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Figure (1.1): The potential for landsliding 
increases when groundwater levels rise 
due to rain, or landscape irrigation 
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Abstract: 
In active landslide, the prediction of acceleration of movement is crucial issue for the design and performance of 
warning systems. Landslide occurs when a sudden increase beyond the critical level of groundwater. This is 
especially true in tropical weather during the wet season. The purpose of this study is to use numerical model to 
simulate groundwater 
flow. The goal of this modeling is to predict the value of unknown nodal points in the groundwater piezometric 
head. The numerical technique used is the finite difference method. The finite difference method one of the oldest, 
most general applicable and most easily understood methods of obtaining numerical solution to steady and unsteady 
groundwater problems.  After we obtain the algebraic approximation equations for each node in solution boundary 
domain, we solve them with digital computer program. Our research presents a broad, comprehensive overview of 
the fundamental concepts and applications of computerized groundwater modeling. The research covers finite 
difference method and includes simulation runs to demonstrate theoretical points described. Our model is able to 
predict the value of aquifer parameters in particular slope.  
 
1   Introduction: 
 
Groundwater is water located under the ground surface in soil poor spaces and in the fractures of lithologic 
formations. In the wet season in countries with tropical rainforests, the rate of accumulation of groundwater is 
greater than normal.  Groundwater levels may accelerate as rainfalls increase both in terms of frequency and in 
amount Figure (1.1).  This leads to sudden and unpredicted landslides.  Most landslides are preceded by a saturation 
of a slope.  This is commonly caused by heavy rainfall events, periods of extended precipitation that saturate the 
upper part of the slope, or increase in groundwater levels.  

Landslides are a recurring hazard in Malaysia.  They occur in a majority of 
states in Malaysia.  Additionally, landslides and the many other ground 
failures result in many direct and indirect expenses to society. Some of 
these direct costs include lost of life and the actual physical damage which 
runs the gamut from cleanup and repair to replacement.  Indirect costs are 
harder to measure and include business disruption, loss of tax revenues, 
reduced property values, loss of productivity, losses in tourism, and losses 
from litigation.  Therefore, we need to study the effects of landslides. , And, 
as we mentioned earlier, all previous studies about landslide have 
considered the increase in groundwater level caused by slope collapse. In 
our research we study a model of groundwater to measure the groundwater 
in a particular slope in order to predict the amount of water and if it has 
reached a supercritical level. Groundwater models may be used to predict the effects of hydrology on the behavior 
of the aquifer.  These are often called groundwater simulation models. As the calculations are based on 
mathematical equations, often with approximate numerical solutions, these models are also called 
mathematical/numerical groundwater models. A mathematical model consists of a set of differential equations that 
are known to govern the flow of groundwater. Mathematical models of groundwater flow have been in use since the 
late 1880’s.  

      As (Wang and Anderson, 1982) state in their book, "Introduction To Groundwater Modeling,” they 
consider two types  of models:  finite difference models and finite element models. The finite difference model 
described are based on Lapalace's equation and the finite element model described are based on  Poisson's equation. 
Both of them compare and test the numerical solutions by a classical analytical solution of a similar problem. After 
one year, (Hunt,1983) wrote in his book, "Mathematical Analysis of Groundwater Recourses," He considers the 
finite difference method as one of the approximate solutions for boundary-value problems because it is an easily 
understood method that can provide an approximate solution under very general circumstances.  On the other hand, 
Hunt says, analytical solution is usually easier and more economical to use and interpret then numerical solution.    
Additionally, they are often useful as standards to test the accuracy of numerical models. (Corominas, Moya, 



2 
 

Ledesma , Lloret, and Gili,2004)  investigate the prediction of ground displacements and velocities from 
groundwater level changes at the Vallcebre landslide (Estern Pyrenees ,Spain). Their model to predict both landslide 
displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous 
term (Bingham and Power Law) was added. They found that the landslide is very sensitive to rainfall, cracks, and 
drainage pathways. These models used in the time-dependent simulations are based on this "dynamic approach" 
rather than just considering "static" limit equilibrium. 

The subject of this research is using the numerical methods to solve mathematical model that simulate groundwater 
flow and contaminant transport.  We consider the finite difference method to be the numerical technique to solve our 
model. The finite difference method is an easily understood method that can provide approximate solutions under 
general circumstances. A mathematical groundwater model for steady flow conditions consists of a governing 
equation and boundary conditions which simulate the flow of groundwater in a particular problem domain. To solve 
our model we have to calculate the value of head at each point in system. The numerical techniques that we consider 
are finite difference methods which provide a rationale for operating on the differential equations.  Using a 
computer, one can solve large number of algebraic equations by iterative solution as in our model. We solved 29 
algebraic equations by using Gauss Seidel iterative methods. 

