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KUALITI AIR DA� KOMU�ITI ALGA PERIFITIK DI LEMBA�GA� 

SU�GAI PETA�I, KEDAH 

 

ABSTRAK 

Objektif kajian ini ialah untuk menentukan status kualiti air di Lembangan 

Sungai Petani berdasarkan kepada klasifikasi yang digunakan oleh Jabatan Alam 

Sekitar Malaysia dan membandingkannya dengan ketepatan penggunaan alga 

perifiton sebagai penunjuk biologi bagi kualiti air. Sampel air dan alga perifiton 

diambil dari 6 stesen persampelan A hingga F berdasarkan pengaliran air dari hulu ke 

hilir Sungai Petani yang mempunyai tahap pencemaran yang berbeza di sepanjang 

Lembangan Sungai Petani selama 12 bulan. Oksigen terlarut (DO), permintaan 

oksigen biokimia (BOD), permintaan oksigen kimia (COD), jumlah pepejal terampai 

(TSS), pH dan ammonium diukur untuk pengiraan Indeks Kualiti Air (WQI). 

Parameter seperti alkaliniti, nitrit, nitrat, ortofosfat, saliniti, dan jumlah pepejal 

terlarut (TDS) turut ditentukan untuk mendapatkan gambaran yang lebih tepat 

mengenai kualiti air di Sungai Petani. Stesen B mencatatkan nilai WQI yang tertinggi 

(60.49), diikuti oleh Stesen F (59.56), Stesen C (57.13), Stesen D (56.92), Stesen E 

(55.20) dan Stesen A (55.07). Secara amnya kualiti air sungai semakin merosot 

apabila air mengalir dari hulu ke muara, kecuali di Stesen F. Kualiti air sungai yang 

melalui kawasan perumahan (Stesen B) dan air di muara sungai (Stesen F) didapati 

lebih bersih berbanding air sungai yang melalui kawasan perindustrian dan pusat 

bandar (Stesen C, D dan E). Nutrien seperti nitrit, nitrat dan ammonium adalah tinggi 

di sungai yang melalui kawasan perindustrian (Stesen C), manakala ortofosfat adalah 

lebih tinggi di sungai yang melalui kawasan perumahan dan pertanian (Stesen A). 

TSS pula tinggi di stesen yang mengalami hakisan (Stesen A dan Stesen F). Kajian 
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ini mendapati air pasang besar mempunyai kesan yang lebih jelas terhadap parameter 

fisiko-kimia air berbanding ketika air pasang mati. Ketika air pasang besar, 

peningkatan dan penurunan kandungan fisiko-kimia air berubah dengan lebih ketara 

sepanjang kitaran pasang-surut air berbanding ketika air pasang mati. Klorofil a dan 

berat kering tanpa abu (AFDW) digunakan untuk pengiraan Indeks Autotrofik (AI), 

manakala berat sedimen halus (FSW) diukur untuk pengiraan Indeks Sedimen Halus 

(FSI). AI yang tinggi di Stesen C menunjukkan ianya didominasi oleh organisma 

heterotrofik dan mempunyai kualiti air yang rendah. Keputusan ini disokong oleh 

hasil analisis korelasi Pearson yang mendapati kepekatan nutrien mempunyai 

hubungan yang positif dengan AI. Pengiraan indeks kepelbagaian Simpson, 

Shannon-Weiner, Margalef dan Menhinick berdasarkan kepelbagaian dan kekayaan  

perifiton menunjukkan Stesen E dan Stesen F (berair payau) mempunyai 

kepelbagaian spesies alga yang tinggi. FSW juga didapati mempunyai kesan yang 

positif terhadap kepelbagaian spesies. Spesies seperti Climacosphenia moniligera, 

Closterium sp. dan Mischococcus confervicola hanya dijumpai di Stesen C. Oleh itu 

spesies tersebut mempunyai potensi digunakan sebagai penunjuk kualiti air yang 

mempunyai kandungan nutrien yang tinggi. Pengiraan indeks saprobik (SI) 

menunjukkan Stesen A (1.625) sebagai stesen paling tercemar. Keputusan ini adalah 

sama seperti keputusan yang diperolehi melalui pengiraan WQI sekaligus 

membuktikan keberkesanan perifiton sebagai penunjuk kualiti air. 
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WATER QUALITY A�D PERIPHYTIC ALGAE COMMU�ITY OF PETA�I 

RIVER BASI�, KEDAH 

 

ABSTRACT 

This study was carried to determine the status of water quality in the Petani 

River Basin according to the classification used by the Malaysian Department of 

Environment (DOE) and to evaluate the reliability of periphyton algae as a biological 

indicator of water quality. Water samples and periphytic algae were collected from 6 

sampling stations with varying level of pollution along the Petani River Basin. 

Dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen 

demand (COD), total suspended solids (TSS), pH and ammonium were measured for 

the calculation of Water Quality Index (WQI). Parameters such as alkalinity, nitrite, 

nitrate, orthophosphate, salinity and total dissolved solids (TDS) were also 

determined. Station B (60.49) recorded the highest WQI, followed by Station F 

(59.56), Station C (57.13), Station D (56.92), Station E (55.20) and Station A 

(55.07). This showed that the water quality decreased as it flowed downstream 

except in Station F. Generally the water quality at Station B where it pass through 

residential areas and the water in the confluence (Station F) were cleaner as 

compared to water which flowed through industrial and town centre (Stations C, D, 

and E). Nutrients such as nitrite, nitrate and ammonium were high in river which 

flowed through industrial area (Station C), while orthophosphates was high in river 

which flow through residential and agricultural area (Station A). TSS was high at 

stations where erosion occurred (Stations A and F). It was found that spring tide has 

a bigger influence on water physico-chemical properties compared to during neap 

tide. During spring tide, the increase and decrease of water physico-chemical 
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properties were more obvious throughout the tide cycle as compared to during neap 

tide. Chlorophyll a and ash-free dry weight (AFDW) were used to calculate 

autotrophic index (AI), while fine sediment weight (FSW) were determined for the 

calculation of FSI. High AI in Station C indicates that it was dominated by 

heterotrophic organisms and had a poor water quality. This was supported by the 

result of Pearson’s correlation analysis which found that nutrient concentration had a 

positive relationship with AI. The calculation of Simpson, Shannon-Weiner, 

Margalef and Menhinick diversity indices had shown Station E and F (brackish) as 

having the highest species diversity. FSW was also observed to have a positive effect 

on species diversity. Species such as Climacosphenia moniligera, Closterium sp. and 

Mischococcus confervicola can only be found in Station C. Thus those species may 

have a good potential as indicators of nutrient enriched water. The calculation of 

saprobic index indicated that Station A (1.625) as the most polluted station. This was 

in agreement with the results obtained through the WQI, thus enhancing the 

reliability of periphyton as an indicator of water quality.  
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CHAPTER 1 

 

I�TRODUCTIO� 

 

 

 

1.1 Background 

Malaysia has an annual rainfall of 3000 mm or 990 billion m3 of which 566 

billion m3 are surface run-off, 64 billion m3 become groundwater recharge and 360 

billion m3 return to the atmosphere through evapo-transpiration (Azhar, 2000). Being 

a nation with high water consumption, freshwater resources such as streams and 

rivers are of paramount importance to the development of the country. They 

contribute up to 98% of the total water used in Malaysia and the rest are from 

groundwater (Abdullah and Jusoh, 1997). 

 

As the nation develops and increases in population, a serious water crisis such 

as pollution due to poor planning can cause environmental degradation and a decline 

in beneficial use of river (Madsen et al., 2002). Therefore regardless of the 

abundance of water, there is simply a shortage to support the consumption of the 

population (Madsen et al., 2002). FitzHugh and Richter (2004) mentioned that 

quenching urban thirst of growing cities and balancing the thirst against all other 

freshwater needs is a major challenge. 

 

The unequal distribution of freshwater resources around the world (Flemer 

and Champ, 2006) also makes things worse. This can be seen throughout the world 

where many countries are disputing over water resources. Currently there are 

disputes over the Nile Basin, the Mekong Basin and the Jordan Basin (Chan and 

Nitivattananon, 2006).  
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In Malaysia for instance, the increase water demand in Penang, has force it to 

become dependent on the water supply from the neighbouring state Kedah. It is 

expected that Penang will face water shortages by 2010 when its existing water 

production capacities will be outstripped by population and economic growth (Chan 

and Nitivattananon, 2006). If this condition persists, it is possible that freshwater 

may over the next several decades compete with petroleum as a limiting resource to 

socio-economic prosperity (Flemer and Champ, 2006). Some researchers also 

suggested that freshwater scarcity may even be the cause of political instability 

(Flemer and Champ, 2006). 

 

 In order to overcome this problem and increase the water supply, the 

government has build dams all over Malaysia, but the problem with building dams is 

its high cost. For example the Beris Dam in Kedah costs RM300 million and the 

Teluk Bahang Dam in Penang costs RM140 million to build (Chan and 

Nitivattananon, 2006). Apart from that, there are limited numbers of rivers where 

dams can be built. The Drainage and Irrigation Department (DID) estimated that 

there are about 255 river basins in Malaysia that have reached its water supply 

capacity (Keizrul, 2002) hence no more dams can be built in these rivers. 

 

River pollution in cities and towns around the world are caused by 

anthropogenic influences as well as natural process. As the urban population 

continues to rise, the understanding of river-base flow and surface water quality for 

the urban area gains greater importance (Shepherd et al., 2006). The contamination 

of rivers will impair their use for drinking, industry, agriculture, recreation and other 

purposes (Sánchez et al., 2007).  
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In Malaysia, domestic sewage currently contributes to almost half of the 

organic pollutant load in the aquatic environment. It has been reported that the main 

pollution source of the Sarawak River was discharges from households (NREB, 

2001; Ling et al., 2006). In Penang, 54% of the source of pollutant load to the rivers 

is effluent from Indah Water Konsortium (IWK) treatment plants (JAS, 2004; 

Harlina et al., 2006). From 120 river basins monitored in 2001, 60 basins (50%) were 

clean, 47 (39%) were slightly polluted and 13 (11%) were polluted (DOE, 2002). 

