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Abstract: The presence of mercury in the aquatic food chain has always been a concern
due to its accumulative effects in the chain. Over the last 100 years the average global
atmospheric mercury concentration has increased by five fold from 0.3 ng m” 1o
1.5 ng m™. The two main sources of atmospheric mercury emissions are natural sources
such as volcanoes and soils, and anthropogenic sources that include combustion and
waste incinerution. The Florida Department of Health recorded high mercury burdens in
the largemouth bass in the Everglades, with average concentration of 2.5 mg/kg mercury.
The high level of mercury found in the largemouth bass exceeded all health-based
standards in the USA. Mercury traces its pathways into the Everglades via runoffs from
the watershed and atmospheric deposition. However, over 90% of the annual budget of
mercury in the Everglades Protection Area is due to contribution from atmospheric
deposition, and that amounted to 35.3 ug/m’ per year according to a recent study.
Furthermore, it is noted that local emissions contributed some 52% of the total. Once
mercury is deposited irto the Everglades wetlands, bacteria will convert the mercury
Jrom its inorganic form to the highly toxic and readily available bioorganic
methylmercury. This paper presents an approach to modeling mercury concentration in

the Everglades ecosystems. It will present an analysis on the bioaccumulation of methyl-
mercury in the algae.
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1. INTRODUCTION

Methylmercury which is a highly toxic, lipophilic, organic form of
mercury [1], has been observed to accumulate to dangerously high levels in many
types of organisms in numerous aquatic food chains [2-8], beginning with the
first trophic level organisms such as algae [9]. It is observed that methylmercury
is first svnthesized by sulfate-reducing bacteria (SRB) found in periphyton
through an anaerobic process [10]. However, how do concentrations of parts per
trillion of mercury in water yield concentrations of parts per million in the
individual fishes [11]? The problem of high concentration of mercury in fishes is
further compounded by the fact that mercury concentrates in high levels only in
the muscle tissue of the fish. Hence, mercury cannot be filleted or cooked out of
consumable game fish [12]. The most well-documented cases of severe
methylmercury poisoning among humans were recorded in Minamata Bay, Japan
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in 1956 ‘and in Iraq in 1971. The occurrence of methylmercury in Minamata was
through the industrial release of methylmercury into the bay [12,13], while the
case in Iraq is due to the consumption of wheat treated with a methylmercury
fungicide. In each of the aforementioned case, hundreds of people died and
thousands more were afflicted, with many of them suffering permanent
neurological disorders [12] due to mercury poisoning.

Over the last 100 years, the global atmospheric mercury concentration
has increased from an average of 0.3 ng m™ to an estimated 1.5 ng m™ [14].
According to Lin and Pehkonen [15], approximately 6000 and 10800 tons of
mercury are present in the troposphere and the various water bodies in the world
respectively., It is further noted that an estimated 66% of mercury found in the
environment comes from man-made sources [5]. In this paper we try to assess
and quantify the bioaccumulation factor of methylmercury in the first level of the
food chain, the algae. This is an important step in aiding us to understand the
mechanics of transfer and bioaccumulation process of methylmercury in higher
levels of the food chain in most aquatic systems.

2, MERCURY PROBILEM IN THE EVERGLADES

The Everglades is onc of the biggest natural freshwater wonder of the
world. It is located in the southern region of the Florida panhandle and is
bounded in the north and west by Lake Okeechobee and the Big Cypress Swamp
respectively. The Atlantic Ocean and the Florida Bay form the eastern and
southern borders of the Everglades respectively [16]. Monitored by the Florida
Fish and Wildlife Conservation (FWC), the Florida Department of Environmental
Protection (FDEP) and the Florida Department of Health (FDOH) first noted the
high levels of mercury concentration detected in fishes from Everglades in 1989.
In the early 1990s, an extensive sampling exercise was then carried out in the
Everglades. The sampling exercise subsequently revealed high mercury burdens
in largemouth bhass, with the average ratio of nearly 2.5 mg/kg of mercury [3].
This high concentration of wercury is known to exceed all health-based standards
in the USA [17]. It is further observed ihat the mercury problem in the
Everglades is due primarily to the conversion of inorganic mercury, Hg(Il) to
organic methyimercury (MeHg), which is more toxic and which has the potential
to be biomagnified. As an example, Atkeson and Axelard [18] have recorded fish
biouccumulation factors ranging up to 10 million for MeHg.
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k. 8 THE PRODUCTION AND TRANSFER OF MEHG IN THE
AQUATIC SYSTEM

