UNIVERSITI SAINS MALAYSIA
 Second Semester Examination
 Academic Session 1997/98

February 1998

AGW615 ADVANCED BUSINESS STATISTICS

Time: [3 hours]

INSTRUCTION:
 Please ensure that this examination paper consists of 11 printed pages before you begin.
 Answer all questions in SECTION A and any ONE question from SECTION B

1. During the economic crisis, a bank manager collected the following data of all 350 defaulting loans.

Nature of Business	Collateral Value	
	Sufficient	Insufficient
Exporters	33	109
Importers	63	145

If an auditor is to select a defaulting loan at random from this set of loans, what is the probability that the loan
a. had sufficient collateral?
b. was taken by an importer?
c. had insufficient collateral if it was taken by an importer?
d. was taken by an exporter if the loan collateral value is sufficient?
2. Royal Malaysian Air Force (RMAF) regularly purchases a particular spare part used in its aircraft's navigation systems that need replacement regularly. RMAF made purchases in lots of 1000 pieces each time. When a shipment of parts arrives, RMAF will carry out acceptance sampling, whereby it takes a random sample from the lot, and accepts the lot if not more than a certain number (acceptance number) of defectives were found in the selected sample; otherwise the lot will be rejected and returned to the supplier.

If past records show that the supplies contains 1% defectives, what is the probability of accepting a lot that was just received, if
b. the sample was 20 pieces and the acceptance number was 1 ?
b. the sample was 50 pieces and the acceptance number was 2 ?

If the supplier supplies at a quality level of 2% defectives, what is the producer's risk (risk of rejecting the lot and returning it to the supplier) using sampling plan (a) above?
(10 marks)
3. As the managing director of a company (with 10,000 employees) that claims to be charitable to the less fortunate, you were told that 80% of your staff, recently contributed to the North Korean Famine Fund (NKFF). You then randomly select 36 workers and found only 5 had contributed to NKFF.
a. What would you conclude? Explain using probabilities.
b. What if you had found 25 contributors?
c. How many workers do you have to ask if you are to estimate to within 2% of the true proportion of your staff who had contributed to NKFF with 98% confidence?
(15 marks)
4. Malaysian Dental Surgeon Association (MDSA) carried out tests to determine whether there are differences in three major brands of toothpaste sold in Malaysia. To achieve this objective, 15 primary school children were monitored throughout their primary school years and the number of cavities each had during this period were noted as follows.

Observation	Type of Toothpaste Used		
	1	2	3
1	19	20	18
2	15	25	12
3	22	22	16
4	17	19	17
5	19	23	15
Total	92	109	78

a. MDSA has assigned the 15 schoolchildren randomly to the three major brands of toothpaste. What conclusions can you draw at 5% significance level? Explain and state all assumptions you use in arriving at your conclusions.
b. Suppose MDSA believes that dental health depends on dietary habits and that the habits of the major races -- Malay, Chinese, Indians, Orang Asli and Others differ. What design would you suggest MDSA use, for it to come out with more valid conclusions? How would you then analyse the above data, if each of the rows in the above table represents one race? Use significance level of 5%. State the hypotheses that you are testing.

SECTION B

Answer any ONE (1) of the following questions.

5. A marketing executive for computers wishes to test market a range of new computers to determine the right combination of price and accessories that will induce purchase of the computer. Intent to purchase is measured on a scale 0 (very unlikely to purchase) to 100 (most likely to purchase). Three levels of prices (P1, P2 and P3) and three accessories packages were tested,. Each priceaccessories package were judged by three potential customers who then state their likelihood of purchase. The description of the subpopulations are as follows:

a. Based upon the description above, which combination of price level and accessories package should be selected for the computer for marketing purposes?
b. A 2-way ANOVA was carried out with the following results. Interpret the solution, bearing in mind that the ultimate objective of the exercise is to determine the best combination of price and accessories package that will induce purchase.