51% of the pollution in these basins were from domestic sewage facilities, 39% from 

manufacturing industries, 7% from pig farms and 3% from agro-based industries 

(DOE, 2002). However the number of river basins which were clean in 2006 had 

improved. Out of 146 river basins monitored, 80 river basins (55%) were clean, 59 

(40%) were slightly polluted and 7 (5%) were polluted (DOE, 2006). 

 

At present the surface and groundwater of developed nations is experiencing 

elevated concentrations of nitrogen and phosphorus compared to about 50 years ago 

(Smith et al., 2003; Flemer and Champ, 2006). Over enrichment by nitrogen and 

phosphorus has been known to encourage the growth of undesirable amount of 

aquatic plant growth. Some of the effects of over-enrichment includes hypoxia 

resulting in fish kills, shading out of sea grasses by periphyton and phytoplankton, 

loss of water clarity, reduction in biotic diversity, increase in algal species of poor 

food web quality and an increase in algal blooms (Flemer and Champ, 2006). 

 

 In Malaysia, most river water quality monitoring has been conducted in cities 

and states that are fully developed or economically prominent compared to smaller 

developing towns. This study focuses on the water quality of the Petani River that 
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flows through the developing town of Sungai Petani, Kedah. The status of water 

quality was determined using the Water Quality Index and the river classification 

used by the Malaysian Department of Environment (DOE). The reliability of 

periphytic algal as a bioindicator of river pollution was also studied. 

 

1.2 The Importance of Biological Monitoring 

Biological monitoring methods are playing an increasingly important role in 

river quality monitoring, mainly due to the fact that the biota are continuous 

witnesses of the river’s state of health and are collectively sensitive to the whole 

range of potential pollutants (Walley et al., 2001; Iliopoulou-Georgudaki et al., 

2003.). Apart from that, traditional approaches which depend on laboratory tests 

have several weaknesses including the failure to validate laboratory results under 

field conditions (McCormick and Cairns, 1994). So a lot of efforts have been made 

to characterize the cumulative impact of human activities on ecosystem more 

accurately by increasing the use of measures of ecological condition as an addition to 

chemical indicator (McCormick and Cairns, 1994). 

 

If the full potential of biological monitoring is to be realised, much work 

needs to be done to improve existing methods and to develop new methods based on 

advanced data interpretation methods (Walley et al., 2001).  

 

The usage of algae as a biological indicator has been suggested by various 

studies as a complement to the traditional method of monitoring (McCormick and 

Cairns, 1994; Knoben et al., 1995; Masseret et al., 1998; Hillebrand and Sommer, 

2000; Pipan, 2000; Rauch et al., 2006). Biological monitoring using algae as an 
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indicator can help provide unique information about the ecosystem which is 

potentially useful as an early warning sign of deteriorating condition and its possible 

causes (McCormick and Cairns, 1994). 

 

1.3 Periphytic Algae 

Algae are the simplest plant without roots, stem or leave and exist in variable 

sizes. There are microscopic algal cells which cause water to look green, while some 

of the algae are macroscopic with longer and branchy structures which make them 

visible to the naked eye. Usually micro algae can be seen in the form of green slime. 

The word ‘diatom’ is sometimes used to refer to singular cell algae that has fibrous 

silicate outer layer (Hammer, 1986). 

 

 Algal identification is carried out through microscopic observation (Hammer, 

1986). According to Chapman and Chapman (1990), the most important criteria for 

the classification of algae are the differences in pigmentation, biochemical 

characteristic and the organelle structure such as flagellum.  

 

 The definition of ‘periphyton’ is normally used in scientific writing in 

America to describe the micro community that are attached and submerged 

underwater (Weitzel, 1979). According to Cooke (1956) and Sladeckova (1962), the 

first groups that used this definition were Russian scientists who referred periphyton 

as the assemblage of microorganism that grow or live on the surface of objects or 

artificial substrates that are submerged under water. Cooke (1956) also mentioned 

that in European and Asian writings, the definition of periphyton had been widened 

to cover all aquatic organisms that grow or live on submerged substrates. 
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 Young (1945) defined periphyton as organisms that live on natural and 

artificial substrates, excluding benthos (Young, 1945; Weitzel, 1979). 

 

 Wetzel (1964) suggested that periphyton refers to all plants that grow on 

submerged substrates. The submerged substrates can be sediment, rock, thrash or 

rubbish and living organisms (Wetzel, 1964; Vollenweider, 1969; Weitzel, 1979). 