The main sources of mercury in the Everglades are atmospheric
deposition and runoffs from watersheds. Mercury loads from the wet deposition
through rainfall are about 50 times more than mercury loads from surface water
inflows. Dry mercury deposition adds another 20% to the total rainfall deposition
[2,9]. The FDEP estimated the total deposition from June 1995 to June 1996 to be

35.3 pg/m’ per year. The Florida Atmospheric Mercury Study (FAMS) recorded -
23 pg/m* of mercury per year as wet deposition, while the remaining
12.2 ug/m’ of mercury per year was modeled as dry deposition [2,3].

Upon entering the water, the mercury is subjected to a transformation
process. During the transformation process, inorganic mercury in the form of
Hg(I) is converted into organic mercury in the form of methylmercury (MeHg).
This transformation process is known as methylation [8,19]. Methylation may
occur in two different ways, either biological methylation or chemical
methylation [20]. However, in this paper we will only discuss biological
methylation, as it is the main methylation process reported in the Everglades.
Furthermore, it should be noted that only small amounts of mercury found in the
sediments undergo this process [2,21]. In addition, Krabbenhoft et al. [10] has
contended that methylation only occurs in periphyton "mats", through SRB when
oxygen is absent and sulfate is present [2]. SRB are a component of periphyton.
The periphyton mats cover most submerged plants and form thick mats on the
sediment surface in many locations in the Everglades [22]. Subsequently, the
next consumer in the food chain may eat the pcriphyton mats which contains the
bacteria with high methylmercury concentration. Moreover, the bacteria
themselves in these mats may excrete the methylmercury into the water where it
is taken up by the planktons [7]. Methylmercury can also be converted back by
bacteria into inorganic Hg(Il) [13,23]. This process is known as demethylation
[19] but it is not well understood. USGS [7] has suggested that sunlight may also
cause ihe breakdown of organic methylmercury into inorganic Hg(II} as shown in
Figure 1. :
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Figure 1: The cycle of methylmercury MeHg and Hg(II) in the Everglades
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4. UPTAKE OF MERCURY BY ALGAE AND BACTERIA

Algae are made up of phytoplankton and other multicellular plants,
which are either suspended in water or attached to rocks and other substrates such
as periphyton [24,25]. Algae are an essential component of the lake ecosystem
and are the basic food base for most lake organisms, including fish [25]. SRB
form a distinctive and ubiquitous group of anaerobic prokaryotes. These bacteria
are unified by a chared ability to carry out sulfate reduction as a principle
component of their bioenergetics process [26]. SRB in the Everglades use organic
carbon as a source of energy for growth and reproduction in the sediments or
other anoxic microhabitats. Sulfate, which is required by SRB as™a substrate for
their metabolism is derived from the Everglades Agriculture Area (EAA). The
transport of substances through the cell membranes of algae and bacteria is
dependent on the properties of the cell and the transporting substances [27]. The
cell membrane centrols the movement of substances that enter or leave the cell.
All cell membranes are made up mostly of lipids and proteins. Some substances
can pass through the cell membranes easily without any input of energy from the
cell. This type of movement is called passive transport [28]. Passive transport
includes passive diffusion and facilitated diffusion [28]. Diffusion is a process by
which matter is transported from one part of the system to another through
random molecular motions [29] with a net direction towards lower concentration
regions in order to achieve equilibrium. Passive diffusion occurs when small
molecules pass through the lipid bi-layer of a cell membrane. Facihtated
diffusion however, depends on carrier proteins imbedded in the membrane to
allow specific substances to pass through the cell membrane [27].
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S. UPTAKE MECHANISM *

