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Abstract 

An effective weld defect classification algorithm has been developed by using a large 

image database of simulated defects. Twenty-five shape descriptors used for the classification 

were studied and an optimal set of nine descriptors with highest discriminative capability was 

selected using a statistical approach. A multi-layer perceptron (MLP) network was trained 

using shape parameters extracted from the simulated images of weld defects. By testing on 60 

unknown simulated defects, the optimized set of nine shape descriptors gave the highest 

classification accuracy of I 00%. Defect classification on 49 real defects from digitized 

radiographs produced maximum overall classification accuracy of97.96%. 

Keywords: Weld radiography, automatic defect classification. 
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1. Introduction 

Radiography technique (RT) for non-destructive testing (NDT) of welds has evolved 

rapidly in the past decades and has become an established technology in the field of weld 

inspection. RT is widely used as an inspection tool for detecting flaws inside welded 

structures, such as pressure vessels, structural members and power plants [1]. Most 

radiographic exposures and film interpretations are still carried out manually [2]. However, 

human interpretation of weld defects is tedious, subjective and dependent upon the experience 

and knowledge ofthe inspector. 

Much effort has been made recently to converge RT into an automated process of 

radiographic interpretation. With the advancement of digital image processing and computer 

architecture, the automated interpretation of weld radiographs is made possible with a system 

consisting of film digitization, pre-processing, defect detection and defect classification. The 

automatic interpretation of radiographs .using digital image processing reduces human 

involvement, thqs making the inspection more reliable and faster. 

Basically, automatic defect interpretation consists of 5 stages: image digitization, pre

processing, weld extraction, defect segmentation and defect classification. A digitized 

radiographic image, however, is often corrupted by non-uniform illumination, noise and low

contrast [3]. Due to the degraded quality of a radiographic image, image pre-processing is 

normally carried out as an initial stage of defect detection. This may include noise elimination, 

contrast enhancement and shading correction. Poor quality radiographic images have led to 

the development of various automatic defect detection algorithms that focus on extracting 

defects using various image segmentation methods [ 4-11]. In addition, the fast growth of . 
artificial intelligence methods such as artificial neural network (ANN) and fuzzy techniques 

has become an important component to assist and enhance the task of defect detection in poor 

quality images. 

Weld extraction is usually the first step in the development of automated inspection of 

weld radiographs. Several techniques ot weld extraction are available in the literature, such as 

weld extraction methodology based on the observation that the intensity plot of a weld profile 

looks more like Gaussian than the other objects in the image [4], extraction of features from 

line image of welds for use in training a multi-layer perceptron (MLP) neural network [5] and 
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extraction of multiple curved welds fr9m one radiographic image using fuzzy K-NN and C

means methods [ 6]. 

The problems related to poor quality images have been addressed by several authors. 

For instance, Kehoe et al. [7] introduced the sigma-norm contrast enhancement and mean 

gradient edge detector to improve the quality of the image. Bonser and Lawson [8] developed 

filtering and 'window' based variance operator for segmentation of suspected defect areas 

inside the weld region of partially competed welds. Murakami (9] proposed a local arithmetic 

operation to a limited region and was followed by thresholding methods. Various image 

processing techniques were used by other authors to process and segment the weld images 

[10-1 1]. 

Research in weld defect detection has also been carried out actively in the past. For 

instance, Lashkia [3] proposed a detection algorithm based on fuzzy reasoning to detect low

contrast defects using local image characteristics, such as spatial contrast, spatial variance and 

distance between two contrast regions~ -Lia;··and Li [12] developed weldin~ flaws detection 

based on the fitted line profiles of a weld image and successfully detected 93.33% of various 

defects from linear welds. Jacobsen et al. [14] extracted parameters from the intensity profile 

for the network with five techniques, namely morphological filter, derivatives of Gaussian 

filter, Gaussian Weighted Image Moment Vector-Operator {GWIMV) filter, Fast Fourier 

Transform (FFT) filter and Wavelet transform. 

