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ABSTRACT 
 
Higher order neural networks (HONN) have been shown to have impressive computational, storage and 
learning capabilities. However, networks with higher order connections need more computational time, 
higher storage requirements and have higher complexity, so we look at the possibility of networks 
without higher order connections. In this paper, we explore the constraints and effects of insisting on 
having neural networks without these higher order connections in learning three-atom clauses. 
 
Keywords: Higher order neural networks, Hebbian learning, logical clauses, learning, storage 
requirement. 
 
 

1. INTRODUCTION 
 

Recurrent single field neural networks are essentially dynamical systems that feed back signals to 
themselves. Popularized by John Hopfield, these models possess a rich class of dynamics characterized 
by the existence of several stable states each with its own basin of attraction. The Little-Hopfield neural 
network (Hopfield 1982; Little 1974) minimizes a Lyapunov function, also known as the energy 
function due to obvious similarities with a physical spin network. Thus, it is useful as a content 
addressable memory or an analog computer for solving combinatorial-type optimization problems 
because it always evolves in the direction that leads to lower network energy. This implies that if a 
combinatorial optimization problem can be formulated as minimizing the network energy, then the 
network can be used to find optimal (or suboptimal) solution by letting the network evolve freely. 
 
     Gadi Pinkas (Pinkas 1991) and Wan Abdullah (Wan Abdullah 1992) defined a bi-directional 
mapping between propositional logic formulas and energy functions of symmetric neural networks. 
Both methods are applicable in finding whether the solutions obtained are models for a corresponding 
logic program. 
 
    Previously Wan Abdullah has shown on see how Hebbian learning in an environment with some 
underlying logical rules governing events is equivalent to hardwiring the network with these rules 
(Wan Abdullah 1991). Then, by looking at this process backwards, we can show how synaptic changes 
from learning correspond to the formation of logical rules (Sathasivam 2006). As logical clauses which 
contain at least three atoms are required (from which clauses with more atoms can be built) for 
meaningful knowledge bases, neural networks with higher order connections (Abott & Arian 1987; 
Gardner 1987; Wan Abdullah 1987) are needed. In this paper, we explore the constraints and effects of 
insisting on having neural networks without these higher order connections in learning three-atom 
clauses. 
 
    This paper is organized as follows. In section 2, we give the outline of doing logic programming in 
Hopfield model and in section 3; Hebbian learning of higher-order logical clauses is described. In 
section 4, we explore the effects of requiring the network to have at most second-order interactions. 
Finally concluding remarks regarding this work occupy the last section. 
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2. LOGIC PROGRAMMING IN HOPFIELD MODEL 
 
In order to keep this paper self-contained we briefly review the Hopfield model. The Hopfield model is 
a standard model for associative memory. The Hopfield dynamics is asynchronous, with each neuron 
updating their state deterministically. The system consists of N formal neurons, each of which is 
described by an Ising variable ( ), ( 1,2,.... )iS t i N=   (Sathasivam 2008). Neurons then are bipolar, 

{iS ∈ -1,1}, obeying the dynamics sgn( )iS → ih ,where the field, (2) (1)
i ij j

j

h J V J= + i∑  , i and j running 

over all neurons N, (2)
ijJ is the synaptic strength from neuron j to neuron i, and iJ−  is the threshold of 

neuron i. 
 
    Restricting the connections to be symmetric and zero-diagonal, (2) (2)

ij jiJ J= , (2) 0iiJ = , allows one to 
write a Lyapunov or energy function ( Sathasivam 2008), 

(2) (1)1
2 ij i j i i

i j i

E J S S= − −∑∑ ∑ J S                  (1) 

which decreases monotonically with the dynamics. 
 
    The two-connection model can be generalized to include higher order connections.  
 
This modifies the “field” into  

 (3) (2) (1)....i j k ijijk
j k j

h J S S J S= + + +j iJ∑∑ ∑        (2) 

 
where “…..” denotes still higher orders, and an energy function can be written as follows: 

(3)1.....
3 i j kijk

i j k

E J S S S −= − ∑∑∑ (2) (1)1
2 ij i j i i

i j i

J S S J S−∑∑ ∑     (3) 

provided that (3) (3)
[ ]ijk ijkJ J=  for i, j, k distinct, with […] denoting permutations in cyclic order, and 

(3) 0ijkJ =  for any i, j, k equal, and that similar symmetry requirements are satisfied for higher order 
connections. The updating rule maintains 

( 1) sgn[ ( )]iS t h ti+ =             (4) 
 
    In logic programming, a set of Horn clauses which are logic clauses of the form 1 2, ,.., NA B B B←  
where the arrow may be read “if” and the commas “and”, is given and the aim is to find the set(s) of 
interpretation (i.e., truth values for the atoms in the clauses which satisfy the clauses (which yields all 
the clauses true). In other words, we want to find ‘models’ corresponding to the given logic program. 
 
    In principle logic programming can be seen as a problem in combinatorial optimization, which may 
therefore be carried out on a neural network. This is done by using the neurons to store the truth values 
of the atoms and writing a cost function which is minimized when all the clauses are satisfied. 
 
