UNIVERSITI SAINS MALAYSIA

First Semester Examination 2003/2004 Academic Session

September - October 2003

ZCT 211E - Vector Analysis

Time: 2 hours

Please check that the examination paper consists of SIX printed pages before you commence this examination.

Answer all <u>FIVE</u> questions. Students are allowed to answer all questions in English OR Bahasa Malaysia OR combinations of both.

1. (a) Two particles emitting from a source have displacements $\mathbf{r}_1 = 4\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ and $\mathbf{r}_2 = 2\mathbf{i} + 10\mathbf{j} + 5\mathbf{k}$ at any time. Find the displacement of second particle relative to first.

(3/15)

(b) Prove that $(\mathbf{a} \times \mathbf{a}') + (\mathbf{b} + \mathbf{b}') + (\mathbf{c} \times \mathbf{c}') = 0$, where $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors and $\mathbf{a}', \mathbf{b}', \mathbf{c}'$ their reciprocals.

(6/15)

(c) A particle is moving in a circular orbit of radius 10 cm. If its frequency of motion is 60 cycles/sec., find the time period, velocity and acceleration of the particle.

(6/15)

2. (a) If $\vec{r} = t^2 \vec{i} - t^2 \vec{j} + (2t+1)\vec{k}$. Find the value of

$$\frac{d\mathbf{r}}{dt}$$
, $\frac{d^2\mathbf{r}}{dt^2}$, $\left|\frac{d\mathbf{r}}{dt}\right|$, $\left|\frac{d^2\mathbf{r}}{dt^2}\right|$ at $t = 0$. (3/15)

...5/-

(b) If $\mathbf{r} = \mathbf{a} e^{\omega t} - \mathbf{b} e^{-\omega t}$, show that $\frac{d^2 \mathbf{r}}{dt^2} - \omega^2 \mathbf{r} = 0$; \mathbf{a}, \mathbf{b} are constant vectors and ω being a constant.

(6/15)

- (c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$, where t is the time
 - (i) Determine its velocity and acceleration at any time.
 - (ii) Find the magnitudes of velocity and acceleration at t = 0. (6/15)
- 3. (a) If $\mathbf{A} = x^2 yz\mathbf{i} 2xz^3\mathbf{j} + xz^3\mathbf{k}$, $\mathbf{B} = 2z\mathbf{i} + y\mathbf{j} x^2\mathbf{k}$ find $\frac{\partial^2}{\partial x \partial y}(\mathbf{A} \times \mathbf{B})$ at (1, 0, -2).
 - (b) If \mathbf{r} is the position vector of a point, deduce the value of grad $\left(\frac{1}{r}\right)$. (5/20)
 - (c) If $V = x^2 z i 2y^3 z^2 i + xy^2 z k$
 - (i) find ∇ .V at the point (1, -1, 1).
 - (ii) If $\mathbf{V} = \frac{x \mathbf{i} + y \mathbf{j}}{x + y}$ find $\nabla \cdot \mathbf{V}$
 - (iii) If $\mathbf{V} = x \cos z \mathbf{i} + y \log x \mathbf{j} z^2 \mathbf{k}$, evaluate $\nabla \cdot \mathbf{V}$ (10/20)
- 4. Prove the following:
 - (i) div grad $\phi = \nabla^2 \phi$ (6/25)
 - (ii) curl grad $\phi = \nabla \times (\nabla \phi) = 0$ (6/25)
 - (iii) div curl $\mathbf{f} = \nabla \cdot (\nabla \times \mathbf{f}) = 0$ (6/25)
 - (iv) curl curl $\mathbf{f} = \nabla \times (\nabla \times \mathbf{f}) = \text{grad div } \mathbf{f} \nabla^2 \mathbf{f}$ (7/25)

5. (a) Given that $\mathbf{r}(t) = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ when t = 2 and $\mathbf{r}(t) = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ when t = 3.

Show that $\int_{2}^{3} \mathbf{r} \cdot \frac{d\mathbf{r}}{dt} dt = 10$

(10/25)

(b) Let $\phi = 45 x^2 y$ and let V denote the closed region bounded by the planes

$$4x + 2y + z = 8$$
, $x = 0$, $y = 0$, $z = 0$

evaluate $\iiint_v \phi \, dv$.

(15/25)

- 000 O 000 -