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ABSTRACT 
 

A multivariate chart, instead of separate univariate charts is used for a joint monitoring of 
several correlated variables. Two time weighted multivariate charts that are commonly 
used for a quick detection of small shifts in the mean vector are the multivariate 
exponentially weighted moving average (MEWMA) and multivariate cumulative sum 
(MCUSUM) charts. The MEWMA and MCUSUM charts use information from past data, 
which make them sensitive to small shifts. These charts require the assumption that the 
underlying process follows a multivariate normal distribution. This paper studies the 
robustness of the MEWMA and MCUSUM charts toward nonnormality by considering 
the multivariate Weibull and multivariate gamma distributions based on different sample 
sizes and correlation coefficients.   
 

1. INTRODUCTION 
 

 In most process monitoring situations, the quality of a process is determined by two 
or more quality characteristics (Woodall and Montgomery, 1999). Process monitoring 
problems involving several related variables of interest are called multivariate statistical 
process control. The most useful tool used in the monitoring of a multivariate process is a 
multivariate control chart. The first step in constructing a multivariate chart involves the 
analysis of a preliminary set of data that is assumed to be in statistical control. This 
analysis is known as a Phase-I analysis and it is conducted to estimate process parameters 
that will be used for the monitoring of a future process, a.k.a., a Phase-II process.  
 
 Numerous multivariate charts and their extensions are presently available. These 
charts can be grouped into 3 broad categories, namely, the Hotelling’s 2T , multivariate 
EWMA (MEWMA) and multivariate CUSUM (MCUSUM) charts. The Hotelling’s  
chart was proposed by Hotelling (1947) for the detection of a large sustained shift. The 
MCUSUM chart was first suggested by Woodall and Ncube (1985) while the MEWMA 
chart was introduced by Lowry et al. (1992). However, the MCUSUM charts suggested 
by Crosier (1988) will be discussed in this paper as they are more widely used.  
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 This paper is organized as follows: Section 2 reviews the MEWMA chart while 
Section 3 reviews the MCUSUM chart. In Section 4, a simulation study is conducted to 
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compare the performances of MEWMA and MCUSUM charts for skewed distributions. 
Finally, conclusions are drawn in Section 5. 
 

2. MEWMA CONTROL CHART 
 
 The MEWMA chart proposed by Lowry et al. (1992) is based on the following 
statistic:  

1)1( −λ−+λ= ttt ZXZ ,  for t = 1, 2, …,      (1)                           
where  and 0 < λ ≤ 1.  are assumed to be independent multivariate 
normal random vectors, each with p quality characteristics. The control charting statistic 
of a MEWMA chart is (Lowry et al., 1992) 
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is the variance-covariance matrix for . Lowry et al. (1992) showed that the run length 
performance of the MEWMA chart depends on the off-target mean vector  and the 
covariance matrix of , i.e.,  only through the value of the non-centrality 
parameter, 
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where  denotes the in-control mean vector. 0µ
 
 Lee and Khoo (2006a) provide a method based on the Markov chain approach for the 
selection of the optimal parameters, λ and , which produce the minimum out-of-
control ARL (  for a desired size of a shift of interest based on a fixed .ARL  
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3. MCUSUM CONTROL CHART 

 
 Crosier (1988) suggested two multivariate CUSUM charts. The one with the better 
ARL performance is based on the following statistics: 
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Note that  k > 0 is the reference value and a is the aim point or target value for the 
mean vector. The control charting statistic for the MCUSUM chart is (Crosier, 1988) 
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 A shift in the mean vector is signalled when , where  represents the limit of 
the chart. The MCUSUM procedure assumes that the multivariate observations  for t 
= 1, 2, ..., follow an independently and identically distributed (i.i.d.) multivariate normal 
distribution.  
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 Lee and Khoo (2006b) give an approach based on the Markov chain method in 
determining the optimal parameters, k and  that give the minimum out-of-control ARL 

 for a size of shift of interest based on a fixed  
2h
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4. A SIMULATION STUDY 

 

 The assumption of the underlying process having i.i.d. multivariate normal random 
variates is required for both the MEWMA and MCUSUM charts. Since many 
multivariate processes, such as chemical processes come from populations that are 
skewed, it is difficult to satisfy the multivariate normality assumption. In this section, the 
performances of the MEWMA and MCUSUM charts will be studied when the 
multivariate normality assumption is violated. 
 