 

 Apart from the word periphyton, there is another word that can be used to 

represent this kind of assemblages. The German word ‘Aufwuchs’ was first used to 

describe organisms that grow or attach on certain substrates but do not grow into or 

through the substrates (Weitzel, 1979). Ruttner (1953) later defined ‘Aufwuchs’ as 

all organisms that are strongly attached on a substratum but not through it. 

 

 There are several qualifying terms that are used in referring to the different 

types of periphytic algal community associated with different type of substrates. 

They are epilithic (growing on rocks), epipelic (growing on mud or sediments), 

epiphytic (growing on plants), epizoic (growing on animal), epidendric (growing on 

wood) and epipsammic (growing on sand surfaces) (Weitzel, 1979).  

 

1.3.1 Periphytic algae as Bioindicator 

Periphyton is a complex microcosm composed of living, senescent and dead 

autotrophic (microalgae) and heterotrophic microorganisms (bacteria, fungi, protozoa 

and micrometazoa), and fine particulates, enveloped in a polysaccharide matrix of 

biological origin (Neckles et al., 1994; Masseret et al., 1998). 
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 Periphytic algae were chosen as a bioindicator in this study because it can 

reflect the environmental condition in the recent pass (Weitzel, 1979; Masseret et al., 

1998). Its position which is at the interface between the substrate and the water 

combined with the fundamental role it plays in the various biogeochemical cycles 

and dynamics of the aquatic ecosystem (Amblard et al., 1990; Hansson, 1990; 

Masseret et al., 1998) enables periphyton to be an integrated source of information 

by serving as an indicator of both chemical and physical stresses in aquatic 

ecosystem (Weber and McFarland, 1981; Masseret et al., 1998). Apart from that, 

periphyton has been recognized as being among the best biological indicator (Prygiel 

and Coste, 1993; Stevenson and Lowe, 1986; Hürlimann and Schanz, 1993; Masseret 

et al., 1998). The sessile nature and fast growth rate of diatoms (Stevenson and 

Lowe, 1986) makes it useful in studying the impact of various forms of pollution 

such as the discharge of wastewater, treated sewage effluents, organic and inorganic 

nutrients (Hürlimann and Schanz, 1993; Masseret et al., 1998). 

 

  Periphyton has been included in pollution monitoring in several countries 

such as Canada (Vis et al., 1998), Western Australia (Cosgrove et al, 2004) and 

Florida in the USA (Notestein et al., 2003). Diatoms have been used to provide an 

integrated measure of the effects of a variety of effluents in the natural environment 

(Fjerdingstad, 1964; Patrick, 1973; Stevenson and Lowe, 1986; Lowe and Pan, 1996; 

Vis et al., 1998). Currently, European countries are developing indices to monitor 

eutrophication (Kelly and Whitton, 1998) and so does Malaysia (Nather Khan, 1991; 

Wan Maznah and Mansor, 2000, 2002), while the U.S is incorporating algal 

sampling into their routine monitoring program (Rosen, 1995; Charles, 1996; Hill et 

al., 2000; Leland and Porter, 2000; Fore and Grafe, 2002). 
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 Various ways were used to determine water quality using periphyton. There 

are two approaches that are usually used for evaluating the impact of pollution on the 

periphyton community. The first one is by studying changes in the population 

structure by measuring a representative of the biomass (Welch et al, 1992; Masseret 

et al., 1998; Yamada and Nakamura, 2002; Cosgrove et al., 2004). The second is 

through the species composition by measuring the species richness or diversity of the 

communities (Nather Khan, 1991; Cattaneo et al., 1995; Kelly and Whitton, 1995; 

Pan et al., 1996; Masseret et al., 1998; Winter and Duthie, 2000; Soininen and 

Niemelä, 2002; Potapova et al., 2005), calculating indices based on community 

composition such as saprobic indec (Walley et al., 2001; Matsché and Kreuzinger, 

2004), diatom quality index (Sgro et al., 2007) and etc. 

  

However there are some problems in using periphyton as an indicator. This is 

because its reaction to the various physico-chemical and environmental condition 

may vary depending on the level of disturbance (McCormick and Cairns, 1994; Fore 

and Grafe, 2002).  

 

Apart from that, as a living organism, the sensitivity of algae may vary 

depending on various environmental factors such as chelating agents, nutrient 

concentration, abiotic and biotic parameters (McCormick and Cairns, 1994). It has 

been known that prior exposure to environmental pollution can alter the sensitivity of 

periphyton (Niederlehner and Cairns, 1993; McCormick and Cairns, 1994). Foster 

(1982a, b), Blanck and Wängberg (1988) also mentioned that periphyton may exhibit 

decreased sensitivity to a stressor due to chronic exposure. 
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The lack of information about periphyton responses to human-induced 

degradation also posed a problem as compared to other works on fish or invertebrates 

as a monitoring tool for biological assessment of lotic waters (Rosen, 1995; Whitton 

and Kelly, 1995; Davis et al., 1996; Hill et al., 2000; Fore and Grafe, 2002). 