c. Suppose that the above analysis was carried out using regression analysis with dummy variables whereby $\mathrm{DAPI}=1$ for accessories package 1 and 0 otherwise; DAP2 $=1$ for accessories package 2 and 0 otherwise; dpricel $=1$ for price level 1 and 0 otherwise; dprice $2=1$ for price level 2 and 0 otherwise; and interactions DAP11 between DAP1 and dpricel; DAP12 between DAP1 and dprice2; DAP21 between DAP2 and dprice2; and DAP22 between DAP2 and dprice2. Interpret the solution and discuss the similarities and differences with the 2-Way ANOVA results above.
(35 marks)
```
                                    MULTIP LE R R EGRESSION
Listwise Deletion of Missing Data
Equation Number 1 Dependent Variable.. LSALES Likelihood of
Sales (0-100)
Block Number 1. Method: Enter
    DAP1 DAP11 DAP12 DAP2 DAP21 DAP22 DPRICE1
DPRICE2
Variable(s) Entered on Step Number
    1.. DPRICE2
    2.. DAP2
    3.. DAP11
    4.. DAP21
    5.. DAP12
    6.. DPRICE1
    7.. DAP22
    8.. DAP1
```

Multiple R	.99281
R Square	.98568
Adjusted R Square	.97932
Standard Error	3.59526

Analysis of Variance

Regression Residual		$\begin{array}{r} \mathrm{DF} \\ 8 \end{array}$	Sum of Squares16016.00000				
		2002.00000					
		18	232.66667	2593			
$F=$	154.88252		Signif $\mathrm{F}=.0000$				
Variable		SE B Beta Tolerance		II			
DAP1	9.000000	2.935521	172946.250000	4.000	3.066	7	
DAP11	-65.333333	4.151454	-. 836971.281250	3.556	-15.737	. 0000	
DAP12	18.000000	4.151454	. 230594.281250	3.556	4.336	. 0004	
DAP2	47.666667	2.935521	. 915971.250000	4.000	16.238	. 0000	
DAP21	-63.000000	4.151454	-. 807079.281250	3.556	-15.175	. 0000	
DAP22	-34.666667	4.151454	-. 444107.281250	3.556	-8.350	. 0000	
DPRICE1	50.666667	2.935521	. 973619.250000	4.000	17.260	. 0000	
DPRICE2	-21.333333	2.935521	-. 409945.250000	4.000	-7.267	. 0000	
(Constant	t) 33.666667	2.075727			16.219	. 0000	

Collinearity Diagnostics
Number Eigenval Cond

Variance	Proportions				
Constant	DAP1	DAP11	DAP12	DAP2	DAP21
.00842	.00631	.00474	.00474	.0063	.00474
.00000	.00015	.01445	.01995	.0001	.01995
.00000	.02279	.01995	.01445	.0227	.01445
.00000	.00000	.06	.06250	.0000	.06250
.00489	.12133	.00275	.00275	.1213	.00275
.16177	.00367	.09100	.09100	.0036	.09100
.00000	.00010	.17760	.16300	.0001	.16300
.00000	.22696	.16300	.17760	.2269	.17760
.82491	.61869	.46401	.46401	.6186	.46401

	DAP22	DPRICE1	DPRICE2
1	.00474	.00631	.00631
2	.01445	.02279	.02279
3	.01995	.00015	.00015
4	.06250	.00000	.00000
5	.00275	.12133	.12133
6	.09100	.00367	.00367
7	.17760	.22696	.22696
8	.16300	.00010	.00010
9	.46401	.61869	.61869

End Block Number 1 All requested variables entered.
Residuals Statistics:

	Min	Max	Mean	Std Dev	N
*PRED	12.3333	84.3333	46.2222	24.8193	27
*RESID	-4.6667	5.6667	.0000	2.9914	27
*ZPRED	-1.3654	1.5355	.0000	1.0000	27
*ZRESID	-1.2980	1.5761	.0000	.8321	27

Total Cases = 27
Durbin-Watson Test $=2.40879$
6. Quarterly data for retail car sales (RCS) for the years 1987 to 1996 were related to Disposable Personal Income (DPI) and Prime Interest Rate (PR). A portion of the data is shown below.

