Perkembangan Terbaru Teknologi Surimi

Tina Nurkhoeriyyati, Nurul Huda*, Ruzita Ahmad
Laboratorium Pengolahan Ikan dan Daging, Jurusan Teknologi Makanan,
Pusat Pengajian Teknologi Industri, Universiti Sains Malaysia,
Minden 11800, Pulau Pinang, MALAYSIA

Ringkasan

Kata kunci: surimi, cryoprotectant, gel, ikan berlemak tinggi, teknologi solubilisasi asam-basa.
Pendahuluan

Tujuan dari ulasan ini adalah untuk memberikan penjelasan mengenai perkembangan teknologi terbaru dalam pembuatan surimi dan mengapa hal tersebut menjadi penting. Sekilas pembahasan mengenai penelitian yang berkaitan dengan perkembangan teknologi pembuatan surimi juga dimasukkan di dalam ulasan ini.

Surimi merupakan bahan baku antara (intermediet) yang potensial untuk pembuatan berbagai produk makanan berbasis surimi (surimi based-product) seperti daging keping tiruan, kamaboko, kamaboko berperisa, chikuwa, satsumi-age / tenpura, hanpen, baksio ikan, sosis ikan dan lain-lain. Surimi menjadi popular dikarenakan memiliki tekstur yang unik dan juga memiliki nilai gizi yang tinggi (Jin et al., 2009; Park, 2005: Zhou et al., 2005). Surimi pada awalnya merupakan bahan pangan yang penting di Jepang dan saat ini, produk-produk berbasis surimi juga digemari di banyak negara dan penelitian mengenai surimi telah banyak dilakukan (Jin et al., 2007; Park, 2005).

Faktor-Faktor yang Mempengaruhi Sifat Fungsional Surimi

Tabel 1. Sifat fungsional yang harus dimiliki surimi dan faktor yang mempengaruhinya

<table>
<thead>
<tr>
<th>No.</th>
<th>Sifat Fungsional</th>
<th>Mekanisme</th>
<th>Faktor yang Mempengaruhi</th>
</tr>
</thead>
</table>
| 1 | Pembentukan Gel | Selama pemanasan, pada pasta surimi yang telah digarami, lipatan protein menjadi terbuka, dan permukaan reaktif molekul protein yang berdekatan akan bereaksi membentuk ikatan intermolekular. Pada saat ikatan intermolekular mencukupi, maka akan terbentuk struktur tiga dimensi, menghasilkan gel. | 1. Denaturasi yang berkelanjutan dari protein miofibril sebelum proses pembuatan.
2. Jenis dan habitat bahan baku, yang menentukan stabilitas protein miofibril terhadap panas.
3. Aktivitas enzim-enzim proteolitik yang akan membuka struktur protein dan merusak gel.
4. Aktivitas oksidan protein
5. Enzim baik indigenus maupun yang ditambahkan, seperti enzim ikatan silang yang berkontribusi terhadap struktur ikatan silang protein.
| 2 | Daya Ikat Air | Air yang diikat oleh protein melalui interaksi antara molekul air dan gugus hidrofilik dari gugus samping protein terjadi melalui ikatan hidrogen. | 1. Konsentrasi protein
2. pH
3. Kekuatan ionik
4. Suhu
5. Keberadaan komponen pangan lainnya
6. Lemak dan garam
7. Laju dan lama perlakuan panas
8. Kondisi penyimpanan |
| 3 | Emulsifikasi | Film protein terdiri dari protein miofibril yang terlarut dan terekstrak selama emulsifikasi. Protein tersebut harus berdifusi ke permukaan droplet minyak kemudian menyerap ke permukaan droplet tersebut. | 1. Suhu
2. Input energi yang cukup
3. Protein terdenaturasi/tidak terdenaturasi
4. Konsentrasi protein yang cukup
5. Jumlah protein terekstrak yang cukup
6. Luas permukaan droplet |

Secara konvensional, surimi dibuat melalui proses pencucian menggunakan air tawar ber pH netral. Akan tetapi, proses pencucian ini kemudian berkembang dengan menggunakan pH asam-basa. Penyimpanan beku digunakan secara luas dalam industri surimi untuk pengolahan dan pengawetan jangka waktu lama. Namun demikian, perubahan biokimia selama penyimpanan beku diasosiasikan dengan pengurangan sifat gelasi surimi dan hal ini dikarenakan denturasi protein miofibril. Penyimpanan beku berkelanjutan dari empat spesies ikan (*Threadfin bream, Bigeye snakehead, Lizardfish,*
dan Croacker) pada suhu -18°C menyebabkan hilangnya kemampuan membentuk gel, yang dikarenakan terjadinya denaturasi protein (Benjakul et al., 2004).

Fosfat dalam bentuk pirofosfat dan tripolifosfat sudah banyak digunakan dalam pembuatan surimi (Matsumoto & Naguchi, 1992). Julavitayanukul, et. al. (2005) melaporkan bahwa kamaboko dan gel dari surimi Bigeye snapper yang dipanaskan ditambahkan dengan 0.05% polifosfat memiliki breaking force dan deformasi lebih baik dibandingkan dengan gel kontrol (tanpa penambahan fosfat).

Tabel 2 Daftar penelitian cryoprotectant alternatif dalam surimi dan hasil utamanya

<table>
<thead>
<tr>
<th>No.</th>
<th>Sampel</th>
<th>Cryoprotectant</th>
<th>Hasil Utama</th>
<th>Referensi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cod</td>
<td>Laktitol, palatinit ®, polydextrose®, sukrosa, sorbitol</td>
<td>Palatinit ®, laktitol, dan polydextrose ® menstabilkan protein surimi sebaik campuran sukrosa/sorbitol</td>
<td>Sych et al. (1990)</td>
</tr>
<tr>
<td>2</td>
<td>Ling cod</td>
<td>Laktitol, litesse®, sukrosa, sorbitol</td>
<td>Campuran cryoprotectant dengan konsentrasi total 4-12% efektif menjaga pembentukan gel yang baik selama penyimpanan beku pada -18°C selama empat bulan</td>
<td>Sultanbawa & Chan (1998)</td>
</tr>
<tr>
<td>3</td>
<td>Alaska Pollock</td>
<td>Maltodekstrin, sukrosa, sorbitol</td>
<td>Semua maltodekstrin dengan rata-rata berat molekul mengindikasikan perlindungan terhadap penyimpanan beku pada -20°C, tapi perlindungan terhadap penyimpanan beku oleh maltodekstrin dengan berat molekul</td>
<td>Carvajal et al. (1999)</td>
</tr>
</tbody>
</table>
lebih besar dengan suhu penyimpanan lebih tinggi kurang baik.

4. **Bigeye snapper**

 - Senyawa fosfat
 - Studi mengenai mikrostruktur menemukan bahwa gel dengan struktur yang halus dibentuk dengan penambahan polifosfat. Oleh karena itu, penambahan polifosfat bersama dikombinasikan dengan CaCl₂ dapat meningkatkan kekuatan gel dan WHC.

5. **Tilapia**

 - Trehalose, sodium laktat, sukrosa, sorbitol
 - 1. Trehalose menunjukkan efek perlindungan terbaik terhadap denaturasi protein. Pada konsentrasi 8% trehalose, diperoleh surimi dengan breaking force dan deformasi terbaik selama penyimpanan beku pada -18°C selama 24 minggu
 - 2. Sodium laktat menunjukkan efek yang mirip dengan campuran sukrosa/sorbitol

Sumber Bahan baku Pembuatan Surimi

![Gambar 1. Produksi penangkapan global Alaska pollock (FAO, 2009)](image-url)

Teknologi Solubilisasi Asam-Basa pada Pengolahan Surimi

Gugus amino dan karboksil yang tidak terlibat pada ikatan peptida dapat memiliki muatan elektrostatik di dalam larutan. Sehingga, gugus-gugus ini terlibat dalam interaksi protein-air melalui ikatan lemah hidrogen (protein larut dalam air). Ketika asam

Teknologi pengolahan surimi melalui solubilisasi dan presipitasi dapat mengurangi lemak netral maupun lemak membran. Jumlah lemak yang dapat dihilangkan melalui proses ini tergantung pada beberapa faktor, yaitu kandungan lemak awal pada
bahan baku, viskositas homogenat yang telah diatur pada nilai pH solubilisasi dan kecepatan sentrifugasi yang digunakan (Nolsøe dan Undeland, 2009).

Penelitian Berkaitan Teknologi Solubilisasi Asam-Basa

Beberapa penelitian mengenai penerapan teknologi ini pada proses pembuatan surimi dengan bahan baku ikan berlemak tinggi telah banyak dilakukan. Rawdkuen et al (2009) melakukan penelitian mengenai sifat gelasi dan biokimia surimi dari ikan yang diperoleh melalui proses solubilisasi asam-basa. Ikan yang digunakan merupakan ikan yang memiliki kandungan pigmen dan lemak non-struktural yang tinggi. Penelitian tersebut membuktikan adanya pengurangan lemak secara signifikan, yaitu pengurangan lemak terbesar diperoleh melalui proses solubilisasi basa (88.6±2.13%) kemudian diikuti oleh proses solubilisasi asam (85.2 ±3.13 %) dan dengan proses konvensional (67.8±1.33 %).