 

This study is aimed at increasing the information concerning the effects of 

various anthropogenic stressors on periphyton in the natural environment using 

natural substrate. This is important if autoecological indices were to be used 

routinely for monitoring purposes in the future. Apart from that, this study also helps 

to increase the knowledge on the reliability of using periphyton as an indicator of 

water quality and its consistency under varying field conditions. 

 

1.4 Objectives 

 The objectives of this study are: 

1. To determine the status of water quality in the Petani River Basin based on the 

classification used by the Department of Environment of Malaysia. 

2. To study the reliability of periphytic algal composition and community structure 

as a bioindicator of water quality degradation.  

3. To generate a checklist of periphyton species in the Sungai Petani River Basin. 

4. To study the effect of water quality and habitat suitability for periphyton species 

in the Sungai Petani River Basin. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Factors Affecting the Growth and Development of Periphyton 

The growth and development of periphytic algal community depends a lot on 

abiotic factors (Table 2.1): 

 

Table 2.1. Abiotic factors affecting the growth and development of periphytic algal 
community. 
 

Factors References 

• Type of water bodies (eg. lake, stream or 
river); light availability (water turbidity and 
clarity);  

Bothwell, 1985; Lohman et 

al., 1991; Pan and Lowe, 
1994;  Dodds et al., 1997; 
Winter and Duthie 2000; 
Mosisch et al., 2001; Stelzer 
and Lamberti, 2001; 
Notestein at al., 2003. 

• Types of substrate, the depth where the 
substrate is found; 

• Water movement, current and water velocity;  
• pH, alkalinity and water hardness;  
• The amount of nutrient (phosphorus, 

nitrogen and carbon)  
• Other dissolved nutrients (calcium, sulfur 

and silicon);  
Sigmon et al., 1977; Thomas 
and Seibert, 1977; Pratt et al., 
1987; Pratt and Bowers, 
1990; Scanferlato and Cairns, 
1990; McCormick and 
Cairns, 1994; Tang et al., 
2003; Boivin et al., 2006. 

• The presence of metal and trace metal (eg. 
ferum, cuprum, chromium, boron, vanadium 
and selenium)  

• Temperature, salinity, oxygen and carbon 
dioxide 

Walsh, 1972; Weitzel, 1979; 
Kosinski, 1984; Herbst and 
Blinn, 1998; Segal et al., 
2006; Shun et al., 2008. 

 

2.1.1 Light 

One of the factors that affects the growth of periphytic algae is the presence 

of light. Aufwuch and periphyton are defined as micro communities that grow in the 

zone where the penetration of light is possible (euphotic zone) (Weitzel, 1979). Any 

factors that influence the amount of light reaching the surface of substrate play an 
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important role on the growth of periphytic algae (Weitzel, 1979; Meulemans, 1987; 

Paul and Duthie, 1989; Dodds, 1989; Kuhl and Jorgensen, 1994; Dodds et al., 1999; 

Glud et al., 1999; Guasch et al., 2003). 

 

 A study by Evans and Stockner (1972) at Lake Winnipeg, Manitoba, found 

that most of the periphytic biomass accumulation occurs at a depth between 10 cm to 

25 cm. The study also found that blue-green algae dominated the area at a depth of 0 

cm to 10 cm. Species such as Synedra ulna v. contracta (Ehrenberg), Gomphonema 

constrictum v. capitata (Ehr.) Cleve, Rhoicosphena curvata (Kuetz.) Grunow and 

�itzschia cf. fonticola (Grunow) were found at the depth between 5 cm to 25 cm, 

while �avicula gracilis (Ehrenberg) [= �. tripunctata (O. F. Muell.) Bory v. 

tripunctata] and  �. cryptocephala (Kuetzing) were mostly found at a depth between 

90 cm to 120 cm. Evans and Stockner (1972) concluded that the amount of light 

penetrating the water was an important factor that influences the growth and 

development of periphyton on natural or artificial substrates. 

 

2.1.2 Substrate Suitability  

Another factor that influences the growth of periphyton is the type and the 

availability of substrates. Blum (1956) stated that true river algae depend largely on 

rocky substrates and can mostly be found in fast flowing rivers. On sandy and 

shifting riverbeds where the turbidity was high, Nelson and Scott (1962) found that 

the presence of periphyton was low except on hard stable surfaces. 

 

The abundance of periphyton in a river system depends largely on the type of 

substrates at that particular place. The growth of periphyton on a granite surface is 
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higher compared to the growth on a limestone and sandy surface (Weitzel, 1979). 

McConnell and Sigler (1959) found out that the surface of small pebbles support 

higher chlorophyll content per unit area (m2) compared to larger rocks on the 

riverbed. 

 

 Larger species of periphyton are normally found on stable objects compared 

to epiphytic species. Other researchers also found significant differences in the type 

of community on different types of substrate. The same species can be found on 

different substrate but at a different level of abundance (Weitzel, 1979). According to 

Round (1964), the condition and the characteristic of the sediment influence the 

epipelic algal community. Potapova et al. (2005) mentioned that some cyanobacteria 

such as Calothrix parietina, Homoeothrix janthina and the diatom Coconeis 

neodiminuta are often associated with sandy sediments. 