The past research in automatic weld radiography focused mainly on enhancing poor 

quality weld images and detecting defects from the radiographs, whilst the deve)Qpment of 

automatic defect classification systems is limited. Some of the research on automatic weld 

defect classification are reviewed briefly. 

Jacobsen et al. [14] use several features to differentiate between crack, undercut and 

absence of defect. Perner et al. [ 15] introduced a framework for distinguishing classification 

methods, nameiy neural nets and decision tree. Their system only classified crack. undercut 

and absence of defects. Feher [16] presented a simJ'le classification of 3 types of defects, 

namely porosity, undercut and incomplete penetration by simple rules. However, the system 

was unable to detect small defects that did not differ much from the background. Aok.i et al. 

[ 17] used 10 parameters to characterize the defects and classified them into five possible 
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classes using a MLP neural network. Their investigation on 27 defects showed that 25 defects 

were classified correctly with a success rate of 92.6%. In their work, 35 training samples and 

27 test samples were used. These are, however, too small for practical applications. Wang and 

Liao [18) used a set of parameters to classify six possible defects and obtained the highest 

accuracy of 92%. In their work 108 data sets were used for training while 12 were used for 

testing. However, the 12 test samples used for classifying 6 types of defect are considered 

small and the success rate for individual defect was not reported. 

The performance of a weld defect classification sy~tem often depends on the set of 

radiographic images used. Different authors use different sets of characterization parameters 

and different sets of radiographic images. Besides that, final appearance of defects extracted 

very much depends on the image segmentation method used Thus. comparison of the 

effectiveness of \-arious classification techniques is not possible unless it is based on a 

standard set of "ideal. weld defects. As stated by Wang and Liao [18], there is a need to 

establish a benclunark imafe set in order to perform the comparison between the 

performances of various classification techniques. 

In this work. an efficient classification system using a large number of simulated 

images of weld defects that are considered as 'ideal' defects is developed. A set of shape 

descriptors was defined and the number of descriptors required in the classification was 

optimized using a statistical approach. The classification is divided into two parts. Firstly, a 

multi-layer perceptron (MLP) neural network was trained using features extracted from the 

simulated defects and the network was used to classify a set of simulated defects. Secondly, 

classification was carried out using features extracted from real defects while the training was 

done using the same simulated data set. The classification accuracy of individual defect type 

was also evaluated. 

2. The simulation process 

There are two main advantages of using a large database of simulated images to develop 

the classification task. Firstly, simulated images are created manually by imitating the 

appearance of real radiographs and, therefore, a large number of images could be created to 

simulate the variation of shapes in real defects. Secondly, different real radiographs have 
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different intensity variations. Thus, for a given set of images a particular shape feature may 

give certain accuracy in defect classification while the same feature may give different 

accuracy in a different set of images due to the intensity variation. Simulated images 

overcome this shortcoming by providing a basis to test and select the appropriate features for 

the classification. 

Before generating the simulated images, real radiographs were digitized using an X-ray 

film scanner (Cobrascan CX-612-1) in 12-bit resolution and saved in TIFF image fonnat 

without compression. The original radiographs were a collection of reference radiographs 

previously evaluated by qualified inspectors. These radiographs were used as the basis for 

creating simulated weld defects. The simulation process is divided into four stages: (i) 

Generation of simulated defect images, (ii) shape definition, (iii) shape parameter 

optimization and (iv) classification evaluation. 

2.1 Generation of simulated defect images 

Six types of defects were considered in creating the simulated defect images. These 

are longitudinal crack, incomplete penetration, porosity, cavity, slag inclusion and transverse 

crack. To create defects having high similarity to the real defects, the real image for each 

defect type was used and was subjected to edge detection process using the Sobel edge 

detector. Sobel edge detector uses two convolution kernels, one to detect changes in vertical 

contrast and another to detect horizontal contrast. Due to noise in the real image, the resulting 

edges are irregular and discontinuous. These edges were touched up manually by linking the 

broken edges and eliminating pixels due to noise. A total of 300 simulated defects, 50 images 

for each defect type. WC!'e generated for training the neural network. Additional 10 images for 

each defect 1)-pe were generated for testing the accuracy of classification. Figures l(a)-(d) 

show an example of a real image of crack, the edge of the defect, the edge after touching up . 

and the simulated defect image. Figures 2(a)-(t) show samples of simulated defects generated 

for various types of defects. 
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(a) Real image of crack 

• • 0 
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(b) Image after edge detection with Sobel operator 

(c) Image after noise elimination and edge linking 

(d) The simulated defect image 

Figure I. Generation of simulated defects. 

