic?
[20/250]
6. If $f z=u x, y+i v x, y$ is analytic in a domain D, show that both u and v are harmonic in D. If $u x, y=2 x 2-y$, find its harmonic conjugate.
[20/250]
7. (a) What is the image of the horizontal line $y=b$ under the mapping $w=e^{z}$?
(b) Explain why the principal branch of the $\operatorname{logarithm}, f z=\log z=\ln r_{+} i \theta$ in $D=z=r e^{i \theta}: r>0,-\pi<\theta \leq \pi$ is not differentiable? Where is $w=\log z$ analytic?
(c) Show that $w=\cos z$ is unbounded in the complex plane.
[20/250]
8. Let γ be a curve in the complex plane, and f be continuous over γ. Define $\int_{\gamma} f z d z$.
[10/250]
9. If γ is the circular arc $\gamma t=z_{0}+r e^{i t}, a \leq t \leq b$, show that

$$
\frac{1}{2 \pi^{i}} \int_{\gamma} \frac{d z}{z-z_{0}}=\frac{b-a}{2 \pi}
$$

Deduce that the value of the expression is an integer if and only if γ is closed.
[15/250]
5. Determine where $f z=f x+i y=x^{3}+i y^{3}-2 i$ is differentiable, and find its derivative. Where is f analytic?
[20/250]
6. If $f z=u x, y+i v x, y$ is analytic in a domain D, show that both u and v are harmonic in D. If $u x, y=2 x 2-y$,find its harmonic conjugate.
[20/250]
7. (a) What is the image of the horizontal line $y=b$ under the mapping $w=e^{z}$?
(b) Explain why the principal branch of the logarithm, $f z=\log z=\ln r+i \theta$ in $D=z=r e^{i \theta}: r>0,-\pi<\theta \leq \pi$ is not differentiable? Where is $w=\log z$ analytic?
(c) Show that $w=\cos z$ is unbounded in the complex plane.
[20/250]
8. Let γ be a curve in the complex plane, and f be continuous over γ. Define $\int_{\gamma} f z d z$.
[10/250]
9. If γ is the circular arc $\gamma t=z_{0}+r e^{i t}, a \leq t \leq b$, show that

$$
\frac{1}{2 \pi^{i}} \int_{\gamma} \frac{d z}{z-z_{0}}=\frac{b-a}{2 \pi}
$$

Deduce that the value of the expression is an integer if and only if γ is closed.
[15/250]
10. Evaluate the following integrals over the given positively oriented simple closed contour:
(a) $\int_{\mid z=2} \frac{z e^{z}}{2 z-3} d z$
(b) $\int_{\mid z=3} \frac{e^{2 z}}{z-2^{n+1}} d z$
(c) $\int_{\mid z=2} \frac{e^{z}}{z z+i} d z$
11. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta},|b|<|a|$.
[15/250]
12. Find three Laurent series expansion for the function

$$
f z=\frac{2 z-1}{z^{2}-z-6}
$$

in powers of z.
[25/250]
13. If f is an entire function satisfying $|f z| \leq M e^{x}, z=x+i y, M>0$, show that there exists a constant α satisfying $|\alpha| \leq M$ so that $f z=\alpha e^{z}$.
(Hint: consider the function $g z=f z e^{-z}$.)
10. Evaluate the following integrals over the given positively oriented simple closed contour:
(a)
$\int_{|z|=2} \frac{z e^{z}}{2 z-3} d z$
(b) $\int_{\mid z=3} \frac{e^{2 z}}{z-2^{n_{+}}} d z$
(c) $\int_{\mid==2} \frac{e^{z}}{z z+i} d z$
[30/250]
11. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos \theta},|b|<|a|$.
[15/250]
12. Find three Laurent series expansion for the function

$$
f z=\frac{2 z-1}{z^{2}-z-6}
$$

in power of z.
[25/250]
13. If f is an entire function satisfying $|f \quad z| \leq M e^{x}, z=x+i y, M>0$, show that there exists a constant α satisfying $\mid \alpha \leq M$ so that $f z=\alpha e^{z}$.
(Hint: consider the function $g z=f z e^{-z}$.)

