Minimizing the Garbage Collection Time in Flash
Memory using Efficient Data Allocation Scheme

Amir Rizaan Rahiman

Multimedia Research Group
School of Computer Sciences, Universiti Sains Malaysia,
11800 Penang, Malaysia
amir@fsktm.upm.edu.my

Abstract—Recently, flash memory is becoming a popular data
storage device in most of the electronic consumer devices. It has
lots of attractive features such as small size and light weight
nature, zero noise, solid-state reliability, low power consumption,
and better shock resistant. However, its two hardware
characteristics, namely, i) out-place updating and ii) garbage
collection process are affecting flash memory performance if
these characteristics are not well-organized. To overcome these
constraints, we propose an efficient page allocation scheme that
based on the occurrences of page data in the data access pattern.
In the scheme, we have classified the page data into hot and cold
data and allocated them into different blocks. The performance
of the allocation scheme is confirmed by trace-driven simulations
and the merit of the proposed scheme is justified in terms of a
number of active block requirements. The number of active block
requirement is reduced into 16% in comparison to the existing
schemes.

Keywords-flash memory; garbage collection; active block;
trace-driven simulation;

I. INTRODUCTION

Currently, flash memory is becoming a popular and the
most demanding data storage media in many embedded
systems, mobile computing devices and electronic consumer
devices (e.g. MP3 players PDA’s, hand phones, digital
cameras, etc. [1]. In general, flash memory is a non-volatile
storage device that needs no power to retain its contents.
Furthermore, as a data storage device, it had offered several
superiority features such as small and lightweight nature, fast
data access, zero noise, solid-state reliability, low power
consumption, and better shock resistant [1 — 4].

However, flash memory has two hardware characteristics,
namely i) out-place updating scheme, and ii) garbage collection
process that will bring several challenges in terms of data
management issues. Since flash memory is a form of
EEPROM, updating the existing data by overwriting at same
physical locations are strictly prohibited. The original data
must be erased prior to the updated data can be stored on same
physical location. To avoid initiating an erase operation during
every update process, out-place updating scheme has been
proposed in the literatures [5 — 7]. In out-place scheme, the
updated data (latest version) is stored into a new page while the

978-1-4244-4547-9/09/$26.00 ©2009 IEEE

Putra Sumari

Multimedia Research Group
School of Computer Sciences, Universiti Sains Malaysia
11800 Penang, Malaysia
putras@cs.usm.my

original data are set as garbage'. However, this updating policy
increases the amount of garbage that reduces free spaces when
a large number of data updating processes occurs. The garbage
collection process is associates with the process of cleaning the
garbage when the free space availability in flash memory
attained at a certain level of threshold (e.g., 20 — 35% of total
space). This cleaning policy can be also initiated periodically
[8]. Furthermore, it is time and power consuming process since
it is carried out by the erase operation (involve bulk sizes of
data), and cannot be executed on specific area (page). Before
the erasure process can be initiated, the valid data in the block
must be copied into other blocks.

Various studies have been proposed with the aim to
improve the garbage collection process performance [8 — 11].
Most studies are focusing on determining a victim block that
can minimize the garbage collection time. We refer the garbage
collection time to amount of access time required in erasing the
victim block. Several keys including block utilization, block
locality, erasure counts, age of data, etc., can be used in
determining the victim block that minimized the garbage
collection time. Although these studies have improved the
performance of garbage collection, but they give a more
concentration on preserving free space availability. As pointing
out by [11], initiating the garbage collection process without a
proper allocation scheme could impose approximately 40
seconds of blocking time in time-constraint applications.
Besides, few studies have shown that the well-organized data
allocation in flash memory could influence the garbage
collection performance. Due to this fact, it is motivating us to
propose an efficient data allocation scheme that can minimize
the garbage collection time. In this paper, we proposed an
allocation scheme that distributes the accessed data in flash
memory based on the frequency of appearance of each page
data. This scheme is inherent from the inspiration of the
Frequency Based Replacement (FBR) page replacement policy
[12]. We compare the performance of our proposed work with
existing allocation schemes in terms of the number of active
block requirements by using the similar data access pattern.

The rest of this paper is organized as follows. In Section II,
we discuss about flash memory technology and related works
that are relevant for this paper. In Section III, we present our

'Garbage in flash memory refers to “dead” data and shall not
be used anymore.