Lebih rendahnya jumlah lemak yang dapat dikerangi melalui proses pembutan surimi secara konvensional adalah dikarenakan karena lemak membran tidak dapat dihilangkan melalui proses pencucian. Lipin ini akan tepat terikan dengan protein dan tidak dapat dipisahkan. Sedangkan pada proses solubilisasi asam-basa, protein yang akan disolubilisasi pada pH rendah (asam) atau tinggi (basa) dan ini akan membuat protein terpisah dari lemak netral maupun lemak membran.

Seperti telah dijelaskan sebelumnya, ikan yang memiliki kandungan lemak tinggi merupakan ikan dengan warna daging gelap atau merah. Ikan jenis ini memiliki kandungan pigmen yang tinggi termasuk myoglobin. Myoglobin bersifat rentan terhadap oksidasi sehingga ikan dengan daging berwarna gelap bersifat tidak stabil. Oleh karena itu, pengurangan myoglobin sangat penting.

Penelitian yang dilakukan oleh Rawdkuen et al (2009) juga menunjukkan bahwa proses solubilisasi asam-basa dapat menghasilkan surimi dengan kandungan myoglobin yang signifikan lebih rendah (21.4± 2.12 mg/100g untuk asam dan 18.5±2.95 mg/100g untuk basa) dibanding surimi dengan proses konvensional (39.5±3.03 mg/100mg). Penelitian mengenai pengaruh proses solubilisasi basa pada ikan sardine dan mackerel dilakukan oleh Chaijan et al. (2006). Surimi yang dihasilkan melalui solubilisasi basa memiliki kandungan myoglobin yang signifikan lebih rendah (2.25±0.02 mg/g untuk ikan sardine dan 1.14±0.01 untuk ikan mackerel) dibanding surimi yang dihasilkan melalui proses konvensional (3.84±0.21 mg/g untuk sardine dan 3.71±0.09 mg/g untuk mackerel).

Kesimpulan

Ikan pelagis merupakan bahan baku baru surimi yang potensial. Akan tetapi, ikan ini memiliki kandungan lemak yang tinggi. Pada pembuatan surimi dari ikan jenis ini, teknologi solubilisasi asam-basa dan presipitasi dapat mengurangi lemak dan myoglobin
yang signifikan lebih baik dibanding proses pembuatan surimi secara konvensional. Selain itu, teknologi ini juga memiliki beberapa kelebihan dibanding teknologi konvensional, yaitu protein sarkoplasma dapat diperoleh pada produk akhir dan bahan baku hancuran dapat langsung diproses tanpa harus dipisahkan daging dari kulit dan tulang secara mekanik.

Ucapan Terimakasih

Penulis mengucapkan terima kasih atas dukungan yang diberikan oleh Universiti Sains Malaysia (USM) dan Malayan Sugar Manufacturing Company Berhad yang telah menyediakan dana untuk melakukan penelitian dalam bidang ini.

Daftar Pustaka

EKOSISTEM TERUMBU KARANG
SUATU OBJEK PENGEMBANGAN

Oleh : Nurmatias & Elisa F. Harahap

Pendahuluan

Secara geografis kawasan pantai berada dilingkungan perairan, dan ekonomis dipengaruhi oleh sumberdaya perairan yang sifat pemilikannya umum (common property), serta merupakan mata pencaharian bagi nelayan skala kecil (small scale fishery). Karena merupakan milik bersama dan mata pencaharian bagi nelayan kecil maka kerusakan/gangguan ekosistem perairan pantai lebih mudah terjadi jika dibandingkan dengan perairan lain. Sadar atau tidak, langsung maupun tidak langsung dengan beralasan untuk memenuhi kebutuhan hidup aktifitas manusia telah merusak keseimbangan, kelestarian, produktivitas biota yang ada di perairan pantai.

Ekologi diartikan ilmu yang menangani hubungan timbal balik antara organisme hidup dan lingkungannya. Dengan pengertian, semua makluk untuk memenuhi kebutuhannya demi kelangsungan hidup sangat bergantung satu sama lain sehingga terbentuk hubungan yang serasi dan seimbang sesuai dengan lingkungan atau ekosistemnya.

Semua makluk hidup dapat hidup dalam keseimbangan dan keserasian jika tidak ada gangguan dari alam itu sendiri atau kerusakan ekosistem akibat ulah manusia. Bila gangguan lingkungan akibat alam itu sendiri maka manusia tidak dapat berbuat banyak, namun jika gangguan tersebut ulah manusia tentu dapat dicegah, demi kepentingan manusia itu sendiri baik untuk masa sekarang maupun masa mendatang.

Gangguan lingkungan terhadap sumberdaya alam terutama sumberdaya perikanan selalu ada, baik yang disebabkan oleh alam maupun ulah manusia yang tidak mempunyai itikad baik yang hanya berorentasi ekonomis bukan berorentasi ekologis. Permasalahan yang penting saat ini adalah, bagaimana memecahkan, menanggulangi kerusakan lingkungan perikanan dengan tujuan agar sumberdaya perairan dapat dipemanfaatkan dengan maksimal tanpa mengganggu kelestarian sumberdaya alam hayati lainya.

Masalah mendasar kerusakan perairan pantai saat ini adalah kerusakan ekosistem terumbu karang. Terumbu karang memegang peranan yang penting di perairan pantai terutama untuk memecah gelombang, menunjang produksi perikanan, sebesar tempat pencari makan bagi hewan air, sebagai penghasil bahan obat-obatan, objek wisata bahari serta sebagai bahan baku bangunan. Sedangkan fungsinya terumbu karang bagi perikanan adalah tempat pemijahan ikan, tempat mencari makanan dan tempat pengasuhan anak ikan serta tempat berlindung ikan dari kejaran mangsa.
Permasalahan.

Letak lautan Indonesia yang beriklim tropis membawa konsekwensi suburnya karang atau binatang karang, karena terumbu karang bisa hidup subur pada suhu 20 °C ke atas, pada daerah dangkal, dekat dengan pantai, atau sampai kedalaman 40 m (sampai sinar matahari). Untuk tumbuh dan berkembang terumbu karang mencukupi kebutuhan hidupnya sendiri. Di daerah ini ditumbuhki oleh berbagai tumbuhan ganggang dan hewan seperti ikan yang berwarna cerah, udang-udangan, molusca, tripang dan ketam.

Terumbu karang merupakan suatu ekosistem, jika terjadi perusakan dapat menimbulkan perubahan yang bisa mengancam kelestarian biota lainnya. Ada beberapa penyebab rusaknya ekosistem terumbu karang:

a. Kerusakan akibat Pencemaran

Dengan banyaknya pabrik di kota-kota besar yang setiap hari membuang limbah beracun ke sungai yang mengalir kelaut, sehingga meningkatkan pencemaran di kawasan pesir sehingga dapat mengancam kelestarian ekosistem terumbu karang. Pembuangan limbah dan sampah ke sungai atau kelaut lebih murah ongkosnya dari pada mencari pembuangan lain.

Pembuangan limbah ke sungai atau kelaut merupakan masalah yang lebih cepat meluasnya dari pada pengetahuan kita tentang bencana yang akan ditimbulkan. Selain itu gangguan lingkungan juga dapat disebabkan oleh tumpahan minyak, baik oleh kapal-kapal kecil maupun kapal tangki raksasa serta limbah domestik seperti plastik yang dapat menutupi karang.

b. Kerusakan akibat penggunaan bahan kimia dan peledak untuk penangkapan

Penangkapan ikan dengan bahan peledak sudah berjalan sejak berakhir perang dunia ke II hingga sekarang dengan cara sembunyi-sembunyi. Penagkapan ikan dengan menggunakan zat kimia sudah dilarang, karena dapat mengganggu ekosistem perairan juga dapat menganggu orang yang mengkonsumsi ikan tersebut.

Seperi pemakaian Voltaic tidak hanya dapat mematikan ikan-ikan juga dapat mematikan hewan-hewan lain dan tumbuhan seperti Rumput Laut (*Eucheuma spinosum*). Bahan ini mengandung racun Cyanida cukup tinggi dalam bentuk NaCN yang dapat menghambat pertumbuhan dan pembelahan sel serta dapat menyebabkan biota laut menjadi kering dan mati.