(a) Porosity (b) Incomplete penetration 

(c) Slag inclusion (d) Cavity 

(e) Transverse crack (f) Crack 

Figure 2. Simulated images for various defect types 
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2.2 Shape definition 

Shape recognition and classification are fundamental problems in many applications of 

machine vision [19], especially in vision-based inspection. In weld defect detection, a 

radiograph interpreter will inspect the defect shape, geometry and its orientation to recognize 

the defect. The shape or outline of a defect is particularly important because a certain defect 

type may have a different shape compared to other defects. Incomplete penetration, for 

instance, is defined as dark continuous or intermittent line in the middle of the weld. In 

contrast, porosity is defined as dark shadows of rounded contour. 

The main purpose of shape descriptors is to measure geometric attributes of the shapes 

that can be used to classify and recognize an object. Shapes can be represented using various 

types of descriptors and techniques. Different types of methods that characterize a shape can 

be viewed from different context, such as description based on boundaries and region, local 

and global shape characters, statistical or syntactic object description, object reconstruction 

ability or incomplete shape recognition ability [20]. A summary of common shape description 

techniques is given in Ref. [21 ]. A thorough discussion of shape analysis and recognition can 

be found in Refs. [20-22]. 

In this study, 25 common shape descriptors were defined in order to evaluate their 

capability in discriminating different types of weld defect shapes. Most of the descriptors use 

area, perimeter, diameter, width and length in describing shapes that are simple attributes of 

shape boundary. On the other hand, feature like curvature investigates the overall localized 

properties of shape boundary [23]. Other features such as standard deviation, skewness and 

kurtosis of radius (see Ref. [ 19] for details) tend to characterize the variability of radius data. 

A list of the shape descriptors used in this study is given in Table 1. 
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Table 1. Shape descriptors 

I) Form 
2) Area to perimeter ratio 
3) Roundness 
4) Aspect ratio I 

(Maximum diameter/ 
Minimum diameter) 

5) Aspect ratio2 
(Minimum diameter/ 

Mean diameter) 
6) Aspect ratio3 

(\.-ia.ximum diameter 
mean diameter) 

Shape descriptors 

7) Elongation 
8) Convexity 
9) Solidity 
10) Compactness 
II) Extent 
12) Heywound diameter 
13) Major to minor axis length 
14) Miu [18] 
15) Sigma [18] 
16) Circularity [I 8] 
17) Curvature [2-J] 

18) Diameter ratio 
19) Curl 
20) Orientation 
21) Standard deviation of radius [20] 
22) Skewness cfradius [20] 
23) Kurtosis of radius [21] 
24) Horizontal length to area ratio [17] 
25) Vertical length to area ratio [17] 

In order to choose a cumbinarion of optimal shape descriptors that provide the highest 

capability to classify the weld defects. a multiple comparison procedure was carried out and is 

discussed in the following· section. 

2.3 Shape parameter optimization 

A multiple comparis.on procedure was employed to compare the mean differences among 

each type of defect for every shape descriptor. The statistical test was conducted to determine 

if there are significant differences between each of the defect group for a particular shape 

descriptor. A typical procedure to perform this test is as follows: 

a) Select the statistical hypothesis: 

H 0 : J.i; = f.J 
1 

for all classes i and j where i tj . This hypothesis indicates that all 

pairs of groups have equal means. 

H 1 : J.i; -:t:. f.J 1 if at least one pair of means is different. 

b) Select the significance level a. 

c) Determine the critical value from F-test. This is the one tailed 'Analysis of Variance' 

(ANOV A) F-test to find out whether data from several groups have a common mean. 