TENCON 2009

proposed allocation scheme that based on data appearance
frequency. Section IV presents the experimental results to
show the performance of proposed scheme and finally, the
conclusions of this paper are presented in Section V.

II. BACKGROUND AND RELATED WORKS

Recently, flash memory performances, price, and
popularity are improving so fast. As reported by Min and
Nam, flash memory capacity has been doubled every year for
past few years and the price-per-byte is falling [13]. Due to
these facts, we believe flash memory will successfully turn
into the most demanding storage device, and it will bring
numerous innovation and smart applications using it.

A. Flash memory characteristics

Two types of flash memory in the markets are: i) NOR-
flash, and ii)) NAND-flash. The comparisons for both types
have been discussed extensively by [13]. In this paper, we
limit our focus on NAND-flash and referred it as flash
memory. Flash memory architecture and operational
characteristics can be summarized as follows:

e Block and page architecture. As shown in Fig. 1,
flash memory is organized in terms of a fixed number
of blocks where each block evenly contains a fixed
number of pages. Each page further contains two areas:
i) data area (store the actual data), and ii) spare area
(data assisting information e.g., ECC, time, etc.).

e Asymmetric operational units and access time.
Flash memory offers three types of operational
functions, called, i) read, ii) write, and iii) erase [14].
Each function is carried out with asymmetric accessing
time and accessing unit (see TABLEI).

e No in-place update. Overwriting an existing data in
flash memory is performed via out-place scheme rather
than in-place scheme.

e Limited block life-span. Each block could be tolerant
with a limited number of erasure cycles (e.g., 1 million
cycles). Wear-leveling policy is employed in order to
lengthen block life-cycles [2].

Due to out-place updating scheme, page in flash memory
can be in one of the following three states, i) free, ii) valid, and
iii) invalid. The free page refers to a page that contains no
data, and it is available to store new or the updated data. The
valid page is the page that contains the recently version of data
while the invalid page contains “dead” data. According to
these page states, block in flash memory can be clustered as
active or inactive [15]. The active block refers to a block that
contains valid pages (at least one valid page) while block that
contains either free or invalid pages refers as inactive. The
active block cannot be simply erased while the inactive block
with invalid pages can be erased at any time since it needs no
valid page copying.

Bhblocks

Memory
arrays

page O

page 1

page 2

K pages

‘ page K- 1 ‘

spare
area

user area

b Kbytes p bytes

Figure 1. The basic architecture of flash memory.

TABLE L. FLASH MEMORY PROPERTIES
Specification Details
Power consumption 2.70 - 3.60V

Size (hx wx d) 12mmx 20 mmx 1.2 mm

Page size (KB) 2

Block size (KB) 128

Read 25 psec

Write 200 psec

Erase 1.5 msec

Data endurance 100 K (write and erase cycles)
Data retention 10 years

Noise ~0db

B. Garbage collection process in flash memory

Garbage collection process employed by flash memory to
preserve free space availability due to the out-place policy. As
illustrated in Fig.2, garbage collection process is realized in
three stages.

1-st block

777/,
| 0000
ENNN7//7/7//

1. Select the 2-nd block as a victim block (*)

| LI 1 e R

2. Identify the valid pages and copy into the 4-th block

3. Erase the 2-nd block and all pages become free

2-nd block

3-rd block

l:l free l:l valid M invalid

Figure 2. Garbage collection process in flash memory.

First, a victim block is selected by using several parameters
such as the block utilization, block erasure count, data age,
cleaning cost, etc. Then, after the victim block is recognized,
valid pages resided in the block are identified and copied into
free pages in other blocks. Upon completion copying the last
valid page, the victim block is erased.

TENCON 2009

Garbage collection time (denoted by A) refers to total
access time required in handling the garbage collection process.
It includes several read (p) and writes (w) access time and a
single constant erasure (&) time. Moreover, the access times can
be clustered into two principal access times, called erasure-time
and copying-time. The erasure-time is a constant time used to
erase a block while the mutable copying-time is used for
copying the valid pages into new blocks. In short, both access
times can be simplified in the following formula.

