UNIVERSITI SAINS MALAYSIA

Semester I Examination
Academic Session 2010/2011

November 2010

EEE 510 - ADVANCED ANALOGUE CURCUIT DESIGN

Time: 3 Hours

INSTRUCTION TO CANDIDATE:

Please ensure that this examination paper contains SIX printed pages and SIX questions before answering.

Answer FIVE questions.

Distribution of marks for each question is stated accordingly.

All questions must be answered in English.

1. Calculate the output resistance and the minimum output voltage, while maintaining all transistors in saturation, for the circuit shown in Figure 1. Assume that $I_{\text {out }}$ is also10 A .

Figure 1: Cascode Current Source
2. A CMOS amplifier is shown in Figure 2. Assume M1 and M2 operate in the saturation region.

Figure 2: Common Source Amplifier
(a) What value of V_{GG} gives $100 \mu \mathrm{~A}$ through M 1 and M 2 ?
(30 marks)
(b) What is the DC value of input voltage $\mathrm{V}_{\text {in }}$?
(30 marks)
(c) What is the small signal voltage gain, $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$?
(40 marks)
3.

Figure 3: Common Emitter Amplifier
(a) Draw small signal equivalent circuit of the circuit in Figure 3.
(30 marks)
(b) If $\mathrm{R}_{\mathrm{C}}=2.5 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}$ and current gain, $\beta=100$, determine the gain, A_{V} of the circuit in Figure 3.
(20 marks)

Figure 4. Class A Amplifier
(c) Figure 4 shows a typical Class A Bipolar amplifier. Based on the circuit, prove that the ideal efficiency of the amplifier is 25%.
(50 marks)
4. Circuit in Figure 5 shows basic design of voltage regulator.
(a) Find expression of Vo.
(20 marks)
(b) If you were to increase the output current by β. What are the modification need to the circuit? Show the modified diagram after modification.

Figure 5: Voltage Regulator
5. Find the output resistance of the double-cascode current mirror shown in Figure 6. Assume all the transistors operate in active region with ID $=10 \mu \mathrm{~A}, \mathrm{VA}=50 \mathrm{~V}$ and gmro $=50$. Neglect body effect.
(a) Derive output resistance.
(b) Calculate the output resisitance.

Figure 6 : Cacode Current Mirror
6. Circuit in Figure 7 shows cascade common source having both load of 10 K . This circuit is aimed to build a good control current source (CCCS). Therefore 10K is inserted as feedback resistor. Rds and gm for both transistor is 40 k and 2 mS .
(a) Calculate $\frac{\text { Iin }}{\text { Vin }}$ when lout equal 0.
(20 marks)
(b) Calculate $\frac{\text { Vout }}{\text { Vin }}$ when lout equal 0.
(40 marks)

40 Calculate $\frac{\text { Vout }}{\operatorname{Iou} t}$ when input vi is short circuit.
(40 marks)

Figure 7: Cascade Common Source