Rejection of H 0 leads to the multiple comparison test to determine specific differences 

among those groups. 

d) Determine the critical value from the multiple comparison procedure. 

e) Evaluate the results and draw conclusion. 
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The purpose of multiple comparison procedure is to determine where mean differences 

lie among a set of means in a one-way ANOV A because the rejection of Ho in F-test does not 

indicate which of the means are different [24]. Multiple comparison procedures compare two 

means to determine if they are statistically different. With every type of shape descriptor, 6 

groups of defects were tested to determine if they are significantly different from others. The 

discriminative criteria of each descriptor is based on the concept that the smaller the number 

of joining groups in the test (which means most of the means are significantly different), the 

better is the descriptor in classifying different types of defects. 

Figure 3 shows an illustration of the multiple comparison procedure where Y; is the 

mean of the individual defect type. The lines underneath indicate the mean values of defects 

that are insignificant among others, and thus combine the defects into several groups. Each 

group indicates that is are no significant difference in mean values among the group members. 

From Figure 3, four groups of defects have different means with an overlapping result for ji s • 

In the current work, two overlapping result are considered as one joining group. Therefore, 

the shape descriptor (mean) in Figure 3 is considered to have the ability to identify three main 

groups of defects. 

~ Ucowplde Sial 
Tnmsvenc 

Porosity Cavity Crack 
Paaetratioa Crack or 

I 

5\ Y:: v - ~ 
v 
- 6 YJ .Y. 

-- --
Meu 

I 
_, 
~ ~ _.. 

Group 1 (joining sutrgroups) Group 2 Group 3 
! 

Figure 3. Example of multiple comparison result. 

By using this criterion, a comparison among all 25 shape descriptors was carried out 

and the. optimal groups were identified. There are several multiple comparison procedures that 

can be adopted depending on how error rates are controlled. In this study five types of 
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comparison procedures were used, namely Tukey HSD, Tukey LSD, Scheffe, Bonferonni and 

Dun-Sidak [24-25] and the result of each test was compared among each other. The numerical 

values of data were normalized linearly before performing the mean comparison. The 

assumptions made in order to satisfy the multiple comparison procedure (as well as the F-test) 

are as follows: (a) the samples are randomly and independently selected, Co) the populations 

are normally distributed, and (c) the populations all have the same variance. 

The defects from the simulated images were extracted in order to obtain the numerical 

data for every shape descriptor. The data were then used to perform the muJtiple comparison 

tests. The various comparison procedures were found to produce the same results. The result 

for one of the comparison procedure is shown in Table 2. Among the 25 shape descriptors, the 

highest discrimination capability produced b~· the tests was 5 groups using 3 shape descriptors . 

followed by 4 groups using 7 shape descriptors. Figures 4 and 5 show examples of the 

distribution of the shape descriptors Solidity and Circularity that have 5 and 2 joining groups 

respectively. From these figures, it ca_rt be concluded that Solidity has better ability to classify 

defects compared to Circularity. 

Table 2. Results of multiple comparison procedure 

Number of 
Shape 4Jescriptors 

groups 

5 Solidity, Extent, Standard deviation of radius distribution 

4 
Compactness, Heywound diameter, Vertical length to area ratio, Major to 

Minor Axis Length, Curvature, Orientation 

3 
Form, Area to perimeter ratio, Roundness, Aspect ratio 2, Aspect ratio 3, 

Elongation, Horizontal Length to area ratio, Eccentricity, 

2 Aspect ratio 1, Circularity, Curl, Kurtosis of radius distribution 

1 Convexity, Miu, Sigmas, Diameter ratio, Skewness of radius distribution 
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Figure 4. Distribution of Solidity 
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Figure 5. Distribution of Circularity 

i • porosity 
cavity 
Slag 
Transverse crack 

2. 4 Classification of defects using MLP network 

A multi-layer perceptron (MLP) model using back-propagation (BP) algorithm was 

used for learning and classifying the defects. MLP networks are gaining popularity in . 