$$
\begin{array}{cccc}
\text { TIME } & \text { RCS } & \text { DPI } & \text { MR } \\
1996.00 & 273792.0 & 2742.90 & 13.73 \\
1996.00 & 261643.0 & 2692.00 & 14.43
\end{array}
$$

$$
\begin{array}{rrrr}
1987.00372414 .0 & 3466.90 & 10.00 \\
1987.00 & 369017.0 & 3493.00 & 9.82
\end{array}
$$

a. SPSS regression results with RCS as the dependent and DPI and PR as the explanatory variables are as follow:
i. How good is the model? (Use the usual criteria for judging goodness of model)
ii. Are the assumptions of the regression models satisfied.
iii. What is the regression equation?
iv. If Quarter 11997 has DPI=3450 and $\operatorname{PR}=10.20$, what is your 95% prediction interval for retail car sales (RCS)

Collinearity Diagnostics

| Number | Eigenval | Cond
 Index | Variance
 Constant | Proportions | DPI |
| :---: | ---: | ---: | ---: | ---: | ---: | MR

Residuals Statistics:

	Min	Max	Mean	Std Dev	N
*PRED	258560.4531	371791.7813	313416.4750	38253.0485	40
*2PRED	-1.4340	1.5260	.0000	1.0000	40
*SEPRED	731.0881	2024.0631	1189.3041	301.8203	40
*ADJPRED	258156.8281	372060.3125	313401.1509	38286.5022	40
*RESID	-8090.5645	9008.9521	.0000	4360.6911	40
*ZRESID	-1.8071	2.0123	.0000	.9740	40
*SRESID	-1.8559	2.0691	.0016	1.0110	40
*DRESID	-8574.6426	9525.1553	15.3241	4700.2953	40
*SDRESID	-1.9223	2.1704	.0022	1.0318	40
*MAHAL	.0650	6.9965	1.9500	1.5326	40
*COOK	.0001	.1171	.0261	.0320	40
*LEVER	.0017	.1794	.0500	.0393	40
Total Cases $=$	40				

Durbin-Watson Test $=1.43008$
b. The retail car sales may be seasonal; i.e. the changes in sales may be due to the time of the year. For this reason, dummy variables were introduced with Q1 taking value 1 for Quarter 2 and 0 otherwise; Q2 taking value 1 for Quarter 3 and 0 otherwise; and Q3 taking value 1 for Quarter 4 and 0 otherwise. For quarter 1 all three dummy variables take on value 0 . Interpret the solution given below and interpret the impact of quarters on the retail car sales.
(35 marks)

```
            MULTI P L E R EGRESSSIONN****
Listwise Deletion of Missing Data
Equation Number 1 Dependent Variable.. RCS Retail car sales
Block Number 1. Method: Enter
    DPI MR Q1 Q2 Q3
Variable(s) Entered on Step Number
    1.. Q3
    2.. MR Prime mortgage rate
    3.. Q2
    4.. Q1
    5.. DPI Real Disposable Income
Multiple R .99394
R Square .98793
Adjusted R Square .98615
Standard Error 4530.90420
```

Analysis of Variance

[^0]
AGW 615 ADVANCED BUSINESS STATISTICS
 FORMULAE

1. Mean

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \cdots \text { or } \cdots \bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N} \cdots
$$

2.