2      The Finite – Difference Method 

The finite difference method is considered as the most applicable and easily understood methods of obtaining  
numerical solutions to steady and unsteady groundwater flow problems.  The general method consists of 
superimposing a finite – deference grid of nodes upon the solution domain.  Actually, each node is given a global 
identification number and its surrounding of each of these nodes, where the dependent variable is approximated with 
a finite – degree polynomial whose coefficients are written in forma of the unknown values of the dependent 
variable at the surrounding nodes. So this polynomial is used to obtain an algebraic approximation for the partial 
differential equation for each internal nodes beside an algebraic approximation for boundary condition at each node 
site upon or near the solution domain boundary. 

After we obtain the algebraic equations for each node we can solve the equation simultaneously to obtain 
the unknown value of  the dependent variable at all nodes. 

3     Solution of the Finite-Difference Equations 

There are two method to solved the system of simultaneous equation that is generated by writing equation at each 
interior node and equation  at each boundary node   we can solved by direct elimination method such as Gaussian 
elimination or iterative method such as the Gauss –Seidel iteration. We can say the direct method more efficient 
under certain circumstances. However, some of applications consider here may need simultaneous solution of one or 
two thousand equations with sparse matrix and relatively large diagonal terms in the coefficient matrix. For these 
conditions ,the iterative methods are easier to cod for computer ,  where it's take less computer storage and less 
computational time  for that we will consider the iterative methods. 

4     Analysis and Discussion 

4.1 The model of groundwater 

  The groundwater models are representations of reality and, if properly constructed, can be valuable 
predictive tools for the management of groundwater as one of water resources and a tool to predict the effects of 
groundwater on the movement of landslide as our case study. Of course, the validity of the predictions is predicated 
on how well the model approximates filed conditions. 

 The development and building of models for groundwater levels have to follow a specific number of well 
defined steps: 

4.1.1- Identify the particular problem 

     For our research we want to know how much water can be in a  particular area in the slope or the groundwater 
level at the slope. Therefore, one of the main factors of occur the landslide is the level of and the forces associated 
with ground- water. If we can predict the groundwater when it's reaching the critical level in the slope this will be 
useful as an early warning message to the people who could be affected by the landslide. 

4.1.2- Formulate the boundary value problem 
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The problem of formulation assists us in organizing our thinking about a particular problem.  We will give 
each node a global identification number, as well as in the neighborhood of each of these nodes. The dependent 
variable h (piezometric head) is approximated with a finite degree polynomial whose coefficients are written in 
terms of unknown values of the dependent variable at the surrounding nodes. 

     We will use this polynomial to obtain two algebraic equations 

i. An algebraic approximation for the partial differential equation at each interior node. 

ii. An algebraic approximation for a boundary condition at each node that lies upon or beside the solution 
domain boundary. 

        If we consider a five node grid shown in Figure (1. 2) the node has the constant spacing of  in each 
coordinate direction, where the integer’s  through  are used as local node identification 
number. The dependent variable h (piezometric head) will be represented in the neighborhood of these nodes with 
polynomial where we use Taylor series about node 0: 

h ( x,y ) = +……(1.1 )    

By setting (x,y) equal to the coordinates of nods 1 through  4 we obtain.The four equations: 

=                  (1.2) 

=                  (1.3) 

=                            (1.4) 

ℎ4=           (1.5) 

       By subtracting Equations (1.2)and (1.4) and Equations  (1.3) and (1.5) 

                                (1.6)  

                                (1.7) 

The equation for a steady two dimensional flow is. 

(1.8) 

Where 

 :Vector operator del (L-1)           

T: Transmnissivity (L2 T-1)  

h:  piezometric head   

:  aquifer permeability (L T-1) 

:  aquifar thickness (L) 

Figure (1.2): A typical five –node grid with a node 
spacing of ∆  
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: discharge form a well at node 0. 

R: rainfall recharge. 