classification task due to their flexibility, robustness and high computational rates. The MLP 

model is shown in Figure 6. 
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XJ 

X2 

Input X3 
nodes 

X4 

X; 

Hidden layer 

Figure 6. A sche::natic of a ~fi.P model 

Output 
nodes 

The general model of Mi.P consists of a number of nodes arranged in multiple layers 

with connections between the nodes in the adjac-..ent layers by weights. The model consists of 

an input layer that accepts the input variables used in the cl2ssification, hidden layers and an 

output layer. A summation of each neuron j in me hidden layer by its input nodes X; after 

multiplying the connection weights w9 gives the output}] as a function of the sum, that is, 

(l) 

where f is the sigmoidal or hyperbolic tangent transfer function. Using the BP training 

algorithm, the weights are minimized based on the squared differences between the actual and 

desired output values in the outpyt neurons given by, 

(2) 

where Yi is the actual output of the neuron and dj is the desired output of neuron}. During 

classification, input data is fed into the network and .the classification is performed by 

assigning a class number to a pixel or segment using the numerical values computed at the 

output layer. The weight wij is updated with an increment LlwP and the error E is reduced 

until an acceptable value of E is reached. The output node that gives the highest value is set to 

I whereas the others are set to 0 in order to obtain the output class vector. 
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3. Results and discussion 

From the statistical analysis, the 25 shape descriptors were divided according to their 

classification ability (see Table 2). To detennine the suitable input features for training the 

MLP network, 3 sets of analyses were carried out using 3 features (5 groups), 9 features (5 

and 4 groups), and 17 features {5, 4 and 3 groups) as given in Table 2. lr,t each set, 50 

simulated images were used for each defect type, giving a total of 300 images for 6 defect 

types for training. For testing the classification accuracy 60 images were used (I 0 images for 

each defect type). The output layer consists of 6 nodes corresponding to the 6 types of defects. 

The learning rate and error rate were set, respectively, to 1.0 and 0. 

The results of comparison of the classification accuracies of the 3 sets of descriptors 

(at epoch value 100) are shown in Figure 7. The 3 features set gave the lowest overall 

accuracy compared to the other two. For the set containing 9 features, the accuracy is 

generally higher than that for the 17 features set. The comparison between the 9 features set 

and 17 features set shows that increase in the number of features will not necessarily increase 

the classification accuracy at the same number of hidden nodes. In addition, a larger features 

set will increase the processing time while resulting in similar results. Thus, in the current 

research 9 features set were selected as the optimized set of input features to train the network 

and classify the defects. The classification accuracy using simulated defects for various 

numbers of hidden nodes and epoch numbers for the 9 features set is shown in Table 3. The 

maximum accuracy {1000/o) was found to occur when 24 hidden nodes were used. 

·~p; 
:'
0° 80 ~ _ Combill8ticMIS 

6 7s I - 3-fatures 

~ 70~ !===~ 

~ ELt----~--~-----L----~--~-----L~ 
6 10 14 18 22 26 30 

Number of hidden nodes 

Figure 7. Classification accuracy of different shape descriptors set. 
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rable 3. Classification accuracy of simulated defects. 

Number 
Number 

At;t;;uracy/ "' 
Number Number 

At;t;;uracy/ "' 
~Nodes 

~ ~ ~ 

epochs 3 features 9 features 17 features Nodes epochs 3 features 9 features 17 features 
20 88.333 98.333 96.667 20 90 98.333 96.667 
40 90 96.667 98.333 40 91.667 98.333 95 

6 60 88.333 96.667 98.333 20 60 93.333 98.333 96.667 
80 88.333 96.667 98.333 80 93.333 98.333 96.667 

100 88.333 96.667 98.333 100 93.333 98.333 96.667 
20 88.333 98.333 93.333 20 88.333 100 96.667 
40 88.333 98.333 93.333 40 91.667 100 96.667 

a 60 88.333 98.333 93.333 22 60 93.333 98.333 95 
80 86.667 98.333 93.333 80 95 98.333 95 
100 88.333 98.333 93.333 100 93.333 98.333 95 

