UNIVERSITI SAINS MALAYSIA

First Semester Examination Academic Session of 2003/2004

September/October 2003

EBB 525/3 - Electronic Materials & Optical Devices

Time: 3 hours

Please ensure that this paper consists of FIVE printed pages before you proceed with the examination.

This paper contains SEVEN questions.

Answer any FIVE questions. If a candidate answer more than five questions, only the first five answered will be examined and awarded marks.

Answer to any question must start on a new page.

All questions must be answered in English.

1. [a] What is Fermi level?

(10 marks)

[b] Derive the Fermi-Dirac distribution function at $E=E_F$ (i.e. at Fermi energy). Discuss the behavior of the function at 0K for $E>E_F$ and $E<E_F$. Provide neat sketches of the functions for each case.

(20 marks)

[c] Derive the expression for the equilibrium concentration of electrons in the conduction band and holes in the valence band.

(60 marks)

[d] Show that $n_o p_o = n_i^2$ where $n_o =$ equilibrium electron concentration, $p_o =$ equilibrium hole concentration and $n_i =$ intrinsic carrier concentration.

(10 marks)

2. [a] What is the need for biasing a BJT?

(10 marks)

- [b] What is the mechanism used to control the base current? (10 marks)
- [c] With the help of a neat sketch discuss the output characteristics of a BJT biased in the linear mode of operation.

(30 marks)

[d] Analyze the single battery biasing circuit for a common-emitter npn BJT in linear mode of operation. Provide the circuit diagrams and discuss the input and output loop.

(50 marks)

3. [a] Draw the circuit and small signal model of a common-emitter npn BJT circuit with the following parameters:

V_{CC} = 24 V (supply voltage)

 $R_B = 600 \text{ k}\Omega \text{ (base resistor)}$

 $R_L = 5 k\Omega$ (load resistor)

 $\beta = 50$ (common-emitter current gain)

 $g_m = 2/30$ mho (transconductance)

Input signal Ei and coupling capacitor Cc.

(30 marks)

[b] Derive the expression for the standard form of voltage gain and evaluate r_{π} , R_{in} and A_{v} for the above circuit.

(30 marks)

[c] Show the graphical analysis of the signal current and voltages for a common-emitter circuit with the following parameters:

Base signal current $I_{bp} = 10 \mu A$,

DC collector current I_C = 1.5 mA

DC base current $I_B = 30 \mu A$

 I_C = 1.0 mA and 0.5 mA for I_B = 20 μA and 10 μA respectively.

The DC load line intersects the I_{C} axis at 2 mA and V_{CE} axis at 20 V. (40 marks)

4. [a] Draw the current voltage characteristic curves for a JFET and define the ON resistance, saturation region and pinch-off voltage.

(30 marks)

- [b] How does gate biasing affect the output characteristics of the JFET? (20 marks)
- [c] Describe with the help of neat sketches the function of a MOS (Metal oxide semiconductor) capacitor with a p-type semiconductor substrate under both positive and negative biasing conditions. Draw the corresponding energy band diagrams.

(50 marks)

5. [a] Describe the principle of operation and applications of a light emitting diode. Provide neat sketches.

(40 marks)

[b] What are the properties that make light attractive for information processing?

(60 marks)

6. [a] What is meant by high field transport in electronic devices? Describe it for Si and GaAs.

(50 marks)

[b] Describe what happens in the presence of extremely high electric field.

(50 marks)

7. [a] Describe the principle of operation of a P-I-N photodetector. (50 marks)

[b] Discuss the choice of material and frequency response of a photodetector.

(50 marks)