Variance

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{\sum x^{2}-n \bar{x}^{2}}{n-1}
$$

3. Sampling Distribution

$$
\begin{aligned}
& \mu_{\bar{x}}=\mu \cdots \cdots \cdot \text { and } \cdots \cdots \mu_{\hat{p}}=p \\
& \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \cdots \cdots \cdot \text { and } \cdots \cdots \sigma_{\hat{p}}=\sqrt{\frac{p(1-P)}{n}}
\end{aligned}
$$

4. Confidence Interval

$$
\bar{x} \pm z_{\alpha / 2} \bullet \frac{\sigma}{\sqrt{n}} \cdots \cdots \text { or } \cdots \cdots \cdot \bar{x} \pm t_{\alpha / 2, n-1} \bullet \frac{\sigma}{\sqrt{n}} \cdots \cdots \text { or } \cdots \cdots \cdot \hat{p} \pm z_{\alpha 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

Sample Sizes

$$
n=\left(\frac{z_{\alpha / 2} \sigma}{B}\right)^{2} \cdots \cdots \text { or } \cdots \cdots n=\left(\frac{t_{\alpha / 2, n-1} s}{B}\right)^{2} \cdots \cdots \text { or } \cdots \cdots n=\left(\frac{z_{\alpha / 2} \sqrt{p(1-p)}}{B}\right)
$$

6. Sampling distribution of Differences

$$
\begin{aligned}
& \mu_{x_{1}-x_{2}}=\mu_{1}-\mu_{2} \cdots \cdots \cdot \operatorname{or} \mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2} \\
& \sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}} \cdots \cdots \cdot o r \cdots \cdots \cdot s_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \cdots} \\
& d f=n_{1}+n_{2}-2 \cdots \cdots \cdot o r \cdots \cdot d f=\frac{\left(s_{1}^{2} / n_{1}+s_{2}^{2} / n_{2}\right)^{2}}{\left(\frac{\left(s_{1}^{2} / n_{1}\right)^{2}\left(\frac{s_{2}^{2} / n_{2}}{2}\right)}{n_{1}-1}+\frac{n_{2}-1}{n_{2}}\right.} \\
& s_{\bar{x}_{1}-\bar{x}_{2}}=s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \cdots \cdots \text { and } \cdots \cdots s_{p}=\sqrt{\frac{s_{1}^{2}\left(n_{1}-1\right)+s_{2}^{2}\left(n_{2}-1\right)}{n_{1}+n_{2}-2}} \\
& \sigma_{\dot{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}
\end{aligned}
$$

WILCOXON RANK SUM TEST
$E(T)=\frac{n_{1}\left(n_{1}+n_{2}+1\right)}{2} \cdots \cdots$ and $\cdots \cdots \sigma_{T}=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}$
WILCOXON SIGNED RANK SUM TEST
$E(T)=\frac{n(n+1)}{2} \cdots \cdots \cdot a n d \cdots \cdots \cdot \sigma_{T}=\sqrt{\frac{n(n+1)\left(2 n_{1}+1\right)}{24}}$
KRUSKAL-WALLIS
$H=\left[\frac{12}{n(n+1)} \sum \frac{T_{j}^{2}}{n_{j}}\right]-3(n+1)$

FRIEDMAN
$F_{r}=\left[\frac{12}{b k(k+1)} \sum T_{j}^{2}\right]-3 b(k+1)$
CHI-SQUARED
$\chi^{2}=\sum \frac{\left(o_{i}-e_{i}\right)^{2}}{e_{i}} \cdots \cdots$ where $\cdots e_{i}=n p_{i}$
$\chi^{2}=\sum \sum \frac{\left(o_{i j}-e_{i j}\right)^{2}}{e_{I j}} \cdots \cdots$ where $\cdots e_{i j}=\frac{T_{i} T_{j}}{N}$
and $\cdots \cdots T_{i}=$ row $\cdots i \cdots$ total,\cdots and $\cdots T_{j}=$ column $\cdots j \cdots$ total