Bahan peledak yang sering digunakan adalah TNT (*trinitrotoluene*) \(\text{CH}_3\text{C}_6\text{H}(\text{NO}_2)_3 \) suatu zat padat berwarna kuning pucat sebagai bahan granat tangan. Bahan ini dimasukkan pada sebuah media dan kemudian di hubungkan dengan detenator yang di hubungkan dengan sumbuh yang berisikan obat yang mudah dinyalakan atau dihubungkan dengan kabel listrik sebagai media pembangkit tenaga. Kerusakan yang dapat ditimbulkan adalah hancurnya ekosistem terumbu karang.
c. Kerusakan akibat pengoparasian alat tangkap di ekosistem terumbu karang

Dengan banyaknya jumlah dan jenis ikan yang hidup di ekosistem terumbu karang maka nelayan melirik dan menjadikan tempat tersebut sebagai tempat penangkapan. Ada beberapa alat tangkap yang digunakan di ekostem terumbu karang diantaranya pemakaian pukat harimau dan pukat lain dengan cara operasinya di tarik. Karang yang dilalui oleh alat tangkap ini umumnya akan patah-patah.

d. Kerusakan akibat penambangan karang

Karang keras dibentuk oleh binatang karang (zooxanthellae dan algae koralin) yang dapat menghasilkan kerangka zat kapur. Terbentuknya karang-karang tersebut berjalan sangat lambat. Penambangan karang di perlukan untuk fondasi rumah, untuk pengeresan jalan selain itu sebagai bahan baku kapur untuk keperluan pembangunan.

Dampak yang Ditimbulkan

Jika dilihat dari salah satu segi ekonomis saja maka uaha yang dilakukan seperti tersebut di atas menguntungkan, namun jika dilihat dari segi ekologis jelas mengakibatkan kerusakan atau kerugian yang bersifat ganda. Dampak negatif dari rusaknya ekosistem terumbu karang antara lain :

1. Menurunya Sumberdaya Perikanan
 a. Merosotnya Produksi Udangan
 Tanpa di dukung oleh ekosistem terumbu karang yang serasi, pertumbuhan dan perkembangan udang Spiny lobster akan terganggu, karena untuk tumbuh udang selalu melakukan pengantian kulit (moultting) berulang-ulang, dalam keadaan demikian udang sangat rapuh dan mudah dimangsa oleh pemangsa. Biasanya udang kalau akan menganti kulit akan pergi ke gus-gus, sela-sela karang untuk berlindung dari hewan pemangsa. Jika tempat ini tidak ada lagi maka perkembangan akan terganggu.

 b. Menurunya Populasi Ikan Hias (Ornamental fish)
 Ikan hias banyak ditangkap dan diperdagangkan ke luar daerah bahkan keluar negeri. Ikan ini sangat indah harga di tingkat nelayan cukup tinggi dan diminati oleh pengemar ikan hias, sehingga keberadaannya di ekosistem terumbu karang selalu diburu, tanpa memikirkan keberlangsungannya. Ikan hias ini tidak seperti ikan konsumsi lainnya ia hidup dan berkembang hanya di ekosistem terumbu karang.
c. Menurunnya Sumberdaya Ikan Konsumsi
Secara keseluruhan produksi ikan di ekosistem terumbu karang mengalami penurunan. Untuk jenis-jenis ikan tertentu ikan sangat bergantung pada terumbu karang seperti ikan beronang, dan ada jenis ikan seperti kakap, kerapu mereka masih bisa berpindah ketempat lain, karena kehadirannya diterumbu karang kadang-kadang hanya untuk memburu mangsa.

d. Langkahnya jenis-jenis Penyu
Daging penyu banyak digemari oleh orang-orang bukan hanya untuk konsumsi sehari-hari, tetapi juga untuk hari-hari besar agama dan pesta, akibat dagingnya di digemari maka penyu tersebut di buruh dan ekosistem tempat nya sudah terganggu maka habitatnya akan musnah.

2. Mempercepat terjadinya Erosi Pantai
Penambangan karang yang dilakukan secara terus menerus akan mempercepat erosi (pengikisan) pantai. Kalau hanya sekedar pengikisan pantai akibat erosi dapat ditanggulangi dengan pembuatan tanggul-tanggul, jetty-jetty, pemecah gelombang (Wave Breaker)

3. Dampak lain
Dampak lain dari akibat kerusakan ekosistem adalah menurunnya nilai estetika dan keindahan perairan yang merupakan daya tarik tersendiri oleh wisatawan serta akan meperkecil areal usaha perikanan.

Usaha Penanggulangan
Dalam rangka penanggulangan kerusakan ekosistem terumbu karang perlu dikaji motif terjadinya perusakan terumbu karang oleh masyarakat. Motifnya dikarenakan oleh: sulitnya memperoleh pekerjaan, di lain pihak kebutuhan hidup terus meningkat, ingin mendapatkan kunbungan semata. Secara rinci perusakan ekosistem terumbu karang oleh masyarakat disebabkan antara lain:
1. Sulitnya mendapatkan pekerjaan akibat rendahnya penguasaan ilmu pengetahuan dan keterampilan.
2. Alat yang digunakan nelayan sangat sederhana sehingga tidak bisa dikembangkan ke kawasan yang lebih dalam.
3. Adanya penampungan hasil sehingga hasil pengarap dapat dipastikan.
4. Tidak adanya atau kurang berjalannnya peraturan bagi orang yang merusak ekosistem terumbu karang.
5. Masyarakat hanya menilai nilai ekonomis dan tidak adanya pengetahuan mereka terhadap nilai ekologis ekosistem terumbu karang. Agar tidak meluasnya kerusakan ekosistem terumbu karang perlu dilakukan beberapa langkah diantaranya menyadarkan masyarakat akan arti ekologis terumbu karang dan membuat peraturan yang memperhatikan aspek ekologi, typology dan social ekonomi yang dituangkan dalam peraturan perudangan. Yang musti di taati bersama.

"Jika jaring yang bocor ikan kecil akan lepas sedangkan ikan besar yang tertangkap"

Tetapai

"Jika undang-undang yang koyak orang besar akan lepas sedangkan orang kecil yang akan tertangkap"
EFEKTIVITAS EKSTRAK BAWANG PUTIH (*Allium sativum*)
UNTUK MENCEGAH SERANGAN BAKTERI *Streptococcus iniae* PADA IKAN NILA MERAH (*Oreochromis* sp.)

Oleh : Sri Utami Maya Siska Maida S.Pi

I. PENDAHULUAN

Dalam usaha peningkatan budidaya perikanan seringkali ditemukan hambatan dalam upaya pembudidayaannya. Salah satu hambatan tersebut adalah terjadinya serangan hama penyakit pada ikan yang dibudidayakan. Organisme patogen penyebab penyakit pada ikan salah satunya dari golongan bakteri. Streptococcus termasuk dalam penyakit berbahaya yang disebabkan oleh bakteri pada budidaya ikan yang dapat mengakibatkan kematian ikan yang tinggi (> 50%) dalam waktu 3 – 7 hari. Selama ini usaha yang telah dilakukan mengatasi serangan streptococcus pada ikan nila adalah dengan memberikan antibiotik buatan, seperti Chloramphenicol, Oxytetracycline dan lain sebagainya. Tetapi hal ini mempunyai beberapa efek negatif seperti menjadi resistennya bakteri terhadap antibiotik tersebut, adanya residu antibiotik yang mencemari lingkungan dan yang paling berbahaya adanya residu antibiotik dalam tubuh ikan. Bila ikan tersebut dimakan oleh manusia, maka residu antibiotika tersebut masuk ke dalam tubuh manusia dan kemungkinan akan menimbulkan efek negatif yang merugikan manusia.

Alternatif usaha yang dilakukan untuk mengganti antibiotik sintetis adalah dengan menggunakan antibiotik alami. Salah satu bahan alami yang berpotensi adalah bawang putih (*Allium sativum*). Bawang putih ini sudah sering digunakan sebagai obat untuk mengobati berbagai macam penyakit karena mengandung dua zat aktif yaitu alisin dan scordinin. Alisin merupakan zat aktif yang mempunyai daya antibiotik cukup ampuh dan dipercaya dapat membunuh bakteri gram positif dan negatif. Sedangkan scordinin, diyakini dapat memberikan atau meningkatkan daya tahan tubuh (stamina) dan perkembangan tubuh. Hal ini disebabkan kemampuan bawang putih dalam bergabung dengan protein dan menguraikannya, sehingga protein tersebut mudah dicerna oleh tubuh.

II. METODE

Dalam upaya pencegahan serangan bakteri *S. iniae* pada ikan nila merah dengan ekstrak bawang putih. Ada beberapa langkah yang dilakukan, yakni :

1. Uji Sensitivitas ekstrak Bawang putih dengan bakteri *S. iniae*
2. Uji Toksisitas ekstrak bawang putih pada ikan Nila Merah
3. Pencegahan serangan *S. iniae* dengan menggunakan ekstrak bawang putih yang diberikan secara perendaman.
III. HASIL

1. Sensitivitas \textit{S. iniae} terhadap ekstrak bawang putih

 Dari zona hambat yang ditunjukkan maka dapat diketahui nilai MIC (Minimum Inhibitory Concentration) pada pengujian sensitivitas ekstrak bawang putih dengan bakteri \textit{S.iniae} yang dapat menghambat pertumbuhan bakteri adalah pada konsentrasi 31.250 ppm atau pada pengenceran \(2^5\). Hal ini membuktikan bahwa bakteri \textit{S. iniae} sensitive terhadap ekstrak bawang putih.