A=n*(p+w)+e¢)

Parameter 7 refers to number of valid pages resided in a victim
block. A victim block with more valid pages results in higher
garbage collection time and Equation (1) is used for erasing a
single block. Furthermore, the total access time required in
handling different level of a victim block fraction with a
different level of block utilization is shown in Fig. 3.

-+-#-- utilization (16 - 50%) - - utilization (50 - 63%) —— utilization (> 64%)
__ 3000
M)
E 2500 /
[
E . /
& 2000 -
= / s/
-% 1500 /"
K] / S
3 1000 _m
o B .‘.-'
§ 500 ey S L
2 | = i . R *
g 0 T T T T T T T
195 293 391 488 7.81 977 19.53
victim blocks (%)

Figure 3. Garbage collection time for different level of victim block fraction.

From Fig. 3, it is clear that garbage collection time is directly
proportional to the fraction of victim block. A victim block is
an active block since it may contain valid page. When the
number of active block increase, the number of block involves
in the garbage collection process will also increase. Thus, the
number of active block becomes the significant indicator in
determining the performance of the garbage collection
process.

C. Page allocation algorithms

There are many page allocation algorithms with the aim to
minimize a number of active blocks have been proposed in the
literature [15—16]. We summarize these algorithms in TABLE
II.

TABLE II. PAGE DATA ALLOCATION ALGORITHMS

Algorithm Method Parameter usage

FCFS (First Come First Online Page arrival position in the

Serve) data access.

FRES (First Re-Arrival Offline Page re-arrival position in

First Serve) the data access.

OFREFS (Online First Re- Online Prediction of previous page

Arrival First Serve) arrival position history.

BestM (Best Match) Offline Length between the arrival
time and re-arrival time.

The online allocation algorithm allocates each page in the
data access pattern when it appears into flash memory.
Conversely, the offline allocation is delaying the allocation of
each page until all information of pages is analyzed. The
offline allocation results in a minimum number of active
blocks in the allocation process, but it needs to know entire
information of the pages in the access pattern. Therefore, the
offline method is unsuitable for the time constraint
applications which need to allocate when the page appears.

The terms of data access pattern refer to a sequence of
updating the partitioned page's data [15]. For instance, as
shown in Fig. 4(a), file A is partitioned into 10 pages denoted
by a, b, c... j. After certain time of an interval, several pages
(or all pages) have been updated (see Fig. 4(b)). Thus, the data
access pattern containing a sequence of updated pages can be
shown in Fig. 4(c).

Fiea| a [b | c|a]e | r[a]n]i]i]
@) @ After certain interval
File A ‘ a Wﬁ c ‘ d WM g ‘ h W ; ‘

Updated

Updated Updated Updated

page access pattern

Invalid

Figure 4. Data access pattern consist of sequence of updated pages.

III. PROBABILITY BASED PAGE ALLOCATION SCHEME

A. Page popularity distribution

Previously, the arrival position of each page in data access
pattern is used to determine the location of the page. By using
the arrival position, the page is stored sequentially on the block.

In our scheme, we propose an allocation scheme that takes
into account the popularity of each unique page in data access
pattern. Since each file data is partitioned evenly into a fixed
number of different pages, each page may appear different
times (k) in access pattern. By using the tracing file, the
number of each page appears in the access pattern can be
knowable first. The most appearance pages are denoted as
popular page, while the pages that appear least time are
denoted as unpopular page. We use Zipf's [17] popularity
distribution to determine the popularity distribution of each
page data. In this distribution approach, the page data is
sorted in an increasing order from the highest rank (rank 1) to
the lowest rank (rank 7n) based on their frequency of
occurrences in the access pattern. The page data with the
highest frequency is assigned to rank 1 (the most popular
page) while the lowest frequency (unpopular page) is assigned
to rank n (n denotes the number of different page data in the
access pattern).

TENCON 2009

B. Allocation architecture

The page data allocation architecture is shown in Fig. 5.
The architecture consists of two main components: i) access
screening that percolates data access types either read or write,
and ii) allocation algorithm that perform the distribution
process of the accessed data.

The page data allocation architecture is shown in Fig. 5.
The architecture consists of two main components: i) access
screening that percolates data access types either read or write,
and 1ii) allocation algorithm that perform the distribution
process of the accessed data. The access screening is
responsible in filtering the data access type. In flash memory,
two types of data requests that can be initiated from the users
or host systems are read and write. If a request is read, then the
data can be directly retrieved from the memory array since it
does not change the page state. If a request is write, then the
request need to go through the allocation algorithm before can
be access to the memory array.