' 20 I 90 100 96.667 20 90 100 98.333 
I 40 95 98.333 96.667 40 91.667 100 96.66r_ 

10 60 93.333 98.333 96.667 2-4 60 93.333 100 96.667 
80 93.333 98.333 96.667 80 91.667 100 96.667 

100 93.333 98.:)33 96.667 L 100 90 100 95 
20 ' 88.333 100 96.667 20 I 91.667 98.333 98.333 ' 
~ i 93.333 98.333 96.667 \ 40 I 93.333 98.333 98.333 

".2 60 99.333 98.333 96.667 26 I 60 93.333 98.333 96.667 
80 93.333 98.333 96.667 110 93.333 98.333 96.667 

100 93.333 98.333 96.667 100 91.667 98.333 96.667 
20 88.~ 100 ' 96.667 20 90 98.333 96.667 
40 91.667 100 96.'367 40 91.657 96.667 96.667 ,. 60 93.333 96.667 96.667 28 60 91.667 96.667 96.667 
110 93.333 96.667 96.667 110 91.667 96.667 96.667 
100 93.333 96.667 96.667 100 91.667 96.667 96.667 
20 88.333 96.657 93.333 20 91.667 100 96.667 
~0 88.333 96.667 91.667 40 S1.667 98.333 98.333 

16 60 88.333 96.667 91.667 30 60 91.667 98.333 100 
110 93.333 96.667 91.667 110 91.667 98.333 100 
100 93.333 96.667 91.667 100 90 96.667 100 
20 86.667 95 98.333 20 86.667 100 98.333 
40 90 95 92.333 40 90 98.333 98.333 

18 60 91.667 95 98.333 32 60 91.667 93.333 98.333 
80 91.667 93.333 98.333 80 93.333 98.333 98.333 
100 93.333 93.333 98.333 L 100 93.333 98.333 98.333 

The classification accuracies attainable using the shape descriptors proposed by Aoki 

and Suga [17] and Wang and Liao [18] were also investigated in the simulation study. Only 

the shape parameter sets defined by both authors as shown in Table 4 were used, whereas the 

defect images were same as those used in the current study. 
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Table 4. Different combination set of shape descriptors. 

Number of 
Authors Details of shape descriptors shape 

descri_ptors 

Aoki& 
Ratio between horizontal & perpendicular length, Vertical length to 

Suga [17] 
area ratio, Horizontal length to area ratio, Complexity, Formal 6 
Coefficient, Heywound diameter. 

Wang& Miu, Sigma, Circularity, Compactness, Major axis, Width and length, 
9 

Liao [18] Elongation, He~wound diameter. 

Current 
Solidity, Extent, Standard deviation of radius distribution, 

wo~ 
Compactness, Heywound diameter, Vertical length to area ratio, 9 
Major to Minor Axis Length, Curvature, Orientation 

Figure 8 shows a comparison of the classification accuracy between the three sets of 

shape descriptors. The optimized set of shape descriptors used in the current work gave a 

maximum classification accuracy of 100% using 24 nodes in the hidden layer. This 

classification accuracy is slightly higher than that obtained using the descriptor sets proposed 

by the other authors. Although the use of the optimized set of shape descriptors in the current 

work did not produce a significant improvement in the results compared to the other authors' 

work, this part of the study demonstrates the possibility of comparing different classification 

algorithms using the set of simulated images generated. 