 The performances of the MEWMA and MCUSUM charts are compared based on the 
false alarm rates when the process is in-control for multivariate skewed distributions, 
such as the Lee’s multivariate Weibull (Lee, 1979) and Cheriyan and Ramabhadran’s 
multivariate gamma distributions (Cheriyan, 1941 and Ramabhadran, 1951). For the sake 
of comparison, the multivariate normal distribution is also considered. For convenience, 
the bivariate case, i.e., the number of quality characteristics, p = 2 is considered. Note 
that the bivariate Weibull distribution can represent various skewnesses and correlations 
but the bivariate gamma can only represent some positive correlations (Kotz et al., 2000). 
 
 SAS programs are used to compute the false alarm rates for the three multivariate 
distributions considered. Each false alarm rate is computed based on 5000 simulation 
trials. The nominal false alarm rate is assumed to be α = 0.0027 when the underlying 
distribution is bivariate normal. The MEWMA and MCUSUM charts are designed for a 
quick detection of a shift in the mean vector of size δ = 1. The optimal smoothing 
constant, λ = 0.13 and limit  = 10.55 are found for the MEWMA chart using the 
approach described in Lee and Khoo (2006a). Similarly, using the procedure given in Lee 
and Khoo (2006b), the optimal parameters are found to be k = 0.5 and  = 6.227 for the 
MCUSUM chart. 
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 The correlation coefficients, ρ = 0.3, 0.5 and 0.8 are considered for the bivariate 
distributions. For ease of computation, the sacle parameters of (1,1) for ( )1 2,X X  are 

selected for the Weibull and gamma distributions. The shape parameters for ( )1 2,X X  are 



 
  

chosen so that the desired skewnesses  = {(1,1), (1,2), (1,3), (2,2), (2, 3), (3,3)} 
for these parameters are attained. The sample sizes, n = 3, 5 and 7 are considered. 

( 1 2,γ γ )

 
 The false alarm rates for the MEWMA and MCUSUM charts are given in Tables 1 
and 2, respectively. Note that the false alarm rates, marked as “*” in Tables 1 and 2 for 
the Cheriyan and Ramabhadran’s bivariate gamma distribution cannot be computed 
because the corresponding shape parameters of one of the gamma distributed 
components, used in the transformation to compute variate 2X  have negative values. 
 
 From Tables 1 and 2, it is found that for the multivariate Weibull and gamma 
distributions, the false alarm rates of the MEWMA and MCUSUM charts increase as the 
level of skewness and correlation coefficient increase. This is because the covariance 
matrix of the multivariate observation, X is inflated as the skewness and correlation 
coefficient increase, hence making it easier for the MEWMA and MCUSUM charts to 
issue out-of-control signals. Also note that the false alarm rate decreases as the sample 
size increases. This is consistent with the multivariate central limit theorem, where the 
sample mean vector of a multivariate skewed distribution approaches multivariate 
normality as the sample size increases. A comparison of the false alarm rates of the two 
charts show that generally the MEWMA chart has lower false alarm rates than the 
MCUSUM chart for various levels of skewnesses. Thus, the MEWMA chart is more 
robust than the MCUSUM chart.   
 

5. CONCLUSIONS 
 

 In this paper, we have studied the performance of the MEWMA and MCUSUM 
charts for multivariate normal and multivariate skewed distributions. We found that the 
false alarms of both charts are affected by the skewness of the underlying distribution. 
Also, the sample size and correlation of the quality characteristics have an impact on the 
false alarm rates of the charts. The simulation results show that the MEWMA chart has a 
lower false alarm rate than the MCUSUM chart when the underlying distribution is 
skewed. Since it is known that both the MEWMA and MCUSUM charts have equal 
performances in the detection of small shifts when the underlying process is multivariate 
normally distributed, the use of the MEWMA chart in process monitoring is 
recommended because the MEWMA chart is more robust towards skewed populations. 
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Table 1. False alarm rates for the MEWMA chart when λ = 0.13 and  = 10.55 1h
Skewness 
coefficient Sample size, n Correlation 

coefficient 
Multivariate 
distribution ( )1 2,γ γ  3 5 7 

Normal (0,0) 0.0025830 0.0026450 0.0026600 
(1,1) 0.0029040 0.0027250 0.0026130 
(1,2) 0.0035350 0.0031600 0.0030100 
(1,3) 0.0043070 0.0037940 0.0035010 
(2,2) 0.0041670 0.0035550 0.0033540 
(2,3) 0.0049280 0.0041320 0.0038270 

Weibull 

(3,3) 0.0056780 0.0047290 0.0043020 
(1,1) 0.0029980 0.0028110 0.0027850 
(1,2) 0.0034710 0.0031680 0.0030860 
(1,3) 0.0039560 0.0035100 0.0033090 
(2,2) 0.0040630 0.0036180 0.0032550 
(2,3) 0.0047300 0.0040400 0.0036070 