 

Epiphytic algae and diatom attached themselves on substrates using secretion 

in the form of jelly, while other periphyton use stalks or gelatinous branches (Round, 

1964). Therefore, the different strength of attachment in the form of jelly or 

gelatinous method influences the presence of a particular species on a certain 

substrate (Weitzel, 1979). 

 

2.1.3 Water Movement 

Movement of water such as velocity, wave, current and the circulation of 

water in a lake influence the growth and biomass of periphyton.  The movement of 

water act as an inhibitor or as a catalyst for periphyton growth depending on its force 

and direction (Weitzel, 1979). Water movement is important because flowing water 
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brings with it important nutrients that are needed for the growth and productivity of 

periphyton while flushing away the byproducts of its metabolic activities (Duffer, 

1966; Blum, 1956; Hynes, 1972; McConnell and Sigler, 1959; Odum, 1956; 

Whitford, 1960; Weitzel, 1979). Biggs (1996) mentioned that a stable flow of water 

usually promotes the accumulation of algal biomass in streams. This similar pattern 

was also observed by Potapova et al., (2005) during their study in the Boston 

metropolitan area. Streams that had more variable flow patterns or higher disturbance 

level associated with stream flashiness (rate of change in flows) would lower algal 

biomass and diversity and affect species composition (Biggs et al., 1998). Flow 

variability in terms of discharges or stage variability, may affect algal assemblages at 

different temporal scales (Clausen and Biggs, 1997; Matthaei et al., 2003; Potapova 

et al., 2005). 

 

 The productivity of organism is influenced by water movement. Only diatoms 

that are attached using jelly or gelatinous stalks can endure and survive in places 

where the velocity of water is moderate or high (Patrick, 1948). High periphytic 

assemblages in rivers and streams can mostly be found in sheltered area and in ponds 

where the water is calm along the riverbanks. Apart from influencing the attachment 

ability of periphytic organism, water movement can also influence the solubility and 

the availability of dissolved substances such as oxygen, carbon dioxide and other 

nutrients. Water movement also influences the temperature, turbidity and 

transparency of water (Patrick, 1948; Weitzel, 1979). 

 

 Flowing water with high velocity becomes an inhibitor to the growth of 

periphyton due to its shearing effect even though there are a few species of 
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filamentous algae that require an environment where the water velocity is high 

(Blum, 1956; Whirford, 1960; Weitzel, 1979). It was observed that when flood 

occurred and water velocity in streams increased, the periphyton on the various 

substrates was peeled away by stream flow (Yamada and Nakamura, 2002).  

 

The type of substrates also plays an important role in determining the 

influence of water velocity on the growth of periphyton. Periphyton that grows on 

sandy surfaces are more vulnerable to erosion compared to periphyton that grows on 

the surface of a rock even if they are located at a place where the water moves slowly 

(Duffer and Dorris, 1966; Nelson and Scott, 1962; Neel, 1968; Weitzel, 1979). 

McConell and Sigler (1959) observed that productivity was high in places with slow 

moving water. This finding is similar to an earlier research by Butcher (1932) which 

showed that high biomass value was obtained at sites where the water flow was slow. 

 

2.1.4 Dissolved Substances 

The role played by dissolved substances is also important. Patrick (1948) 

discovered that most diatoms had a high abundance when calcium carbonate 

concentration was 3.0 mg/liter and above, while the concentration of silicate was at 

0.5 mg/L and above. This is because apart from being a buffer for pH, calcium also 

reacts with toxic ion and control the concentration of sulfuric acid (Weitzel, 1979). 

Metals and trace elements cause different reactions when exposed to different types 

of algae species. There are some diatoms that can tolerate copper concentration 

between 1.5 mg/L to 2.1 mg/L even though at this level it is toxic to many algal 

species (Patrick, 1948; Weitzel, 1979). A study by Patrick et. al. (1975) also found 

that the presence of several trace elements changed the community structure from 
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one that was dominated by diatoms to a community that was dominated by blue-

green algae. They also found that diatom was dominant with higher species diversity 

when chromium concentration was between 40 µg/liter to 50 µg/liter. In contrast, a 

concentration of chromium between 95 µg/liter to 97 µg/liter lowered the diatoms 

diversity even though the abundance was still high. Boron also played an important 

part in determining the community structure of algal assemblages. A concentration of 

1.0 µg/liter of boron caused a change from a community of diatom to a community 

of blue-green algae, while the presence of nickel at any concentration was toxic to 

diatoms but it was preferable for the growth of blue-green algae, such as 

Stigeoclonium lubricum (Dillw.) Kuetzing (Patrick et. al., 1975; Weitzel, 1979). 

Potapova et al., (2005) also mentioned that the concentration of dissolved solids 

would influence the assemblage’s patterns. 