2. Studi tentang pencegahan serangan \textit{S. iniae} dengan menggunakan ekstrak bawang putih yang diberikan secara perendaman

 Dari hasil pengamatan menunjukkan bahwa ekstrak bawang putih dapat mencegah serangan bakteri \textit{S. iniae}. Hal tersebut dapat dilihat dari kelulusan diperikan dan tingkat kelulusan relatif ikan nilai perlakuan yang lebih tinggi dari ikan kontrol. Secara rinci ditunjukkan dalam Tabel 1.

\textbf{Tabel 1. Kelulusan diperikan dan tingkat kelulusan relatif ikan nilai merah setelah perendaman ekstrak bawang putih dengan berbagai konsentrasi kemudian diinfeksi dengan \textit{S. iniae}.}

<table>
<thead>
<tr>
<th>Konsentrasi ekstrak bawang putih</th>
<th>Ulangan</th>
<th>Jumlah ikan sebelum perlakuan</th>
<th>Total ikan hidup sesudah perendaman</th>
<th>Total ikan hidup sesudah diinfeksi</th>
<th>Jumlah total ikan hidup (%)</th>
<th>Rata-rata total ikan hidup (%)</th>
<th>RPS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ppm</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>70</td>
<td>73,33 *</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.000 ppm</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>70</td>
<td>73,33 *</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.000 ppm</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>100</td>
<td>93,33 **</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.000 ppm</td>
<td>1</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>100</td>
<td>90 ns</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\textit{Catatan:} tanda *, **, dan \(n^2\), menunjukkan tingkat perbedaan dari perlakuan sebelumnya

*

** = berbeda sangat nyata

* = berbeda nyata

\(n\)s = non significant (tidak berbeda nyata)
Gambar 1. Histogram dari kelulushidupan ikan nila merah yang sudah direndam dengan berbagai konsentrasi ekstrak bawang putih dan kemudian diinfeksi dengan *S. iniae*.

Gambar 2. Histogram dari RPS ikan nila merah yang sudah direndam dengan berbagai konsentrasi ekstrak bawang putih dan kemudian diinfeksi dengan *S. iniae*.

Pengamatan tingkah laku ikan

1. Tingkah laku ikan sebelum dan sesudah perendaman ekstrak bawang putih

Pengamatan tingkah laku meliputi kecepatan bukaan operculum per menit dan pola berenang ikan. Secara keseluruhan, pengamatan perubahan tingkah laku ikan saat pengujian dengan ekstrak bawang putih dapat dilihat dalam Tabel 8.

Tabel 2. Tingkah laku ikan sebelum dan sesudah perendaman ekstrak bawang putih

<table>
<thead>
<tr>
<th>Sebelum Perendaman EBP</th>
<th>Setelah Perendaman EBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Rata-rata bukaan operculum 130/menit.</td>
<td>- Rata-rata bukaan operculum 98/menit.</td>
</tr>
<tr>
<td>- Pola berenang normal, tidak selalu bergerombol, dan selalu berada di tengah ataupun di dasar wadah.</td>
<td>- Banyak ikan yang berenang flashing, miring, melayang-layang tidak beratur dan banyak juga ikan yang berada di dasar wadah dengan kondisi diam dan posisi tubuh miring.</td>
</tr>
</tbody>
</table>
2. Tingkah laku ikan dan gejala klinis setelah perendaman ekstrak bawang putih lalu diinfeksi bakteri S. iniae

Tabel 3. Tingkah laku ikan dan gejala klinis, setelah perendamam EBP lalu diinfeksi bakteri S. iniae.

<table>
<thead>
<tr>
<th>Ikan Perlaku</th>
<th>Pada Sebelum Penginfeksi</th>
<th>Sesudah Penginfeksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>P₀</td>
<td>Rata-rata bukaan operculum 130/130menit</td>
<td>Rata-rata bukaan operculum 124/130menit</td>
</tr>
<tr>
<td></td>
<td>Pola berenang normal</td>
<td>Tidak lincah dan sering menggambang</td>
</tr>
<tr>
<td></td>
<td>Organ luar tampak normal</td>
<td>Warna tubuh pucat, terjadinya exopthalmia, kornea keputihan, produksi lendir lebih banyak, hemoraghiik, sirip robek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pada organ dalam, hati membengkak dan insang pucat.</td>
</tr>
<tr>
<td>P₁</td>
<td>Rata-rata bukaan operculum 133/132menit</td>
<td>Rata-rata bukaan operculum 122/122menit.</td>
</tr>
<tr>
<td></td>
<td>Pola berenang normal</td>
<td>Pola berenang normal, namun ada beberapa ekor yang sering diam.</td>
</tr>
<tr>
<td></td>
<td>Organ luar tampak normal</td>
<td>Produksi lendir sedikit lebih banyak, sirip robek.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insang berwarna merah, ditemukannya bakteri S. iniae saat isolasi hati</td>
</tr>
<tr>
<td>P₂</td>
<td>Rata-rata bukaan operculum 128/127menit</td>
<td>Rata-rata bukaan operculum 127/127menit.</td>
</tr>
<tr>
<td></td>
<td>Pola berenang normal</td>
<td>Pola berenang normal.</td>
</tr>
<tr>
<td></td>
<td>Organ luar tampak normal</td>
<td>Organ luar tampak normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insang berwarna merah, ditemukannya bakteri S. iniae saat isolasi hati.</td>
</tr>
<tr>
<td>P₃</td>
<td>Rata-rata bukaan operculum 126/126menit</td>
<td>Rata-rata bukaan operculum 131/130menit</td>
</tr>
<tr>
<td></td>
<td>Pola berenang normal</td>
<td>Pola berenang normal.</td>
</tr>
<tr>
<td></td>
<td>Organ luar tampak normal</td>
<td>Organ luar tampak normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insang berwarna merah, ditemukannya bakteri S. iniae saat isolasi hati.</td>
</tr>
</tbody>
</table>

sulfida pada bawang putih yang menyebabkan bawang putih dapat melawan katalisator biologis yang mengandung sulfur (enzim), khususnya yang berada di dalam atau di bawah lapisan bakteri yang dibutuhkan untuk pertumbuhan dan reproduksi bakteri.

Pada uji pencegahan ikan dari serangan bakteri *S. iniae* dengan ekstrak bawang putih, upaya yang dilakukan adalah dengan perendaman ikan dengan ekstrak bawang putih. Ekstrak bawang putih yang digunakan dalam penelitian ini adalah ekstrak bawang putih jenis Lumbu hijau, dikarenakan bawang putih jenis ini lebih mudah dijumpai dalam masyarakat. Sebelum dilakukan uji utama, dilakukan uji pendahuluan dengan perendaman ikan dalam air yang sudah dilarutkan dengan ekstrak bawang putih. Hal ini bertujuan untuk mengetahui konsentrasi perendaman yang tidak mengakibatkan kematian. Dari hasil uji pendahuluan, konsentrasi 5000 ppm adalah konsentrasi yang mengakibatkan kematian ikan lebih dari 50%. Sebaliknya konsentrasi 0, 156, 312, 625, 1.250, 2.500 dan 4.000 ppm tidak didapatkan kematian satu ekor pun. Sehingga konsentrasi yang digunakan untuk uji pencegahan serangan bakteri *S. iniae* dengan ekstrak bawang putih adalah 0, 1000, 2000, 4000 ppm. Konsentrasi ekstrak bawang putih yang diberikan masih dalam konsentrasi aman. Hal demikian membuat ikan dapat bertahan hidup terhadap stress yang disebabkan oleh perlakuan yang diberikan.

Adanya iritasi/ rasa membakar pada tubuh ikan dapat dilihat dengan adanya reproduksi mukus/ lendir yang berlebihan dan gerakan ikan yang tidak terkendali. Menurut Irianto (2005), stress kimiawi misalnya dari tidakan pengobatan atau pencegahan penyakit dapat menyebabkan kerusakan mukus sehingga ikan akan kehilangan salah satu sistem perlindungan tubuh, kehilangan fungsi osmoregulasi, kehilangan pelicin tubuh yang sangat diperlukan untuk pergerakan dalam air.

Selain produksi mukus yang berlebihan, adanya gerakan ikan yang melomplok tidak terkendali juga menunjukkan bahwa ikan merasa tidak nyaman dengan lingkungannya, sehingga mereka berusaha menghindar. Akibat adanya rasa sakit/ panas tersebut kemungkinan ikan menjadi shock, kondisi tubuh melemah dan akhirnya mati.