By integration the equation (1. 8) 

                                                               (1.9) 

     An approximate calculation of the integrals in terms of variables at nodes 0 though 4 gives  

              (1.10)          

          (1.11)                                                                                                      

     By simplifying this equation and putting in more convenient forms by collection terms which are coefficients of 
the unknown values of h:  

                                                        (1.12a) 

𝐴𝐴𝑖𝑖 =
1
2

(𝑇𝑇0 − 𝑇𝑇𝑖𝑖)                                                                                                                                            (1.12𝑏𝑏) 

 

                                                                       (1.12 c) 

 
 

                                                                                      (1.12d) 

We conclude from Equation (1. 12) the approximate algebraic for the partial differential equation at each 
interior node. With this equation we will solve it in our code because it gives us the values of dependent variable h 
at every interior node that lies inside the solution domain boundary. After we obtain the algebraic approximation for 
each interior node .We have to obtain the algebraic approximation for each interior node which lies upon or beside 
the solution domain. 

       Along the boundaries, the condition to obtain an algebraic approximation is  

         (1.13) 

Where 𝛼𝛼 : Aquifer bulk coefficient of compressibility. 

𝛽𝛽: Bulk coefficient of compressibility for water . 

F: a prescribed function equal to the elevation of the water surface above the coordinate origin. 

In general 𝛼𝛼, 𝛽𝛽 and F maybe discontinuous functions. We can put 1, 0β α= = and F=f or𝛽𝛽 = 1, 𝛼𝛼 = 1 and F=0. 

We will approximated the equation (1.13) in the neighborhood of the three node grid show in figure(1. 3a) by using 
the following first –degree polynomial: 
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Figure (1.3) a & b: A three node grid along a boundary 

          

ℎ(𝑥𝑥, 𝑦𝑦) = ℎ0 +
ℎ0 − ℎ2

∆
𝑥𝑥 +

ℎ0 − ℎ2

∆
𝑦𝑦

+ 0(∆2)                                                               (5.14) 

    The coefficients in the previous equation(1.14) have been obtained by 
evaluating the polynomial  at nodes 0,1,2 by assuming that point p is the nearest 
point on the boundary to node 0, be the outward normal to the 
boundary at point p and δ be the distance between zero and p as it shown in figure 
(5.3b).We note that the radial coordinate δ is positive or negative. 

Depending upon whether node 0 lies within or outside of  the solution domain, 
respectively, For that equation(5. 14 )gives 

  (1.15)  

  

                 (1.16) 

By substituting equations (1.15),(1.16) in to  equation (1.13) gives the result  

    (1.17) 

−ℎ1(𝛼𝛼 + 𝛽𝛽𝛽𝛽)
𝑁𝑁𝑦𝑦
∆
− ℎ2(𝛼𝛼 + 𝛽𝛽𝛽𝛽)

𝑁𝑁𝑥𝑥
∆

+ 𝛽𝛽ℎ0 + ℎ0(𝛼𝛼 + 𝛽𝛽𝛽𝛽)
𝑁𝑁𝑦𝑦
∆
− ℎ0(𝛼𝛼 + 𝛽𝛽𝛽𝛽)

𝑁𝑁𝑦𝑦
∆

= 𝐹𝐹𝑝𝑝    (1.18) 

     (1.19) 

In which 𝐹𝐹𝑝𝑝  denotes the value of F  at point P and coefficients,  are given by 

                                                (1.20a) 

 

                                                                 (1.20b) 

 

                                                      (1.20c) 

Equation (1. 19) is the algebraic approximation to equation (1.13 ) that is written for each node that lies either on or 
adjacent to the solution domain boundary . Therefore, we can state that we obtain the two algebraic approximations. 
The first one is for the interior nodes and the second one is for the nodes which lie upon or adjacent to the solution 
domain boundary. 

 

                    (1.12) 
 

                         (1.19) 

       These two equations are the formulation of the boundary value   problem and we will solve these two equations 
in step four by using the finite difference method after we blog our data.  

4.1.3- Collect field data 
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Figure(5.4): General view of Jalan Tun 
Sadron slope 

Figure (1.5): Rainfall data 
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Figure (1.5): Rainfall data 

Figure (1.6): A finite difference grid superimposed upon a 
solution domain. 

N interior nods 

NB 
boundary 
nods 

Prior to starting step three, we need to know that step two and step three are serial because a correctly posed 
boundary value problem cannot be constructed without first knowing these  
basics, such  as the location and the type of aquifer boundaries, the  sources of 
recharge, etc.  Additionally, collecting large amounts of field data before the 
problem is defined mathematically can lead to large expenditures of time and 
money in collecting data that is unnecessary. 