Methylmercury primarily accumulates in phytoplankton [8]. Hence, it is
important to understand the uptake process of methylmercury by phytoplankton.
However, the mechanism of mercuiy uptake by phytoplankton still remains
uncertain. Hudson et al. [30] and Powell [31] have concluded that it is still
undetermined whether passive diffusion or facilitated diffusion controls the
process. Since methylmercury is a lipophilic, organic form of mercury, we may
assume that the uptake of MeHg by phytoplankton is primarily controlied by
passive diffusion [32]. Landing et al. [33] and Glimour et al. [34] have observed
that only neutral inorganic Hg complexes, such as HgS may enter bacteria cells.
In the absence of a specific uptake mechanism, organic compounds are probably
transported into bacteria cells by passive diffusion through the cells' lipid
membrane [35]. Since Hg(Il) is the inorganic form of mercury, we may assume
that the uptake of Hg(II) by SRB 1s controlled by facilitated diffusion. As was
mentioned earlier, bacteria and algae in the first trophic level of the food chain
initiate the accumulation of high levels of mercury in the food chain. Thus, the
bioaccumulation of mercury in bacteria and algac is the key to understanding the
bioaccumulation process of mercury in higher trophic levels (e.g. fish). Hence, in
this paper we will attempt to model the bioaccumulation of mercury in algae
{phytoplankton and periphyton). Since bacteria is a component of periphyton and
since methylmercury is produced by bacteria, we will consider the bacteria as a
component of periphyton in the modeling process. In order to further understand
the bioaccumulation of mercury in algae, we will need to deteiniine the uptake
rate of mercury by phytoplankton and bacteria. Thus, we will divide our
computer model into two components, the first component to compute the
bioaccumulation of methyimercury by the phytoplankton, and the second
component to determing the bioaccumulation of methylmercury by bacteria.

6. MODEL DESCRIPTION

According to Newman and Jagoe [36], contaminant bioaccamuiation
models begin with a single compartment model with first order uptake and
elimination kinetics. The model can be described by the foilowing differential
equation for the change in contaminant concentration in the organism with time:

€ ko -kC (1)
dr
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where

= the contaminant concentration in the organism (mass.mass )
concentration in the source (mass.mass ' or mass.volume™)
the uptake rate (time™", volume.mass ™' time™)

the elimination rate (time™)
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In Thomann [37], the mass balance equation for the biocaccumulation of

chemical concentration in Phytoplankton is written as:

where

L4

9, kC, —k,C 2
7 = R T e \ )
C, = the chemical concentration in the phytoplankton (ng/g(w))

C, = the dissolved chemical concentration in water (ug/L)

k, = the uptake sorption rate (L/d.g(w))

k; = the desorption rate (d)

Since methylmercury crosses the cell membrane of phytoplankton by

passive diffusion as we had mentioned earlier, while the cells of phytoplankton
arc periodically being subjected to cell division process {31], then Eq. (2) can be
rewritten as:

where

dc,,
dt =kpcmw _(up +kd)‘cmp (3)

C.p = the concentration of methylmercury in phytopiankton

(ng kg-cell™)
C.» = the concentration of dissolved methylmercury in water (pg/L)
k, = rate of passive uptake (L kg-cell ' d7)
4, = the instantaneous rate of cell division for phytoplankton (dh
k;, = depuration rate of MeHg (d )

At steady-state condition, Eq. (3) can be written as:

P .
C,p=—2—0C,. 4)
up + kd
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From Hudson et al. [30], we know that;

k,=P A, (5)
where

P, = the permeability coefficient for MeHg (dm/day)
Acer = the specific surface area of the cells (dm” kg-cell™)

Substitute Eq. (5) inio Eq. (4), and we derive:

- Pm Acell
i,k

(©6)

mw

In the case of SRB, we have to take into consideration that inorganic
mercury, Hg(lI) that enters the bacteria cell is different from the organic mercury,
MeHg that leaves the bacteria cell. Furthermore, we nieed to note as well that only
a small fraction of MeHg is reconverted back tc Hg(Il) by the bacteria. The
source of this fraction of MeHg may come from either of the two cases.

SRB Model will consist of two differential equations, one equation for
Hg(ll) with the uptake of Hg(Il) into bacteria cell occurring via facilitated
diffusion and the second equation for MeHg produced inside bacteria cell.