Sifat iritasi dari alicin juga dapat dilihat dari kondisi insang ikan yang mati. Pada ikan yang mati terlihat jelas warna lamella insang yang sedikit kehitaman. Perubahan warna ini terjadi karena adanya pembuluh darah yang pecah sehingga menimbulkan pendarahan dan rusaknya struktur lamella inang. Kerusakan ini menyebabkan insang kehilangan fungsinya sebagai alat untuk mengambil oksigen dari air.

Pada uji perendaman EBP dengan konsentrasi 0 ppm, 1.000 ppm, 2.000 ppm dan 4.000 ppm dilakukan selama 10 menit. Dengan waktu 10 menit tersebut, perendaman dianggap cukup efektif karena selain ikan tidak begitu stres proses penyerapan bawang putih dianggap sudah bekerja (Lukistyowati, 2005). Interval waktu perendaman 4 hari
sekalii, sebanyak 4 kali. Dengan tenggang waktu yang diberikan ikan mempunyai kesempatan untuk memulihkan tubuhnya dari stress (Lukistyowati et al., 2005).

Pada pengujian pencegahan serangan *S. iniae*, ikan yang telah diberi perlakuan perendaman ekstrak bawang putih diinfeksi bakteri dengan dosis 9,57 x 10⁶ CFU/ml. Bakteri yang diinfeksi pada ikan adalah bakteri *S. iniae* yang telah diuji virulensinya. Dari hasil pengujian diperoleh konsentrasi yang efektif, yakni pada konsentrasi 2000 ppm. Berdasarkan hasil perhitungan secara statistik (Anava) diketahui bahwa kelulushidupan ikan yang diperlakukan dengan ekstrak bawang putih dengan konsentrasi 2.000 dan 4.000 ppm berbeda nyata dengan kontrol (F hitung > F tabel 1%) (Lampiran 6). Hal ini menunjukkan bahwa ekstrak bawang putih efektif untuk mencegah serangan bakteri *S. iniae* pada ikan nila merah.

Dari Gambar 1 dan Gambar 2 dapat dilihat bahwa ikan nila merah yang direndam dalam ekstrak bawang putih dengan konsentrasi 1.000 ppm relatif masih rentan terhadap serangan bakteri *S. iniae*, dimana kelulushidupan nya 73,33% dan tingkat kelulushidupan relatif nya 56%. Namun dibandingkan ikan kontrol, kelulushidupan ikan yang diberi ekstrak bawang putih lebih tinggi. Pada konsentrasi perendaman 2.000 ppm, diperoleh nilai kelulushidupan tertinggi yakni 93,33% dengan tingkat kelulushidupan relatif 89%.

Jika ditinjau dari segi ekonomis, konsentrasi ekstrak bawang putih yang paling efektif untuk mencegah serangan bakteri *S. iniae* juga pada konsentrasi 2.000 ppm. Hal ini karena jumlah ekstrak bawang putih yang diberikan relatif rendah, tetapi kelulushidupan ikan lebih tinggi daripada perlakuan dengan konsentrasi 4.000 ppm. Pada konsentrasi 4.000 ppm kelulushidupan 2.000 ppm, justru sedikit lebih rendah di bandingkan pada perlakuan dengan konsentrasi 2.000 ppm. Hal ini mungkin, ikan pada konsentrasi tinggi (4.000 ppm) mengalami stress lebih tinggi dibanding pada konsentrasi 2.000 ppm, sehingga dalam upaya peningkatan daya tahan tubuh tidak optimal. Konsentrasi EBP yang efektif untuk mencegah serangan bakteri *S. iniae* pada ikan nila merah, sama dengan konsentrasi yang efektif dalam upaya pencegahan penyakit MAS pada ikan mas, yakni 2000 ppm (Lukistyowati et al., 2005).

Sensitifitas ikan nila terhadap perubahan lingkungan yang kurang baik, lebih rendah dibanding ikan mas. Namun pemberian ekstrak bawang putih dengan metode perendaman lalu diinfeksi dengan bakteri patogen, terbukti menunjukkan perubahan yang berarti dalam pertahanan tubuh ikan nila dalam upaya mencegah serangan bakteri patogen dibanding dengan ikan kontrol. Dengan demikian, ekstrak bawang putih mampu
memberikan perubahan terhadap fisiologis ikan nila, yang merupakan ikan yang lebih tahan terhadap perubahan lingkungan yang lebih buruk.

Dari hasil penelitian Ndong dan Fall (2007) pakan yang dicampur dengan ekstrak bawang putih 0,5 % jumlah leukositnya lebih tinggi daripada pakan yang diberikan ekstrak bawang putih 1% dan 0%. Hal ini mungkin disebabkan bau bawang putih yang menyengat dapat mengurangi nafsu makan ikan bila diberikan dalam persentase yang lebih tinggi. Namun bila diberikan dalam persentase yang lebih rendah, ikan lebih suka, sehingga dapat meningkatkan daya tahan tubuh ikan dari pakan yang diberikan.

Ikan nila merah yang direndam dengan ekstrak bawang putih, diduga telah mampu membentuk pertahanan nontospesifik, yaitu dengan memproduksi sel-sel mucosa. Pada hasil pengujian mengenai sel darah ikan mas yang telah direndam ekstrak bawang putih, terbukti terjadinya peningkatan nilai parameter hematologi ikan seperti hematoosit, leucoatrit, jumlah sel darah merah, jumlah sel darah putih, serta aktivitas pahagositosisnya (Lukistyowaty et al., 2006).

Pada awal pemberian ekstrak bawang putih, kondisi ikan stress lebih lama, namun setelah pemberian ekstrak bawang putih dilakukan pada interval waktu berikutnya, ikan lebih cepat pulih dari stress yang disebabkan oleh bawang putih. Hal ini disebabkan ikan sudah terbiasa dengan perlakuan yang diberikan. Dari uji perendaman ini, diharapkan zat aktif bawang putih yang dibawa oleh darah, yang masuk melalui insang melalui proses
pertukaran gas-gas dan ion-ion pada saat uji perendaman, dapat meningkatkan daya tahan tubuh ikan.

Pada upaya pencegahan yang dilakukan, kondisi lingkungan yang mendukung berpengaruh terhadap perlakuan yang diberikan. Salah satu diantaranya adalah suhu air. Suhu yangrelatif lebih tinggi tidak cocok dalam upaya pencegahan streptococcosis dengan ekstrak bawang putih. Hal ini disebabkan suhu yang tinggi merupakan suhu yang baik terhadap kehidupan bakteri *S. iniae*. Seperti yang diungkapkan Kusuda dan Salati (1999) bahwa Infeksi *Streptococcus iniae* terjadi selama musim panas pada temperature air yang lebih tinggi. Selain itu suhu yang tinggi membuat senyawa aktif Allicin cepat menguap, yang tentunya dapat mengurangi keefektifan dalam perlakuan pencegahan streptococcosis yang diberikan.

Frequensi pergantian air yang rutin dilakukan merupakan hal penting dalam menjaga kualitas air sebagai media hidup ikan nila merah. Seperti yang diungkapkan (Magnadottir, 2006), bahwa Faktor lingkungan dapat berpengaruh pada parameter kekebalan bawaan ikan, yang menyebabkan ikan dalam budidaya intensif rentan dengan cepatnya penyebaran infeksi.

Amonia setelah perendaman ikan dengan ekstrak bawang putih sedikit lebih tinggi, hal ini disebabkan ikan stress dengan perlakuan yang diberikan, sehingga menghasilkan lendir dan buangan dari metabolisme yang lebih tinggi. Secara keseluruhan, hasil rata-rata amonia yang diukur juga tidak menunjukkan kisaran yang terlalu tinggi, sehingga masih bisa ditoleransi ikan. Selain itu rendahnya amonia juga dikarenakan sediktnya sisa pakan yang tebuang dalam wadah pengijan. Hal ini
disebabkan ikan tidak terlalu bernafsu untuk makan. Sehingga jumlah pakan yang diberikan jumlannya dikurangi.

Suhu juga merupakan salah satu parameter kualitas air yang sangat berpengaruh terhadap tingkat pertumbuhan dan patogenitas bakteri. Dwidjosaputro (2005) menyatakan bahwa, temperatur turut menentukan populasi dalam air. Temperatur sekitar 30°C atau lebih sedikit, baik bagi kehidupan bakteri patogen yang berasal dari hewan maupun manusia.

DAFTAR PUSTAKA

Lukistyowati, Windarti dan Riauwaty. 2006. Studi Efektifitas Bawang Putih (*Allium sativum*) Untuk Mencegah dan Mengobati Penyakit MAS Pada Ikan Mas

EFISIENSI ECHOSOUNDER PADA USAHA PERIKANAN PURSE SEINE

Oleh : Sunarti

PENDAHULUAN

Satu hal yang penting dalam operasi penangkapan dengan alat tangkap purse seine adalah menentukan fishing ground. Penggunaan echosounder sebagai alat pendeteksi gerombolan ikan dapat meningkatkan efisiensi usaha perikanan purse seine. Bila penentuan perairan penangkapan cepat dilakukan maka dalam usaha perikanan purse seine yang menggunakan echosounder diharapkan biaya operasional dapat ditekan sehingga lebih efisien.