      This step is usually the most expensive and time consuming part of any 
investigation in that we have to use the skills and experiences of a large 
number of people in various  fields.  Actually, we need different experts for 
different aspects. We obtain the recharge rates from rainfall for the slope which 
is in our study. The location of this slope is in Jalan Tun Sadron Pulau Pinang 
see figure (1.4). 

    We determined the accumulation of rainfall for the period from  30-Agu-2008 
until 13-Sep-2008.  We will use the two weeks to demonstrate how much the 
acumulation of rainfall changes when the weather is taken 
into consideration for this area of Malaysia which is located 
in the tropical rainforest.  Figure (1.5) illustrates the water 
level Vs time.  

      We have selected the 30th of August, 2008, because there 
is an increasing accumulation of rainfall.  The recharge of 
rainfall is significant data for our study because it is one of 
the coefficients that will be used in our algebraic equation 
(1.12)  and R will create a specified maximum for h of  the 
accumulation of rainfall R for 30th August 2008 is

m.  

     We now need to determine the piezometric head for each 
interior point or for each point that lies on or next to the boundary 
domain. Since we don’t have the kind of tools needed, which are difficult to obtain and which are too costly, we will 
use the same piezometric head that Hunt (1983) employed as well as our recharge of rainfall.  Let us assume the 
solution domain boundary as shown in figure (1. 6) and NB the number of 
boundary points, and  N the number of nodes in the interior grid.  

Probably the main difficulty is to relate the global and the local numbering 
schemes in a way which has enough flexibility to solve problems on 
solution domain with curved boundaries.We can overcome this problem 
with the flowing scheme: 

1- Each points that lies on or next to the boundary is assigned a global 
number between 1 and NB.  Also, each interior point is assigned 
a global number between NB+1 and N. 

2 - Each of these points is assigned a series of either four or two integers 
that give the global number of surrounding nods. For the interior nodes N 
these integers will be called in our cod I D(I,J)  where I goes from I 
through 4.  For the boundary nodes NB I D(I,J)where J goes from 1 
through 2. These integers and global number of the nods that correspond 
with local numbering. 

For example, to make this clear we take 

1- Boundary node 1, I D(1,j)  where J=1and 2, I D (1, 1)=16,             I D(1,2)=22. 
As figure (1.7) and this describe our input data where we take the NB=16 

4.1.4- Solve the boundary value problem that was formulated in step two 

Figure(5.4) 
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Figure (1.7):  A typical three 
node boundary node 

Figure (1.8): the values of the h at each node in 
solution boundary domain  

 

Figure (1.9): The change of h when 

 increase of recharge of the rainfall 

 

 

In step four we calculate answers to the equations that were posed in step two and the data gathered in step three is 
incorporated directly into the formulation and solution of the problem. In our study to solve the system of 
simultaneous equations that are generated by writing equation (1. 19) at each interior node and equation (1.12) at 
each boundary node, we can solve them through various methods. We must first choose the finite difference method 
because it is an easily understood method that can provide approximate solutions under very general circumstances. 
In short, iterative methods consist of guessing and adjustments. There are three iterative 
techniques:  Jacobi iteration, Gauss Seidel iteration, and Successive over Relaxation 
(SOR).  Jacobi iteration is the least efficient and is seldom used.  Gauss Seidel iteration 
can be considered to be a special case of Successive over Relaxation.  

           The change between two successive and Gauss Seidel iterations is called” residual c.  In the method of SOR, 
the Gauss Seidel residual multiplied by relaxation factor 𝜔𝜔 ≥ 1. For the SOR method  0 < 𝜔𝜔 < 1.For the Gauss 
Seidel method 𝜔𝜔 = 1. 

        However, the applications considered here require the simultaneous solution of twenty nine equations with a 
sparse matrix and relatively large diagonal terms in the coefficient matrix.  With these  conditions, our choice is  the 
Gauss Seidel  iterative method  since it  is easier to code  for a computer ,it  requires considerable less computer 
storage,  and it uses  less computational time.  The Gauss Seidel method will be the last step for the code.  After 
calculating the coefficient of two previous equations to obtain the matrix,   we will solve it by Gauss Seidel iteration 
to estimate for (piezometric head) h.Then we will run the program by using our data with recharge of rain full 
R=0.0000008m/s=2104mm/month, the output as below in the Figure(1.8) 