ρ = 0.3 

Gamma 

(3,3) 0.0053240 0.0043790 0.0039400 
      

Normal (0,0) 0.0025830 0.0026450 0.0026600 
(1,1) 0.0028690 0.0026110 0.0024610 
(1,2) 0.0037170 0.0032160 0.0030640 
(1,3) 0.0047470 0.0040950 0.0038720 
(2,2) 0.0044490 0.0037830 0.0035030 
(2,3) 0.0053900 0.0045610 0.0042110 

Weibull 

(3,3) 0.0062970 0.0052450 0.0048160 
(1,1) 0.0030340 0.0029600 0.0027750 
(1,2) 0.0036180 0.0031160 0.0030910 
(1,3) * * * 
(2,2) 0.0041920 0.0035860 0.0033770 
(2,3) 0.0047770 0.0039130 0.0036190 

ρ = 0.5 

Gamma 

(3,3) 0.0055110 0.0046630 0.0042070 
      

Normal (0,0) 0.0025830 0.0026450 0.0026600 
(1,1) 0.0033460 0.0027720 0.0025900 
(1,2) 0.0049340 0.0041010 0.0036990 
(1,3) 0.0070200 0.0060950 0.0057130 
(2,2) 0.0057440 0.0046370 0.0041530 
(2,3) 0.0071680 0.0059480 0.0054110 

Weibull 

(3,3) 0.0081140 0.0068870 0.0062570 
(1,1) 0.0032220 0.0030090 0.0029240 
(1,2) * * * 
(1,3) * * * 
(2,2) 0.0048070 0.0040280 0.0036410 
(2,3) * * * 

ρ = 0.8 

Gamma 

(3,3) 0.0064080 0.0053320 0.0047210 
 



  
 
 

Table 2. False alarm rates for the MCUSUM chart when k = 0.5 and  = 6.227 2h
Skewness 
coefficient Sample size, n Correlation 

coefficient 
Multivariate 
distribution ( )1 2,γ γ  3 5 7 

Normal (0,0) 0.0026930 0.0027220 0.0027220 
(1,1) 0.0029440 0.0027420 0.0026800 
(1,2) 0.0035020 0.0031400 0.0030080 
(1,3) 0.0042500 0.0037290 0.0034920 
(2,2) 0.0036650 0.0033290 0.0031400 
(2,3) 0.0048150 0.0040180 0.0037430 

Weibull 

(3,3) 0.0055340 0.0045740 0.0041640 
(1,1) 0.0026930 0.0027220 0.0027220 
(1,2) 0.0029440 0.0027420 0.0026800 
(1,3) 0.0035020 0.0031400 0.0030080 
(2,2) 0.0042500 0.0037290 0.0034920 
(2,3) 0.0036650 0.0033290 0.0031400 

ρ = 0.3 

Gamma 

(3,3) 0.0048150 0.0040180 0.0037430 
      

Normal (0,0) 0.0026930 0.0027220 0.0027220 
(1,1) 0.0028180 0.0025440 0.0024610 
(1,2) 0.0036490 0.0031830 0.0030670 
(1,3) 0.0046620 0.0040150 0.0038180 
(2,2) 0.0043290 0.0036840 0.0034060 
(2,3) 0.0052570 0.0044200 0.0040660 

Weibull 

(3,3) 0.0061670 0.0050810 0.0046200 
(1,1) 0.0031260 0.0028970 0.0028610 
(1,2) 0.0034620 0.0032160 0.0029970 
(1,3) * * * 
(2,2) 0.0039720 0.0035540 0.0033110 
(2,3) 0.0047190 0.0039000 0.0035950 

ρ = 0.5 

Gamma 

(3,3) 0.0055250 0.0045230 0.0040310 
      

Normal (0,0) 0.0026930 0.0027220 0.0027220 
(1,1) 0.0030700 0.0026280 0.0024780 
(1,2) 0.0047220 0.0039330 0.0036050 
(1,3) 0.0068540 0.0059950 0.0056410 
(2,2) 0.0054640 0.0044190 0.0039710 
(2,3) 0.0068990 0.0056910 0.0051910 

Weibull 

(3,3) 0.0078760 0.0065890 0.0059620 
(1,1) 0.0032610 0.0029770 0.0028680 
(1,2) * * * 
(1,3) * * * 
(2,2) 0.0045670 0.0038680 0.0035700 
(2,3) * * * 

ρ = 0.8 

Gamma 

(3,3) 0.0062740 0.0052470 0.0044940 
 