Berdasarkan hasil pengamatan kondisi perikanan umum di Desa Paluh Sibaji yang telah dilaksanakan sebelumnya, terdapat beberapa masalah yang ditemui. Satu hal yang menarik perhatian adalah mengenai penggunaan echosounder oleh nelayan purse seine. Sebagian nelayan percaya penggunaan alat bantu ini dapat menekan biaya produksi sehingga keuntungan yang diperoleh lebih besar dan efisien. Namun banyak juga yang berpandang bahwa penggunaan instrumen ini tidak memberi pengaruh nyata pada keuntungan sebab harganya yang cukup mahal.

Permasalahan yang menjadi pembahasan yakni bagaimana gambaran perbedaan hasil penangkapan dengan alat bantu echosounder dengan yang tidak terhadap produksi nelayan? Bagaimana penggunaan echosounder yang dilakukan, mampukah mempengaruhi produksi penangkapan?

Dalam suatu usaha kita perlu mengetahui mana yang lebih efisien sehingga usaha yang kita lakukan dapat memperoleh keuntungan yang lebih besar. Oleh karena itu hal penelitian mengenai penggunaan echosounder sebagai alat bantu pada usaha penangkapan dengan alat tangkap purse seine belum pernah dilakukan di daerah Pantai Labu, maka penelitian tentang itu penting segera dilakukan.

Oleh sebab itu penulis melakukan penelitian mengenai efisiensi penggunaan echosounder pada usaha penangkapan purse seine. Dengan harapan dapat digunakan sebagai bahan pertimbangan bagi nelayan dalam mengambil keputusan untuk menggunakan instrumen sejenis dalam usaha penangkapan. Selain itu sulitnya mendapatkan modal juga merupakan kendala dalam melakukan usaha penangkapan. Dengan diadakannya penelitian ini diharapkan para pemilik modal mau menanamkan modal atau memberikan pinjaman untuk usaha penangkapan khususnya usaha penangkapan purse seine.

Adapun tujuan penelitian ini adalah untuk mengetahui efisiensi penggunaan echosounder pada usaha penangkapan purse seine. Selain itu juga mengetahui permasalahan dalam usaha penangkapan purse seine dan kemungkinan pemecahannya. Dengan dilukiskannya penelitian ini diharapkan dapat diketahui tingkat efisiensi
penggunaan echosounder pada usaha penangkapan purse seine. Sehingga dapat dijadikan masukan bagi nelayan purse seine dalam meningkatkan pendapatan.

Pengertian efisiensi itu sendiri ada tiga macam: 1) efisiensi teknis, 2) efisiensi harga, 3) efisiensi ekonomis. Seorang nelayan secara teknis dikatakan lebih efisien dibandingkan dengan nelayan lain, apabila dia dapat berproduksi lebih tinggi (secara fisik) dengan input yang sama. Efisiensi harga dapat dicapai apabila seseorang mampu memaksimunkan keuntungan (mampu menyamakan produk marginal setiap faktor produksi dengan harga inputnya). Sedangkan efisiensi ekonomis akan tercapai bila efisiensi teknis dan efisiensi harga sudah tercapai atau efisiensi kombinasi dari efisiensi teknis dan efisiensi harga (Soekartawi dalam Syafirzal, 1992). Dalam penelitian ini yang digunakan adalah efisiensi ekonomi atau penggabungan efisiensi teknis dan harga.

METODE PENELITIAN

Bahan yang digunakan dalam penelitian ini berupa kapal, alat tangkap purse seine dan echosounder. Adapun alat yang digunakan adalah meteran untuk mengukur ukuran utama kapal, kamera untuk dokumentasi, alat tulis untuk mencatat informasi yang diperoleh.

Hipotesis yang diajukan dalam penelitian ini adalah:

\[H_0 : \text{penggunaan echosounder tidak berpengaruh terhadap produksi usaha perikanan purse seine.} \]
\[H_1 : \text{penggunaan echosounder berpengaruh terhadap produksi usaha perikanan purse seine.} \]

Dengan asumsi (1) kondisi daerah penangkapan dianggap sama, (2) keahlian nelayan dalam pengoperasian alat tangkap dianggap sama, dan (3) penggunaan echosounder sebagai alat bantu penangkapan ikan mampu meningkatkan produksi.

Penelitian ini akan dilaksanakan dengan menggunakan metode:

1. Observasi, dengan mengamati langsung nelayan purse seine melakukan operasi penangkapan dengan alat bantu echosounder.
2. Survei, dengan mengukur langsung panjang kapal (LOA), mengidentifikasi mesin (jenis, merk, PK, dan jenis bahan bakar), mencatat jumlah produksi/trip, jenis ikan dan nilai ekonominya.
3. Wawancara langsung dengan narasumber yang terdiri dari 22 orang nelayan purse seine dan aparat instansi terkait.

Guna mempermudah analisis data, data primer yang dikumpulkan akan ditabulasi. Data tersebut diharapkan dapat menggambarkan tingkat efisiensi penggunaan echosounder pada usaha pengkapan purse seine. Besar modal, biaya-biaya yang timbul pada usaha penangkapan, serta hasil yang diperoleh merupakan parameter yang akan dianalisis. Analisis yang digunakan adalah analisis usaha yaitu:
1. Analisis laba/rugi
 Rumus keuntungan = penerimaan – (total biaya tetap + total biaya variabel)

2. *Revenue Cost Ratio (R/C)*
 Rumus R/C = \[\frac{\text{Total penerimaan}}{\text{Total biaya tetap + total biaya variabel}}\]

3. *Payback Period of Capital (PPC)*
 Rumus PPC = Total investasi x 1 tahun

 Keuntungan

4. *Break Event Point*
 BEP Harga = \[\frac{\text{Total biaya}}{\text{Total produksi}}\]
 BEP Produksi = \[\frac{\text{Total biaya}}{\text{Harga/kg}}\]
 (Effendi, 2006)

Untuk melihat pengaruh penggunaan *echosounder* terhadap produksi digunakan uji t dengan rumus:
\[T = \frac{X_1 - X_2}{\sqrt{\frac{S}{n_1} + \frac{S}{n_2}}}\]
\[S = \sum (X_i - \bar{X})^2\]
\[n - 1\]

Pengambilan kesimpulan dilakukan berdasarkan perbandingan nilai t hitung dan t tabel. Jika t hitung > t tabel, maka H₀ ditolak dan H₁ diterima berarti penggunaan *echosounder* berpengaruh terhadap produksi usaha perikanan *purse seine*. Namun, jika t tabel > t hitung, maka H₀ diterima dan H₁ ditolak berarti penggunaan *echosounder* tidak berpengaruh terhadap produksi usaha perikanan *purse seine*. (Sudjana dalam Syafirizal, 1992).

HASIL DAN PEMBAHASAN

Mesin dan kapal penangkapan ikan merupakan modal utama dalam usaha perikanan tangkap. Di Desa Paluh Sibaji sendiri penggunaan mesin pada kapal *purse seine* kurang bervariasi. Hal ini dapat dilihat dari penggunaan merk mesin yang hampir seragam yaitu merk Dongfeng, berukuran antara 12-26 *Horse Power* (HP) jika dibandingkan dengan ukuran panjang kapal yakni antara 7-14 meter perbandingan ini tidaklah sesuai. Dalam buku terbitan BPPI Semarang yang berjudul Kumpulan Desain
Alat Tangkap Tradisional merekomendasikan mesin berkekuatan 33-45 HP untuk kapal purse seine yang berukuran panjang 10-15 meter.

Dilihat dari ukuran mata jaring yaitu 0,5 inch jelas bahwa ikan yang menjadi sasaran adalah yang berukuran kecil. Sebagaimana yang dinyatakan Sudirman dan Mallawa, (2000) bahwa mesh size merupakan faktor penting yang harus diperhatikan pada jaring purse seine, karena berhubungan langsung dengan ukuran ikan yang menjadi tujuan utama penangkapan. Ukuran panjang ikan yang menjadi sasaran tangkap oleh alat tangkap purse seine yang ada di desa Paluh Sibaji berkisar antara 5-7 cm. Ukuran mata jaring 0,5 inch atau hampir sama dengan 2,5 cm sudah sesuai dengan peraturan yang dituangkan dalam Surat Keputusan Presiden Republik Indonesia Nomor 85 tahun 1982.