Allocation algorithm
EOP}JIar!tv L _ 1 _ _ | Popularity Block
distribution HOT/COLD ™ allocation
write
R + dat A X read
equest data [Access L pread / write Flash memory
access screening

R ——

Figure 5. Page data allocation architecture.

The allocation algorithm contains two sub components: i)
popularity interpreter, and ii) an allocation engine. The
popularity interpreter uses the accessed data popularity
probability in determining the state of the accessed data, either
hot or cold. The allocation engine performs the block selection
process in which the accessed page data fall into. After the
block has been determined, the accessed data is stored into
first free space of the allocated block. Furthermore, when all
pages in a block are invalid (block is inactive), it can be erased
directly without the need to waiting until the garbage
collection process.

C. Popularity based (PB) allocation scheme

Each partitioned file data is allocated with its own
probability value and we refer it as weight. Some page data
may share their probability value.

The available page weight is clustered into three groups: i)
maximum weight (), ii) median weight (), and iii) minimum
weight (77). The pages data that has weight value greater than
or equals to y are classified as popular hot since it will arrive
frequently in the access pattern, while the remaining pages are
classified as cold page. When each page arrived, its weight is
compared with the probability distribution values to determine
in which groups the page fall into.

Furthermore, blocks in flash memory (denoted by p) are
divided into two categories: i) hot and ii) cold. Since the hot
page will appear frequently in the access pattern, the number
of blocks that partitioned into hot should be more than the cold
blocks. Specifically, the portion for hot blocks is a fraction of
p and y value from the probability distribution. In short, the
functions given in Equation (2) and Equation (3) denote the
number of block portion for hot () and cold ().

o= (u+P*p 2

S=1-(u+p=p 3)

The motivation behind this scheme is that by classifying
the pages into hot and cold and allocating them to different
blocks, we will eventually turn blocks not to be active for the
whole allocation process. When such blocks are active during
the whole allocation process, it will increase the number of
active blocks. In FRFS scheme, the number of active blocks
required for the allocation is minimized because such block
could be in the active state for a short period of an interval.
Thus, to minimize the number of active block requirement, we
try to diminish each block to be active in the whole allocation
scheme. We simplify the allocation of each arrival page data
as follows:

1. for each page in the access pattern.
2. get page weight ().
3. ifa>=y
set page as hot.
write page into first free page within blocks
[0, p—1].
4. else
set page as COLD.
write page into first free page within blocks
[(/7, ﬂ - 1]
if new block = active block + 1
If block inactive - active block - 1
count maximum active blocks.

A

When all pages in the block become invalid, the block can be
erased and the blocks ID within each group are reconfigured
back. If current active block ID is i and block i — 1 is inactive,
block i — 1 is erased and block ID i is set to i — 1.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

Using the real data from the tracing file, we perform an
experiment in evaluating the performance of the proposed
scheme. The tracing file is collected over a personal computer
that running general applications (such as Web browser,
PowerPoint, Word, Acrobat reader, and email application)
[18].

By using the current flash memory specification [14] we
run our proposed allocation to determine the number of active
blocks required. In the tracing file, the total arrival page data
in the access pattern is 45000 containing 12000 different page
data. The highest data page appearance is 4780. We compare
our proposed allocation scheme with the FCFS scheme. Fig. 6

TENCON 2009

shows the average number of active blocks required for the
tracing file.

—+—FCFS -#--PB

= =i==PB (hot >=40%

of active blocks

50 100 500 1000 3000 6000 10000 20000 35000 40000 47000

access pattern length

Figure 6. Average number of active block requirement.

From Fig. 6, the PB allocation scheme performs better than the
FCFS scheme. The number of active block requirement is
reduced at approximately 16% from the FCFS scheme when
the length access pattern reaches 6000 arrivals. In addition,
when we reduce the hot block group to 40% of the y value, the
number of active block required is reduced. The main reason
that PB outperforms the FCFS is because the pages those have
weight greater than the y is stored within same blocks. When
we allocate pages that have similar weight into a same group,
we eliminate a block from being active all time during the
allocation process. By cutting the block lifetime to be active,
the number of active blocks can be minimized. The FRFS
using this similar approach, but the scheme needs information
of all pages in the access pattern and not suitable in online
environment.