< 
70~ 

65' 

60 

55 

~ ~--~----~----~----L---~~--~__j 
& 10 14 18 22 2& 30 

Nmnber of hidden nodes 

Shape descriptors set 
-Aoki&Suga 
-e-wang&u.a 
-eunent-'t 

Figure 8. Comparison of classification accuracy with different shape 
descriptors from various authors. 
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3.1 Application to real images 

In order to investigate the usefulness of the simulation study, real images of defects 

were used for the classification while the training was conducted using the same data 

extracted from the simulated images. A series of pre-processing procedures using contrast 

enhancement and noise suppression were carried out to enhance the images. To extract the 

· weld defects, the Background Subtraction Method (BSM) and Automatic Thresholding were 

applied [16-17]. The background was estimated using the second order polynomial given by 

[22]: 

(3) 

where x and y are pixel coordinates and ao ... ... a5 are fitted coostant.. The automatic 

thresholding method was employed where the images were subdivided into a grid of smaller 

rectangular sub-regions and the pixel having the highest gr3y value in each sub-region was 

located. A total of 81 pixels from 9x9 sub-regions were selected and the information obtained, 

i.e. gray value and coordinates, were used to determine the coefficients in equation (3). 

Subsequently, the background image was estimated by substituting each coordinates into 

B(x,y). 

The results of applying the BSM method for porosity defect are shown in Figure 

9. The original image was preprocessed using histogram equalization to enhance image 

contrast and noise was eliminated by using median filter. The background image was 

estimated and subtracted from the enhanced image. After the binarization, noise was removed 

and the shape descriptors were extracted from the resulting images. These descriptors were 

then used in the classification. A total of 49 defects from the real images were used for testing 

the classification accuracy. Some ofthe real images are shown in Table 5.· 

. · ...... 

Original image 

. . 

. . . 
~ .. .~ . . . . 

Image after 
enhancement 

Background 
image 

GJ . 

. 

Image after 
background 
subtraction 

Figure 9. Result of background subtraction. 
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Ddect 

Crack 

Cavity 

Incomplete 
penetration 

Table 5. Real images of radiographs 
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The highest classification accuracy achieved by the neural network using features 

extracted from the real weld images is 97.96% (Figure 10). This value is slightly lower than 

the accuracy achieved for classifying simulated images (100%). This is expected because real 

images usually contain much more irregularities and noise than the simulated images of 

'ideal' defects. 
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Figure 10. Classification accuracy ofsimulated and real defects. 

The classification accuracy of individual defect type is shown .in Figure ll. For 

individual comparison, it was found that the accuracy varies with the number of nodes. The 

highest average accuracy is 100% for slag inclusion and the lowest is for incomplete 
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penetration (89290/o). In some cases, incomplete penetration was misclassified as crack. As a 

matter of fact. only the feature Extent shows a significant difference from multiple 

comparison tests while the rest ofthe features show joining groups for incomplete penetration 

and crack. In other words, among the 9 features selected only one feature, i.e. Extent, offers 

the highest ability to differentiate between these two defects. 
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Figure 11. Classification accuracy of individual defects. 

5. Conclusion 

An effective weld defect classification method by using shape descriptors extracted from 

simulated defects has been developed and demonstrated by classifying real welding defects. 

The general shape descriptors, which are used to characterize weld defects, were studied and 

an optimized set of shape descriptors than can effectively classify the weld defects have been 

identified using a multiple comparison procedure. In order to test the effectiveness of the 

optimized shape descriptors in classifying defects, shape descriptors extracted from the 

simulated defects were used to train the network. The simulation study produced a maximum 

classification accuracy of I 00%. 

Classification of real defects using the simulated training samples gave the highest overall 

accuracy of97.96%. Hence, the proposed defect classification method overcomes the problem 

of limited real defect samples for classification using neural network. As demonstrated in this 
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work, the simulated defects can also be used as ideal or benchmark images to compare the 

performance of various classification techniques proposed by other authors. 
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Abstract 

This paper presents a methodology to remove labels automatically from digitized weld 

radiographs as part of the automatic weld defect detection process. An algorithm was 

developed to detect and remove labels printed onto weld radiographs before weld extraction 

algorithm or defect detection algorithm is applied. Normality test was used to determine if the 

intensity profile parallel to the weld contains label pixels. Thresholding followed by region 

filling operations were carried out to remove the labels. The algorithm was tested on 50 weld 

radiographs with labels and the labels on ~;. of these images were successfully removed. 

Keywords: Weld radiography, label removal. 
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