 

 Metals and trace elements are toxic to a lot of algae species. Generally 

diatoms are more vulnerable to the presence of trace elements compared to blue-

green algae such as Stigeoclonium lubricum (Dillw.) Kuetzing. The effect of metals 

and trace elements on diatom can be seen from the reduced concentration of 

chlorophyll a (Weitzel, 1979). Apart from that, cell deformities have also been 

associated with contamination by heavy metals (McFarland et al., 1997). Studies 

have also found that extreme metal contamination from mining activities could 

decrease the number diatom taxa (Juttner et al., 1996; Medley and Clements, 1998; 

Stewart et al., 1999; Genter and Lehman, 2000; Verb and Vis, 2000; Fore and Grafe, 

2002). 
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2.1.5 �utrients 

The increase of nutrients in streams and water body have been linked to the 

changes of autotrophic community composition, vegetative biomass and an increase 

of nuisance species (Wright and McDonnell, 1986a, 1986b; Notestein et al., 2003). 

This in turn, affects the community structure and alters the food web dynamic of a 

given system (Hershey et al., 1988; Peterson et al., 1993). 

 

It was found that an increase in nutrient concentration would influence 

periphyton abundance (Notestein et al., 2003). An increase in nitrogen alone would 

stimulate periphyton growth (Stelzer and Lamberti, 2001) especially when light was 

not a limiting factor (Lohman et al., 1991; Mosisch et al., 2001). The addition of 

phosphorus whether solely or concurrently with nitrogen was also found to increase 

periphyton abundance (Bothwell, 1985; Pan and Lowe, 1994; Dodds et al., 1997; 

Winter and Duthie, 2000). Similar results were also obtained by Notestein et al., 

(2003) which suggested that phosphorus might be the primary nutrient limiting factor 

for periphyton growth in coastal stream in Florida. 

 

McCormick et al., (2001) observed that two distinct periphyton assemblages 

developed in response to increase phosphorus loading. These assemblages were 

characterized by higher phosphorus content, lower N:P ratios and higher biomass-

specific productivity compared to oligotrophic assemblages (McCormick et al., 

2001). Intermediate phosphorus loads was found to change the dominance from 

cyanobacteria to filamentous chlorophytes, such as Spirogyra, while a high loading 

rates resulted in a direct shift from oligotrophic to eutrophic cyanobacteria (e.g. 

Plectonema wollei, Oscillatoria princeps) (McCormick et al., 2001). Similar results 
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were also obtained by other studies where many were enriched simultaneously by 

both nitrogen and phosphorus (Howard-Williams, 1981; Hillebrand, 1983; 

McDougal et al., 1997; Havens et al., 1999). 

 

2.1.6 Periphyton Predation and Competition 

Apart from the abiotic environment, biotic interaction such as grazing and 

competition also plays an important part in the colonisation of periphyton on hard 

substrates in freshwater (Feminella and Hawkins, 1995; McCormick, 1996) and 

marine habitats (Hillebrand and Sommer, 1997; Hillebrand et al., 2000). Hillebrand 

and Kahlert (2002) observed that the presence of grazer can reduce periphyton 

biomass by 50% in Lake Erken. Other studies revealed that up to 90% of available 

algal biomass was consumed by grazers and this is especially true for periphyton 

found on hard substrate (Feminella and Hawkins, 1995; Hillebrand et al., 2000). 

Grazers such as snails (McClatchie et al., 1982), crustaceans (Hargrave, 1970; 

Gerdol and Hughes, 1994) and annelids (Smith et al., 1996) was found to have a big 

influence on biomass and community structure of periphyton.  

 

Hillebrand and Kahlert (2002) also observed that the effects of macrograzer 

were lesser on periphyton that grows on sediment as compared to those that grows on 

hard substrate. In an earlier study, Hillebrand and Kahlert (2001) noted that strong 

grazing pressure of epilithic benthic algae were evidence in Väddö and Lake Erken. 

 

Earlier study done by Cattaneo and Kalff (1986) found that smaller fauna 

such as oligochaete and cladocerans also had similar effects on algal biomass as 

macrograzers. Due to this, Sunbäck et al. (1996) and Epstein (1997a, b) proposed 



18 
 

that micro and meiofauna are able to consume most of the primary production in 

sediments (Hillebrand and Kahlert, 2002). However, it is not clear whether small 

fauna can influence the algal biomass in a longer time scale (several weeks). 

 

A close relationship between some invertebrate and periphyton were 

observed in Lake Iznik. An increase of nematodes resulted in the decrease of stalked 

and tube diatoms (Albay and Aykulu, 2002). They also found that Rotifers (mainly 

Lophocharis sp.) and Ciliates also have a negative impact on erect and cocconeis 

type diatoms. Rotifer also has a negative relation with prostrate diatoms. However 

Rotifer was found to have a positive relationship with Cyanophytes. Nematodes 

(mainly Anonchus sp. and Microlaimus sp.) on the other hand, have a negative 

relationship with Cyanophytes (Albay and Aykulu, 2002). 