Based on Eq. (1) we can write the following equations:

dC

d:b =k,.C,, ~ (i, +k;).C, (7
dC

d;’b =k Crp = (U + 4y kg, ) Crp ®)

where

Ciwy = the concentration of Hg(Il) in bacteria (ng/kg)

Chw = the concentration of Hg(Il) in water (ug/L)

k; = rate of facilitated uptake (L kg™ d™)

ka = depuration rate of Hg(Ii) (d™)

p» = the instantaneous rate of cell division for bacteria (d™')
Cmy = the concentration of methylmercury in bacteria (ug/kg)

k, = methylation rate (3™)



Modeling Metcury Uptake in the Everglades Algae 8

ki, = demethylation rate (d™')
ks = depuration rate of MeHg (d ™).

At steady-state condition, we can simplify Eq. (7) and Eq. (8) to:

k .k /
th = 'Chu' (9)
(W, +kg) (1, +kyy +kg)

From Powell [31], we know that:

k
k=t (10)
1+ B, [H7]
where
k = mass specific mercury uptake rate (L kg™'.d ")

Bux = stability constant {or the first order protonation reaction with
membrane transport ligand.

Hence we derive:

k 1
Cmb = km- X + - .
1+ ﬁHX'[H ] (I“Lb + kdl)(/'lb + de + kdm)

G (11)

Table 1: Parameter values used in phytoplankton model

_Parameter description Unit Value References
Permeability cm/s 0.00032 | Petri [38]
coefficients for MeHg 0.0052 | Hudson et al. [30]
Phytoplankton cell pum 10 Gorm [39]
radius
Phytopiankton cell kg dry wt L-cell™ 0.2 Hudson et al. [30]
density
Phytoplankton cell day™ 1 Hudson et al. [30]
division rate Powell [31]
Depuration rate day™ 0.01 Hudson et al. [30]
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7. =~ APPLICATION

The bioconcentration factor (BCF) of a chemical is the ratio of its
concentrations in the organism to that in water during steady state or equilibrium
[40]. Partition coefficient is the ratio of a chemical's concentration in one phase to
its concentration in the other phase [41]. Our application will focus only on
phytoplankton model, because there is insufficient data regarding some of the

parameters of SRB model (kp, p;). Here, we consider the spherical shape of
phytoplankton cell.

From Eq. (6), we have:

— F m Acell C'"P _ Pm Acell
T T
!"' r d mw up d
we know that:
4 = surface area _ surface area 4m.R? _ 3
el mass density volume density.R

4
density.—gﬂ R
Then we obtain:

C,,,p 3.P,

= (12)
C.,. density. R (1, +k,)

Using the parameters listed in Table 1 in phytoplankton model [Eq. (12)],
we have two cases, case (i) for P, = 0.00032 cm/s and case (ii) for P,,= 0.0052
cir/s. We had discovered two values for methylmercury BCF for phytoplankton
10° and 10%* L/kg (dw) for case (i) and case (ii) respectively, for one specific
species of green algae (Cosmarium botrytis). The first value 10°° differ slightly
from methylmercury BCF 10°° for phytoplankton which was mentioned in
USEPA [42], while the second value 16°® is between two values of
phytoplankton-water partition constants for MeHg 10 and 10 for Cosmarium
botrytis, whicli obtained by Moye et al. [32] by using three methods in the
laboratory. Figure 2 {solid curve for case (i) and dotted curve for case (ii)] shows
that BCF increases as cell radius decreases. This means that small phytoplankton
cells accumulate more MeHg than larger cells. This conform to what was
mentioned in Moye et al. [32]. Table 2 shows the predicted phytoplankton MeHg
concentrations for three sites in the Everglades.
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Figure 2: Size-dependence of MeHg bioconcentration factor for
phytoplankton calculated for passive diffusion

Table 2: Predicted phytoplankton MeHg concentration for case (i)

Site Observed Mean Predicted Mean Observed (C,,,)
(C)* (Cap): (n=3)
WCA-2A-F;, | 0.19 ng/L (ppt) 0.04 mg/kg (dw) (ppm) NA
WCA-2A-U; | 0.54 ng/L (ppt) 0.12 mg/kg (dw) (ppm) NA
WCA-34-15 | 0.40 ng/L (ppt) 0.09 mg/kg (dw) (ppm) | 0.05-0.1 mg/kg (dw) -
Estimated

*Observed mean methylmercury concentrations in surface waters (dissolved) for the period of January
1, 1595 through December 31, 1999 [41].
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