V. CONCLUSION

This paper discusses the allocation scheme that reduces the
access time for garbage collection process. We propose the
allocation scheme called probability based (PB) for allocating
the arrival pages in the access pattern. From the experiment
result, our proposed scheme reduces the number of active
blocks required for the allocation. The main idea of using the
probability is to minimize the period of each block to be an
active state. By minimizing it, the block can become inactive
earlier, thus minimize the number of active blocks. The
number of active block requirements can increase when the
cold pages are stored together with the hot pages. When we do
clustering, we allocate different blocks for the cold and hot
pages and the number of active block required is minimized.

ACKNOWLEDGMENT

This research was supported in part by the Research
University Post-graduate (USM-RU-PGSR) grant (no.
1001/PKOMP/832006) funded by University Sains Malaysia.

(1]

[2]

[3]

(4]
(5]
(6]

(7]

(8]

(]

[10]

[11]

[12]

[13]

[16]
[17]

[18]

REFERENCES

F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J. A. Tauber,
“Storage alternatives for mobile computers,* Proc. 1% Symp. Operating
Systems Design and Implementation (OSDI), pp. 25-37, 1994.

L. Chang and T. Kuo,”An efficient management scheme for large-scale
flash-memory storage systems,” Proceedings of the 2004 ACM
Symposium on Applied Computing (SAC’04), pp. 862—-868, 2004.

M. Breeuwsma, M. d. Jongh, C. Klaver, R. v. d. Knijff, and M. Roeloffs,
“Forensic data recovery from flash memory,” Journal of Small Scale
Digital Device Forensic, vol. 1, no. 1, pp. 1-17, June 2007.

G. Lawton, "Improved flash memory grows in popularity,” Computer,
vol. 39, no.1, pp. 16-18, January 2006.

Memory Technology
mtd.infradead.org/doc/nand.html.

A. Kawaguchi, S. Nishioka, and H. Motoda,“ A flash-memory based file
system,” Proceedings of 1995 USENIX Annual Technical Conference,
pp. 155-164, 1995.

E. Gal and S. Toledo, “A transactions flash file system for
microcontrollers,” Proceedings of the 2005 USENIX Annual Technical
Conference, pp. 89-104, 2005.

M. L. Chiang and R. C. Chang,” Cleaning policies in mobile computers
using flash memory,” Journal of Systems and Software, vol. 48, no. 3,
pp- 213-231, November 1999.

L.-P. Chang,” On efficient wear leveling for large-scale flash-memory
storage systems,” Proceedings of the 2007 ACM symposium on Applied
computing, pp. 1126 -1130, 2007.

M. Rosenblum and J. K. Ousterhout,” The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems,
vol. 10. no. 1, pp. 26-52, 1992.

V. Malik,* Jffs2 is broken,” Mailing List of Memory Technology Device
(MTD) Subsystem for Linux, June 2001.

J. T. Robinson and M. V. Devarakonda,” Data cache management using
frequency based replacement,” Proceedings of the ACM SIGMETRICS

Conference on Measurement and Modeling of Computer Systems, pp.
134-142, May 1990.

S. L. Min and E. H. Nam,” Current trends in flash memory technology,”
Asia and South Pacific Conference on Design Automation, pp. 332 —
333, 2006.

K9K8GO8UIA & K9F4GOSUOA_Data Sheet for S12M Bit and 1G Bit
NAND Flash Memory SAMSUNG.

L.-F. Chou and P. Liu,” Efficient allocation algorithms for flash file
systems,” 11" International Conference on Parallel and Distribution
Systems, pp. 634 — 641, 2005.

P. Liu, C.—H. Chuang, and J.-J. Wu,” Block-based allocation algorithms
for flash memory in embedded systems”, PaCT, pp. 569-578, 2007.

G. K. Zipf, Human Behavior and the Principle of Least-Effort Addison-
Wesley . 1942.

http://newslab.csie.ntu.edu.tw/~flash/index.php?Selectedltem=Traces#

Devices, http://www.linux-

TENCON 2009

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