<table>
<thead>
<tr>
<th>No</th>
<th>Keterangan</th>
<th>Dengan echosounder</th>
<th>Tanpa echosounder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LOA kapal</td>
<td>11,0 - 14,0 meter</td>
<td>7,3 - 12,0 meter</td>
</tr>
<tr>
<td>2</td>
<td>Lebar kapal</td>
<td>2,5 - 4,0 meter</td>
<td>1,5 - 2,5 meter</td>
</tr>
<tr>
<td>3</td>
<td>Dalam kapal</td>
<td>1,0 - 1,5 meter</td>
<td>0,5 - 1,0 meter</td>
</tr>
<tr>
<td>4</td>
<td>Panjang jarring</td>
<td>200 - 300 meter</td>
<td>150 - 200 meter</td>
</tr>
<tr>
<td>5</td>
<td>Dalam jarring</td>
<td>1,0 - 2,5 meter</td>
<td>0,5 - 1,0 meter</td>
</tr>
<tr>
<td>6</td>
<td>Kekuatan mesin</td>
<td>23 - 26 PK</td>
<td>12 - 20 PK</td>
</tr>
<tr>
<td>7</td>
<td>Hawling</td>
<td>Menggunakan roller</td>
<td>Manual</td>
</tr>
<tr>
<td>8</td>
<td>Jumlah ABK</td>
<td>7 - 11 orang</td>
<td>5 - 8 orang</td>
</tr>
<tr>
<td>9</td>
<td>Fishing ground</td>
<td>< 6 mil dari pantai</td>
<td>< 6 mil dari pantai</td>
</tr>
</tbody>
</table>

Sumber : data primer

Dari tabel di atas dapat dilihat adanya perbedaan antara kapal purse seine antara yang menggunakan echosounder dengan yang tidak menggunakan echosounder, namun dioperasikan pada fishing ground yang sama. Sedangkan ukuran bagian-bagian purse seine dapat dilihat pada tabel di bawah ini.

Tabel III. 02 Ukuran komponen-komponen purse seine di desa Paluh Sibaji pada tahun 2008.

<table>
<thead>
<tr>
<th>Bagian-bagian purse seine</th>
<th>Ukuran</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelampung (diameter)</td>
<td>6</td>
<td>Inchi</td>
</tr>
<tr>
<td>Pemberat</td>
<td>50</td>
<td>Gram</td>
</tr>
<tr>
<td>Tali ris atas (diameter)</td>
<td>10</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Tali ris bawah (diameter)</td>
<td>10</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Tali kolor (diameter)</td>
<td>18</td>
<td>Millimeter</td>
</tr>
<tr>
<td>Tali cincin (diameter)</td>
<td>6</td>
<td>Millimeter</td>
</tr>
</tbody>
</table>

Mesh size

Diameter cincin	2	Inchi
Batu nong	3	Kilogram
Pelampung tanda (diameter)	10	Inchi

Sumber : data primer

Efisiensi juga dapat diartikan mampu menjalankan tugas dengan tepat cermat dan berdaya guna dengan tidak membuang waktu dan tenaga (KBBI, 2001). Melihat banyaknya labuh jaring dan lamanya waktu operasi penangkapan antara kapal purse seine yang menggunakan echosounder dengan yang tidak, maka dapat disimpulkan bahwa kapal purse seine yang menggunakan echosounder lebih efisien. Walaupun waktu yang diperlukan untuk sekali labuh jaring kapal purse seine yang menggunakan echosounder
nampaknya lebih lama ketimbang yang tidak menggunakan *echosounder*, namun secara keseluruhan tidak demikian. Sebab labuh jaring kapal *purse seine* yang menggunakan *echosounder* hanya rata-rata empat kali atau sama dengan 100-120 menit sedangkan pada kapal *purse seine* yang tidak menggunakan *echosounder* rata-rata sampai dua belas kali atau sama dengan 240-300 menit. Sementara spesifikasi teknis *echosounder* disajikan pada table dibawah ini.

Tabel III. 04. Spesifikasi teknis *echosounder*

<table>
<thead>
<tr>
<th>No</th>
<th>Item</th>
<th>Karakteristik</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frekwensi</td>
<td>• rendah 10 – 20 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sedang 20 – 100 kHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• tinggi 100 – 400 kHz</td>
</tr>
<tr>
<td>2</td>
<td>Multi frekwensi</td>
<td>• 2 atau lebih frekwensi</td>
</tr>
<tr>
<td>3</td>
<td>Lebar beam</td>
<td>• lebar 20° - 30°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sedang 10° - 20°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sempit 4° - 10°</td>
</tr>
<tr>
<td>4</td>
<td>Panjang pulsa</td>
<td>• panjang > 2 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sedang 1 – 2 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• pendek 0,1 – 1 ms</td>
</tr>
<tr>
<td>5</td>
<td>Daya pancar</td>
<td>• tinggi 5 – 10 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• sedang 1-5 kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• rendah < 1 kW</td>
</tr>
<tr>
<td>6</td>
<td>Amplifier</td>
<td>• Simple initial supression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Time Varied Gain (TVG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Frekwency band with selection</td>
</tr>
<tr>
<td>7</td>
<td>Transducer</td>
<td>• tidak distabilisasi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• distabilisasi</td>
</tr>
<tr>
<td>8</td>
<td>Penyajian sinyal</td>
<td>• Lamp display (flaser)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chart Recorder (kertas basah atau kering)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chart Recorder dengan skala</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chart Recorder dikombinasi dengan CRT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Display type TV, dengan atau tanpa warna</td>
</tr>
</tbody>
</table>

Sumber : Brown (2007)

Sebagaimana yang telah disebutkan sebelumnya bahwa penangkapan dilakukan pada kedalaman 10-40 meter (termasuk dalam) oleh sebab itu frekwensi yang cocok digunakan adalah frekwensi rendah. Dilihat dari pengunaan *echosounder* di desa Paluh Sibaji sudah sesuai bahwa yang digunakan adalah yang juga memiliki frekwensi rendah yakni 20 kHz.

Nelayan di desa Paluh Sibaji meletakkan kabinet atau yang biasa mereka sebut monitor tepat di depan kemudi dan terlindung dari panas dan mudah dilihat. Sedangkan untuk *transduser*, dahulu nelayan meletakkan *transduser* di bawah kapal, namun

Untuk menduga besarnya kelompok ikan di bawah kapal lebih tepat bila menggunakan horizontal sounder atau scanning sonar. Misund (dalam Brown, 2000) mengemukakan bahwa sebuah scanning sonar mampu memvisualisasikan dengan segera dunia bawah air di bawah kapal dan mempunyai lingkup deteksi yang lebih lebar. Thomson (dalam Brown, 2000) menyatakan cara kerja sonar hampir sama dengan echosounder, tapi transdusernya dapat berputar pada sumbu mendatar (+50° ke arah permukaan air) maupun ke bawah (-90° ke arah dasar perairan). Sebagai besar transduser sonar dapat berputar pada sumbu tegak sejauh 360°. Frekwensi yang digunakan 10,000/s atau 40,000 Hz dengan luaran daya hingga 10 kW.

Menurut informasi yang didapat dari nelayan, produksi tertinggi dari alat tangkap purse seine terjadi pada musim pasang Barat yaitu pada bulan-bulan Agustus sampai dengan Januari. Sedangkan pada musim pasang Timur yang terjadi pada bulan-bulan Februari sampai dengan Juli produksi penangkapan relatif sedikit. Bahkan untuk kapal-kapal yang tidak dilengkapi echosounder kerap kali pulang tanpa membawa hasil. Masa puncak terjadi pada bulan Oktober sampai September, pada saat itu tangkapan mampu mencapai 200 kg/trip bagi yang tidak menggunakan echosounder dan 600kg/trip bagi yang menggunakan echosounder. Pada bulan April sampai Mei merupakan masa pakej, selain tangkapan sangat rendah bahkan tidak ada, namun jika diambil rata-ratanya dapat diperoleh 50 kg/trip bagi kapal yang tidak menggunakan echosounder dan 100 kg bagi yang menggunakan alat bantu tersebut.

dikenal sebagai musim pancaroba akhir tahun. Kekuatan angin umumnya lemah pada musim pancaroba dan karena itu lautpun umumnya tenang.

Dilihat dari analisis usaha antara usaha perikanan *purse seine* yang menggunakan *echosounder* dengan yang tidak menggunakan *echosounder* sangat berbeda. Keuntungan yang diperoleh usaha perikanan *purse seine* yang menggunakan *echosounder* lebih besar dibandingkan dengan yang tidak menggunakan *echosounder* yakni Rp. 14.057.500,- bagi usaha perikanan *purse seine* yang menggunakan *echosounder* dan Rp. 4.357.600,- bagi yang tidak menggunakan *echosounder*.

