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ABSTRACT

We consider the number of families in Bienayme-Galton-Watson branching processes
whose size is within a random interval. We obtain the limit theorems for the number of
families in the (n+1) st generation whose family size within the random interval for non-

critical processes with immigration.

1. INTRODUCTION

Consider a population consisting of individuals able to produce offspring of the same
kind. Suppose that each individual untill by the end of its lifetime, have produce k new
offsprings with probability p,,k > 0independently of the number produced by any other

individual. The number of individual attime t, X (t),te N, ={0,1,2,..} is called the
Bienayme-Galtan-Watson (BGW) process.

Let X,,,keN,,i=N-= {0,1, 2,...} be independent and identically distributed random

variables, taking the values in the set N, . We define the process X(t), t € N, by the

relation
X{(t)
X(0)=1 X(t+1)= _zl Xti
1=

Here, Xtj denotes the number of descendants of the i th individual existing at time t .

Assume at the time of birth of the t™ generation, that is, at time, there is an
immigration of Y+ individuals into the population. Then the BGW process with
immigration (BGWI) is defined by a sequence of a random variable Z(t) which are
determined by the relation



2(t)
A (t +1) = Z Xy +Yea
i=1

where the Y,,Y,,... are independent and identically distributed with common generation
function

h(u)=tu =S P(Y, =k)u*
and these Y, 's are independent of the randol;rzlovariable {X,;} which have common
probability generating function f (u)= iuk Py (t) . Thus the probability generating
function of Z (t+1)is h
9 (U)=(u)g, [ f(u)] (1)
Now let us consider the independent BGWZ defined by

()
W
Sz, = Z;‘gi (t)

where

: (t):{l 11X, < W We) i-12,..

0 if X, & (W ,W,)

for a random interval W = (W_,W, ). We assume X, 's are iid variables with a common
cdf and independent from this random interval (W_,W, ) and Z(t).

If we let Z (t) to be the number of families including the immigrating one from time

w
(1)

(including families with immigrating parents) living in the (t +1) st generation who have

t, then the random variable S’ can now be interpreted as the number of families

family size within the random interval (X, X ).

2. CRITICAL PROCESSES
First we consider the critical process. It is known that (see Jagers [1975]) that if
f'(t)=1, f"(t):az<oo and O<h'(l)=p<w (2)
then 27, (t)/azt converges in the distribution to a random variable with the gamma
density function



w(x)= x[;}le’x, ue(0,0) (3)

Theorem 1: if (2) is satisfied, then

28y
lim P[ < z}: P(zA(x)<Z) (4)

t—oo ot

where Z is a random variable with density function (3) and
A(X)=G(W,)-G(W,) (5)

Proof: Itis clear that for fixed Z(t) and W Sfm is a Binomial random variable. Thus,

P(Sk, =1)= E[P(Szv(r) =iz (t)’W)J
- E{[ZE‘)](A(X))" [1_A(x)f<”‘i}. (6)

We find the Laplace transform of Q(t)S;, :

E(e‘”(‘)% ) _E {iieﬂom [kj( A (x))’}

k=0 j=0 J

DRV mp(x)]’ [1-a(0] Pz ()= k\s(t))}
ShkQ(t)

—E{éo[lA(x)+A(x)e_lQ(tqQ(t) ’p[z(t)o(t)—ko(t)a(t)]}

N E{Ofe‘m(x)ydp(v < g)}
0

=E {e‘m(x)}

by the expression lim (1—a+ae”" )W =e® and thus

W—o

xlog (1—a+aeb/w)w = xlog(1+a—b+0(ln = W[ab/w+ O(iD —ab
woo\w w

Thus, we have equation (4) by taking into account the limit theorem in (3).



3. NON-CRITICAL PROCESSES

In the supercritical case, when the mean number of offspring 1< m < oo, then there
exists a sequence of consists C, such that {Z(t)/C,} converges with probability 1 to a

random variable V (see Jagers [1975]). In this case, if E(Iog Il) <o, then
P(V <w)=1and V has an absolutely continuous distribution on (0,). If
E(logl,)=c0, then P(V <0)=0

Theorem 2: Assume 1< m < oo, then
lim P(sy([)/q < x) =P(VA(X)<X)

where V is as mention in the limit theorem above.

Proof: The proof of this theorem is similar to those for Theorem 1, except we take into
account the limit theorem for the supercritical case.

For the subcritical case, i.e. 0<m<land 0<h'(1)=u <oo, itis knownthat Z(t) has
a proper limit distribution that is
limP(Z(t)=k)=p,, k=012,... )

t—oo

exist, where {pk k> 0} is a probability distribution and the generating function of this
stationary distribution is

o) =h()Th(f(v)
and f,(u)is the generating function of X, attime t.

Theorem 3: If 0<m<1, then
limP(sy, = i)=r,

t—oowo
where r; is a probability distribution with generating function

ﬁ;riﬂj = E[g(l—A(x)+A(x)u)]

Proof . We obtain the generating function of SZV(I),

E(ﬁﬂ):g{ 3 & ui(kj][A(x)]i[l_A(x)]k’j P(Z(t):k|Z(t)>0}

k=0 j=0



= E{g[l—A(x)JrA(x)y]kP(z (t)= k|Z(t)>O}
N E{[l—A(x)+A(x),u]Z},

taking into account of (7).

4. ASYMPTOTICS OF MOMENTS

We conclude the discussion with the remarks on the asymptotic behavior of the same
moment of the process Sfm . Using (5), we obtain the expected value of S?’(t) :

E[Sfm}: EE{g j(ZEt)][A(x)JJ [1-a(x)]"" |z(t),W}
= EE{Z(1)A(x)|Z (1) W]
=E{Z(t)A(x)}
Assuming that Z (t) and are independent, differentiating (1), we obtain

E(Z(t))=ut+1
Thus,
E[ sy, [=E[Z(t)]E[A(X)]=(ut+1)EA(x)

It can be shown that form =1
Var[Z(t)]=Var[Z (t-1) |+ uc® (t-1)+ 0" +*
t(t-1
:t(02+12)+¥y02.

The variance of the process then,
var[ s}, = EZ (1)(Z(t)-1)[A(X)F + ELZ (1)1A(x) - (ESY)?

=Var {Z (t)A(x)}+E{Z (t)A(x)[2-A(x)]}
which simplify to
(ut+1)EA(X)[1-(ut +1)EA(X) ]
+|:(t(0'2+12)+ (t2 1)/10' j (/lt+1)(/lt):|E(A(X))2 '

Assuming m=1, Z (t) and W are independent, it can be shown that

t

1-m
EZ(t)= !
(t)=p—-+m




and varz (t) =m2t (0'2 +z'2)+(z'2 —/1+,uz)11_nTz +Z mZiSH
- i=0

where
S, =EZ(t-1)(Mm’EZ (t-1)+ 0" — u+2um) +(1-EZ (1)) EZ(t)

S )= EZ (t)EA(x)and

Z
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