    As an example, consider the following logic program, ,A B C← , whose three clauses translate as 

( )A B C A B C∨¬ ∧ = ∨¬ ∨¬ . The underlying task of the program is to look for interpretations of the 
atoms, in this case A, B and C which are model for the given logic program. This can be seen as a 
combinatorial optimization problem where the “inconsistency”, 

1 1 1(1 ) (1 ) (1 )
2 2 2p A BE S S= − + + cS           (5) 

 
    where AS , etc. represent the truth values ( true as 1) of A, etc., is chosen as the cost function to be 
minimized. We can observe that the minima value for pE  is 0, and has otherwise value proportional to  
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the number of unsatisfied clauses. The cost function (5), when programmed onto a third order neural 
network yields: 
 

Table 1: Synaptic strengths for A←B, C using Wan Abdullah’s method 
 

Clause Synaptic 
Strengths A←B,C 

)3(
][ ABCJ  1/16 

)2(
][ ABJ  1/8 

)2(
][ ACJ  1/8 

)2(
][BCJ  -1/8 

)1(
][ AJ  1/8 

)1(
][BJ  -1/8 

)1(
][CJ  -1/8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    We addressed this method of doing logic programming in neural network as Wan Abdullah’s 
method. 
 
 

3. HEBBIAN LEARNING OF LOGICAL CLAUSES 
 
The Hebbian learning for a two-neuron synaptic connection can be written as 

( ) (2 1)(2 1)n
ij i jJ V Vλ∆ = − −           (6) 

(or, for bipolar neurons, ij i jJ S Sλ∆ = ), where λ  is a learning rate. For connections of higher orders, 
we can generalize this to 

( )
.... (2 1)(2 1)....(2 1)n

ij m i j nJ V V Vλ∆ = − − −        (7) 
 
    This gives the changes in synaptic strengths depending on the activities of the neurons. In an 
environment where selective events occurred, Hebbian learning will reflect the occurrences of the 
events. So, if the frequency of the events is deducted by some underlying logical rule, logic should be 
entrenched in the synaptic weights. 
 
    Wan Abdullah (Wan Abdullah 1992) has shown that the synaptic strengths obtained using Wan 
Abdullah’s method is similar with Hebbian learning provided that equation (8) is true. 

                  ( ) 1
( 1)

n

n
λ =

!−
             (8) 

    We do not provide a detail review regarding Hebbian learning of logical clauses in this paper, but 
instead refer the interested reader to Wan Abdullah’s paper (Wan Abdullah 1991; Wan Abdullah 1992).  
 
    For meaningful knowledge bases, clauses with at least three atoms are needed [12]. As can be 
observed, this then requires higher-order neural connections. The complexity of the network, and thus 
processing time, is increased. In the upcoming section, we explore the effects of insisting on having 
neural networks without these higher order connections in learning three-atom clauses. 
 
 

4. LOGICAL CONTENT IN NETWORK WITHOUT HIGHER-ORDER CONNECTIONS 
 
Higher order neural networks (HONN) have been shown to have impressive computational, storage and 
learning capabilities (Maxwell et.al 1986). Besides that, it has also been shown that HONN are 
effective for associative memory, pattern recognition and combinatorial optimization problems (Cooper  
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1995).  As increasing the order of the network, the information quantity of the network also will 
increase. Obviously, by extending the HONN to even higher orders (more than 3 spins), will yield 
further improvement; at the expense of increasing network complexity and computation (Yanali & 
Sawada 1990).  
 
    However, networks with higher order connections need more computational time, higher storage 
requirements and have higher complexity, so we look at the possibility of networks without higher 
order connections. In this section, we examine logical clauses formed by Hebbian learning in a network 
without higher order connections . We carried this out by ignoring the third order connections by 
setting the contributions of third order connection strengths as zero.   
 
    Firstly, from general considerations, it can be predicted that removing higher order connections will 
deteriorate the knowledge content of neural networks, due to decrease of memory capacity as given by 
Lee (Lee & Maxwell 1987): 

Memory capacity = 
2 log

m
k

m

⎛ ⎞
⎜ ⎟
⎝ ⎠             (9) 

where, m is the dimension of input vectors, corresponding to the maximum number of literals per 
clause and k is the order of the connections. Furthermore, the associative ability of the network also 
decreased as given by Yatsuki (Yatsuki & Miyajima 1997): 

     

_ PAssociative Ability
m
k

α
⎛ ⎞
⎜ ⎟
⎝ ⎠

         (10) 

 
where P is the number of memory patterns. As the number of patterns becomes large, weights begin to 
look like a random variable. The term in the weight sum, which correspond to a particular pattern is 
greatly over weighted by all the other weights and associative memory become poor. 
 
    We also expect that the ignoring of higher order connections will result in appearances of spuriously 
learnt clauses (Wan Abdullah 1997), which learnt the clauses partially or less. Let us look at an 
example. Here, we will see on how third order clause A B C∨¬ ∨¬ , is learnt by the network without 
higher order connections. As expected, ignoring the higher order connections resulted in appearance of 
spuriously learnt clauses as shown by Sathasivam (Sathasivam 2008). 

( B C¬ ∨¬ )∧ ( A B∨¬ )∧ ( )        (11) B
 
    By carrying out analysis using truth table (Table 2), we observed that the set of interpretations for the 
underlying rule ( A B C∨¬ ∨¬ ) is dissimilar with the set of interpretations for the spuriously learnt 
clauses (11). 
 

Table 2: Truth table for underlying rule and the spuriously learnt clauses 
 
A B C A B C∨¬ ∨¬  ( ) B C¬ ∨¬

∧ ( A B∨¬ ) 
   ( )   ∧ B

-1 -1 -1 1 -1 
-1 -1 1 1 -1 
-1 1 -1 1 -1 
-1 1 1 -1 -1 
1 -1 -1 1 -1 
1 -1 1 1 -1 
1 1 -1 1 1 
1 1 1 1 -1 
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5. COMMENTS AND CONCLUSION 
 
In this paper we examined logical clauses formed by Hebbian learning in a network without higher 
order connections. We can conclude that logical clauses formed by Hebbian learning in a network 
without higher order connection is not good as logical clauses formed by Hebbian learning in a network 
with higher order connection. Furthermore, the computational time required for both cases are similar. 
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