5    Analysis for output:  

  From the Figure (1.8) above we  note that aquifer has 
been assumed homogeneous, that h will be the change in water 
level created by the uniformly distributed recharge rate R and 
that  the problem is inverse problem in which the unknown is 
the value for R that will create a specified maximum for h.  
However, this inverse problem is easily to solved because the 
problem is liner in both hand R. Thus, multiplying all of the 
equations by the same constant 𝜆𝜆, shows that if a recharge rate 
of R creates a water level change of h. Then a recharge rate  
𝜆𝜆𝜆𝜆 will create a water level change of 𝜆𝜆ℎ. The output for the 
computer program gives the water table rise for a recharge rate 
of R (Hunt data) R = 𝟎𝟎. 𝟏𝟏 ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔 m/s = 263 mm/month. Since 
the maximum computed rise is 0.315m at the node 12 .  

The value for R that will give a maximum water level rise of 1 
meter is  

𝑅𝑅 = 1𝑚𝑚
0.315

∗ 263 mm / month=835 mm/month . 

The output for the computer program gives the water table rise 
for a recharge rate of R (our data) R = 𝟎𝟎. 𝟖𝟖 ∗ 𝟏𝟏𝟏𝟏−𝟔𝟔 m/s = 2104 
mm/month. Since the maximum computed rise is 2.519m at the node 12 
as is shown in Figure(1.8).  

 We calculate the value for R that will give a maximum water level rise 
of 1 meter is 

𝑅𝑅 = 1𝑚𝑚
2.519

∗ 2104  mm/month = 835.252  mm/month. 

 This of course, is the maximum rate at which recharge water 
could actually be allowed to enter the saturated portion of the aquifer. For 
that we conclude the increase of recharge of the rainfall as show Figure 
(1.9) especially for the countries with tropical rainforests as our case this 
leads to increasing in the water table then unpredicted landslide.  

6   Conclusion: 

Solution 
for h at 
node 12
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Figure (1.9): The change of 

h when increase of recharge 

   

 

 

Groundwater flow models have a very long history and come in many diverse forms. Early flow models were based 
primarily on the finite difference method of the approximation of governing field equations. Finite difference 
models, both simple in their concept and computationally efficient, found broad acceptance by the general 
groundwater community. 

Each model should be constructed to answer specific questions.  Indeed, the detail and accuracy of a model 
depends on the question it is designed to answer. Our model is designed to predict the amount of water in a 
particular solution boundary domain in a slope that possibly can  collapse. The 
answers generated using mathematical models  are dependent on the quality and 
the quantity of the field data available that is used to define the input parameters 
and boundary conditions. Collection of this field data  is the most difficult, the most expensive, and the most time 
consuming part of modeling, as mentioned in chapter two.  The success of any modeling largely depends upon the 
availability and reliability of measured or recorded data required for the study.  Usually, in most modeling projects, 
the time and effort spent on the pre-processing and post-processing of data far exceeds the time spent on other 
project activities. The reliability of predictions from groundwater models depends on how well the model 
approximates the field situation. Inevitably, simple assumptions must be made in order to construct a model because 
the field situation is too complex to be simulated exactly.  To deal with more realistic situations like ours, we have 
to solve the mathematical models approximately using a numerical technique. From many studies in groundwater 
modeling we found the most easily understood and most applicable method in obtaining numerical solutions to 
steady groundwater flow to be the finite difference method.  Therefore, the finite difference method is our choice to 
obtain the algebraic approximation equations for the solution boundary domain we have established. When we have 
to obtain two kinds of algebraic approximation equations, the first one for the nodes lies upon or beside the 
boundary while the second one is the partial differential equation for the interior nodes.  After obtaining the 
algebraic equations for each node we can solve the equations simultaneously to obtain the unknown value of the 
dependent variables at all nodes. 

The dramatic advances in the efficiency of digital computers during this past decade have provided 
hydrologists with a powerful tool for numerical modeling of groundwater systems.  We used the computer program 
in Matlab 7.0 to solve a large number of algebraic equations by iterative techniques as in the Gauss Seidel method. 
The result of the program is the groundwater peizomtric head. This helps us to predict the amount of water in 
ground surfs or in the aquifer.  It also  gives us a clear idea of the effect of a recharge of rainfall and how much  it 
will  create a specific maximum for h(piezometric head). Additionally, we obtain the value of R (rainfall recharge) 
that will give a maximum water level rise of 1 meter. The model can be used to predict the acceleration of 
movement for landslide. 
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