ANALYSIS OF VARIANCE

$$
\begin{aligned}
& \bar{x}_{j}=\frac{\sum_{i=1}^{n_{j}} x_{i j}}{n_{j}} \cdots \cdots \cdot \overline{\bar{x}}_{j}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} x_{i j}}{n} \\
& S S T=\sum_{j=1}^{k} n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2} \cdots \cdots S S E=\sum_{j=1}^{k} \sum_{i=1}^{n_{j}} n_{j}\left(x_{i j}-\bar{x}_{j}\right)^{2} \\
& S S(\text { Total })=S S E+S S T \cdots \cdots M S T=\frac{S S T}{k-1} \cdots \cdots M S E=\frac{S S E}{n-k} \cdots \cdots F=\frac{M S T}{M S E} \\
& S S(\text { Total })=\sum_{j=1}^{k} \sum_{i=1}^{b}\left(x_{i j}-\overline{\bar{x}}\right)^{2} \cdots \cdots \cdot S S T=b \sum_{j=1}^{k}\left(\bar{x}_{T_{j}}-\overline{\bar{x}}\right)^{2} \\
& S S B=k \sum_{i=1}^{b}\left(\bar{x}_{B_{i}}-\overline{\bar{x}}\right)^{2} \cdots \cdots \cdot \operatorname{SSE}=\sum_{j=1}^{k} \sum_{i=1}^{b}\left(x_{i j}-\bar{x}_{T_{j}}-\bar{x}_{B_{i}}+\overline{\bar{x}}\right)^{2} \\
& M S T=\frac{S S T}{k-1} \cdots \cdots M S B=\frac{S S B}{b-1} \cdots \cdots \cdot M S E=\frac{S S E}{n-k-b+1}
\end{aligned}
$$

$$
\begin{aligned}
& S S(\text { Total })=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r}\left(x_{i j k}-\overline{\bar{x}}\right)^{2} \cdots \cdots S S(A)=r b \sum_{i=1}^{a}\left(\bar{x}[A]_{i}-\overline{\bar{x}}\right)^{2} \\
& S S(B)=r a \sum_{i=1}^{b}\left(\bar{x}[B]_{j}-\overline{\bar{x}}\right)^{2} \cdots \cdots \cdot S S(A B)=r \sum_{j=1}^{k} \sum_{i=1}^{b}\left(\bar{x}[A B]_{i j}-\bar{x}[A]_{i}-\bar{x}[B]_{j}+\overline{\bar{x}}\right)^{2} \\
& S S E=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r}\left(x_{i j k}-\bar{x}[A B]_{i j}\right)^{2} \\
& M S(A)=\frac{S S(A)}{a-1} \cdots \cdots M S(B)=\frac{S S(B)}{b-1} \\
& M S(A B)=\frac{S S(A B)}{(a-1)(b-1)} \cdots \cdots M S E=\frac{S S E}{n-a b}
\end{aligned}
$$

REGRESSION

$y=\beta_{0}+\beta_{1} x \cdots \cdots \hat{\beta}_{1}=\frac{S S_{x y}}{S S_{x}} \cdots \cdots \cdot \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \cdot \bar{x}$
$S S_{x y}=\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \cdots \cdot S S_{x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-n \bar{x}^{2}$
$S S_{y}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-n \bar{y}^{2} \cdots \cdots \cdots \cdot S S E=S S_{y}-\frac{S S^{2} x y}{S S_{x}}$
Standard Error of Estimate \& Coefficient of Determination,

$$
S_{s}=\sqrt{\frac{S S}{n-2}} \quad R^{2}=1-\frac{S S E}{S S_{y}}
$$

Prediction and Estimation Interval at x_{g}
$\hat{y} \pm t_{\alpha / 2, n-2} \sqrt{1+\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{S S_{x}}} \cdots \cdots \cdot \hat{y} \pm t_{\alpha / 2, n-2} \sqrt{\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{S S_{x}}}$
Coefficient of Correlation

$$
r=\frac{S S_{x y}}{\sqrt{S S_{x} \cdot S S_{y}}} \cdots \cdots \cdot t=\sqrt{\frac{n-}{1-r^{2}}}
$$

Spearman Rank Correlation

$$
r_{s}=\frac{S S_{a b}}{\sqrt{S S_{a} \cdot S S_{b}}}
$$

Standard Deviation of i-th residual
$s_{r_{i}}=s_{\varepsilon} \cdot \sqrt{1-h_{i}} \cdots \cdots h_{i}=\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{S S_{x}}$

[^0]: 000000000