Demikian pula dengan *Payback Periode of Capital* usaha perikanan *purse seine* yang menggunakan *echosounder* lebih cepat dibandingkan dengan yang tidak menggunakan *echosounder*. *Payback Periode of Capital* usaha perikanan *purse seine* yang menggunakan *echosounder* yaitu 6 tahun 4 bulan 23 hari, sedangkan yang tidak menggunakan *echosounder* yaitu selama 7 tahun 9 bulan 19 hari. Karena efisiensi juga berarti tidak membuang waktu, maka dapat dikatakan usaha perikanan *purse seine* yang menggunakan *echosounder* lebih efisien karena waktu yang dibutuhkan untuk pengembalian modal usaha lebih singkat ketimbang usaha perikanan *purse seine* yang tidak menggunakan *echosounder*.

Revenue Cost Ratio (R/C) kedua usaha ini lebih besar dari satu menandakan kedua usaha perikanan *purse seine* baik yang menggunakan *echosounder* dengan yang tidak menggunakan *echosounder* masih layak untuk dilanjutkan. Namun nilai R/C usaha perikanan *purse seine* dengan *echosounder* lebih besar (1,08) dari pada yang tidak menggunakan *echosounder*, hal ini menunjukkan usaha perikanan *purse seine* dengan *echosounder* lebih menguntungkan dibanding dengan usaha perikanan *purse seine* tanpa menggunakan *echosounder* (1,05). Menurut Soekartawi (1995) bahwa suatu usaha dapat dikatakan efisien jika pemanfaatan sumberdaya tersebut menghasilkan keluaran (output) yang melebihi masukan (input). R/C adalah perbandingan antara penerimaan dan biaya/pengeluaran, jika kita analogik penerimaan sebagai output (keluaran) dan biaya/biaya/pengeluaran sebagai input (masukan), maka dapat disimpulkan bahwa usaha perikanan *purse seine* yang menggunakan *echosounder* lebih efisien dibandingkan dengan usaha perikanan *purse seine* yang tidak menggunakan *echosounder*.

Untuk lebih jelasnya hasil analisis usaha perikanan *purse seine* yang menggunakan *echosounder* dan yang tidak menggunakan *echosounder* dapat dilihat pada tabel di bawah ini.
Tabel III. 05. Rentabilitas usaha perikanan *purse seine* yang menggunakan *echosounder* dengan yang tidak menggunakan *echosounder* di desa Paluh Sibaji tahun 2008

<table>
<thead>
<tr>
<th>Keterangan</th>
<th>Menggunakan echosounder</th>
<th>Tidak menggunakan echosounder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keuntungan</td>
<td>Rp. 14.057.500</td>
<td>Rp. 4.357.600</td>
</tr>
<tr>
<td>Revenue cost ratio</td>
<td>1,08</td>
<td>1,05</td>
</tr>
<tr>
<td>Payback Period of Capital</td>
<td>6 tahun 4 bulan</td>
<td>7 tahun 9 bulan</td>
</tr>
<tr>
<td>BEP harga</td>
<td>Rp. 1844,46/kg</td>
<td>Rp. 1899,31/kg</td>
</tr>
<tr>
<td>BEP produksi</td>
<td>83.327,5 kg</td>
<td>41.073,7 kg</td>
</tr>
</tbody>
</table>

Sumber : data primer

Usaha dinyatakan layak bila nilai BEP produksi lebih besar dari jumlah unit yang sedang diproduksi saat ini (Effendi, 2006). BEP produksi usaha perikanan *purse seine* yang menggunakan *echosounder* sebesar 83.327,5 kg sementara produksi mencapai 90.354 kg/tahun, maka usaha ini dapat dikatakan layak. BEP produksi usaha perikanan *purse seine* yang tidak menggunakan *echosounder* yaitu 41.073,7 kg dengan produksi 43.251 kg/tahun, maka usaha ini juga dapat dikatakan layak.

Sementara nilai BEP harga harus lebih rendah dari harga yang berlaku saat ini (Effendi, 2006). BEP harga usaha *purse seine* yang menggunakan *echosounder* adalah Rp. 1.844,46 sedangkan harga ikan yang paling banyak tertangkap saat ini adalah Rp. 2.000,- selisih Rp. 155,54. BEP harga usaha *purse seine* yang tidak menggunakan *echosounder* Rp. 1.899,31 dan harga ikan saat ini Rp. 2.000,- selisih Rp. 100,69. Walaupun kedua usaha tersebut layak tapi dilihat dari selisih BEP harga antara usaha *purse seine* yang menggunakan *echosounder* (Rp. 155,54) dengan yang tidak menggunakan *echosounder* (Rp. 100,69), maka usaha *purse seine* yang menggunakan *echosounder* lebih layak ketimbang yang tidak menggunakan *echosounder*.

Sementara hasil uji t jumlah rata-rata tangkapan/trip *purse seine* yang menggunakan *echosounder* dan yang tidak menggunakan *echosounder* adalah sbb:
Sumber : Data Primer

<table>
<thead>
<tr>
<th>Bulan</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>Jumlah</th>
<th>Xᵢ</th>
<th>(Xᵢ - X)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januari</td>
<td>306</td>
<td>312</td>
<td>297</td>
<td>289</td>
<td>323</td>
<td>310</td>
<td>315</td>
<td>2152</td>
<td>307,428</td>
<td>4,631</td>
</tr>
<tr>
<td>Februari</td>
<td>120</td>
<td>123</td>
<td>119</td>
<td>127</td>
<td>106</td>
<td>118</td>
<td>122</td>
<td>835</td>
<td>119,285</td>
<td>34592,652</td>
</tr>
<tr>
<td>Maret</td>
<td>115</td>
<td>110</td>
<td>108</td>
<td>114</td>
<td>121</td>
<td>100</td>
<td>115</td>
<td>783</td>
<td>111,857</td>
<td>37410,910</td>
</tr>
<tr>
<td>April</td>
<td>101</td>
<td>97</td>
<td>87</td>
<td>127</td>
<td>114</td>
<td>97</td>
<td>98</td>
<td>721</td>
<td>103,000</td>
<td>40915,580</td>
</tr>
<tr>
<td>Mei</td>
<td>110</td>
<td>119</td>
<td>106</td>
<td>103</td>
<td>112</td>
<td>121</td>
<td>105</td>
<td>776</td>
<td>110,857</td>
<td>37798,748</td>
</tr>
<tr>
<td>Juni</td>
<td>145</td>
<td>137</td>
<td>132</td>
<td>147</td>
<td>144</td>
<td>129</td>
<td>151</td>
<td>985</td>
<td>140,714</td>
<td>27080,816</td>
</tr>
<tr>
<td>Juli</td>
<td>152</td>
<td>163</td>
<td>132</td>
<td>144</td>
<td>153</td>
<td>149</td>
<td>147</td>
<td>1040</td>
<td>148,571</td>
<td>24556,457</td>
</tr>
<tr>
<td>Agustus</td>
<td>500</td>
<td>498</td>
<td>473</td>
<td>523</td>
<td>506</td>
<td>497</td>
<td>482</td>
<td>3479</td>
<td>497,000</td>
<td>36758,092</td>
</tr>
<tr>
<td>September</td>
<td>520</td>
<td>518</td>
<td>521</td>
<td>533</td>
<td>500</td>
<td>502</td>
<td>543</td>
<td>3637</td>
<td>519,571</td>
<td>45922,347</td>
</tr>
<tr>
<td>Oktober</td>
<td>607</td>
<td>594</td>
<td>593</td>
<td>621</td>
<td>633</td>
<td>576</td>
<td>651</td>
<td>4275</td>
<td>610,714</td>
<td>93292,372</td>
</tr>
<tr>
<td>November</td>
<td>531</td>
<td>542</td>
<td>528</td>
<td>499</td>
<td>487</td>
<td>532</td>
<td>515</td>
<td>3634</td>
<td>519,143</td>
<td>45739,094</td>
</tr>
<tr>
<td>Desember</td>
<td>480</td>
<td>492</td>
<td>473</td>
<td>484</td>
<td>478</td>
<td>405</td>
<td>518</td>
<td>3330</td>
<td>475,714</td>
<td>29049,112</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25647</td>
<td>3663,314</td>
</tr>
</tbody>
</table>

\[
S^2 = \sum (Xᵢ - X) = 453120,811 = 41192,801 \\
\quad n - 1 = 12 - 1
\]

\[
S = \sqrt{41192,801} = 202,960
\]

\[
S^2 = \frac{(12-1)S₁^2 + (12-1)S₂^2}{(12-1) - (12-1)} = \frac{(12-1)202,960 + (12-1)57,133}{22}
\]

\[
= 2232,56 + 626,463 = 2861,023 = 130,046
\]

\[
t = \frac{Xᵢ - X}{S} = \frac{305,276 - 146,506}{130,046\sqrt{0.083+0.083}} = 158.77
\]

\[
= 2.9965
\]

t-tabel (1%) 0.9982 dan (5%) 0.9984

t hitung > dari t tabel maka H₀ ditolak dan H₁ diterima berarti penggunaan echosounder pada usaha perikanan purse seine berpengaruh sangat nyata.