 

A study on the effects of snail grazing on periphyton found that grazing have 

a significant effect on the composition of periphyton communities (Marks and Lowe, 

1989). It was observed that the relative biovolume of green algae increase to 93% 

from 64% on graze substrate (Marks and Lowe, 1989). Periphyton communities that 

were highly grazed would usually be dominated by prostrate species that adhere 

tightly to the substrate or by small understory species that were not grazed due to 

their small size (Hunter, 1980; Hunter and Russel-Hunter, 1983; Sumner and 

McIntire, 1982; Marks and Lowe, 1989). Grazing has been known to physiologically 

maintain periphyton communities in an earlier succession stage (Marks and Lowe, 

1989), meaning that the development of the periphyton community into a mature 

state had been retarded due to grazing. 
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Competition for nutrient and habitat also effects periphyton growth. 

Brammner (1979) and Brammer and Wetzel (1984) observed that Stratiotes 

competes with phytoplankton for nutrients from the surrounding water. This 

competition had resulted in the decreased of phytoplankton density in the water 

where Stratiotes is dominant (Brammer, 1979; Brammer and Wetzel, 1984). 

 

Submerged macrophytes have been found to compete with other autotrophic 

organisms such as algae and periphyton and limit their growth (Kufel and Ozimek, 

1994; Von Donk and Van de Bund, 2002; Mulderij et al., 2005b). The macrophytes 

was also found to excrete allelophathic substances that inhibit phytoplankton growth 

(Gross, 2003; Mulderij et al., 2005b). It was reported that allelopathic activities of 

macrophyte such as Chara (Wium-Andersen et al., 1982; Blindow and Hootsmans, 

1991; Mulderij et al., 2005a), Ceratophyllum (Jasser, 1995; Mjelde and Faafeng, 

1997) and Myriophyllum (Jasser, 1995; Gross et al., 1996) could resulted in changes 

in phytoplankton composition and biomass (Mulderij et al., 2005b). 

 
 

2.2 Periphytic Algal Attributes as Indicators of Aquatic Degradation 

Even though physical and chemical variables are widely used in monitoring 

water quality due to its ability to detect changes in the environment in a quick and 

straightforward manner, it also has its disadvantages of not being able to reflect the 

changes in water quality on biological communities (Vis et al., 1998). The mixture of 

organic and inorganic compounds in most urban effluent further complicates the 

monitoring process due to the high cost required for the analyses (Vis et al., 1998). 

Therefore, the use of periphyton has several advantages compared to the traditional 

method of using physical and chemical variables to determine water quality.  Among 
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the advantages of using periphyton as an indicator are; they are easy to collect, 

taxonomically diverse and have a short regeneration time which means that it can 

react quickly to changes in stream water quality (Hill et al., 2000; Wan Maznah and 

Mansor, 2000). Fore and Grafe (2002) also concluded that diatoms might represent a 

biological alternative to fish when assessing water quality in rivers or sites that were 

too deep to effectively sample fish or when endangered or protected species 

prohibited sampling. Apart from that, where cases of chemical and biological 

(faunal) information disagree about a site condition, diatoms can provide clues to 

resolve the conflict due to their sensitive nature to water chemistry (Fore and Grafe, 

2002). 

 

Various researches have showed that major changes in water quality can 

influence the characteristic of periphyton. Characteristics of periphyton such as 

biomass (Wuhrmann and Eichenberger, 1975; Watanabe et al., 1988; Biggs, 1989), 

diversity indices (Weitzel and Bates, 1981; Stevenson, 1984; Stewart and Robertson, 

1992; Vis, 1998; Hillebrand and Sommer, 2000), biotic indices (Descy and Coste, 

1991; Kelly et al., 1995) and taxonomic composition (Archibald, 1972; Rott, 1991) 

can be used as an indicator of water quality. Some studies have also found that algal 

community structure (Cattaneo et al., 1995; Wan Maznah and Mansor, 2002) and 

periphyton productivity (Ho, 1976; Anton et al., 1998) can also be used to determine 

water quality (Wan Maznah and Mansor, 2000; Wan Maznah, 2002). 

 

The use of periphyton as a water quality indicator has been widely accepted. 

Researchers have developed several schemes that classified organisms according to 

the amount of organic pollutants associated with their occurrence. A system that 
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classified water system as eutrophic, mesotrophic or oligotrophic was developed by 

using the correlation between the type of species that existed at different levels of 

pollution (Weitzel, 1979). The terms eutrophic, mesotrophic and oligotrophic refers 

to the level of nutrients that are high, moderate and low (Round, 1964). 

Eutrophication is defined as the process in which water bodies are made more 

eutrophic via an increase in their nutrient supply (Smith et al., 1999). Table 2.2 

summarises the effects of eutrophication on stream ecosystems. 

 

Table 2.2: Effects of eutrophication on stream ecosystems (from Smith et al., 1999). 
 
 

• Increased biomass and changes in species composition of suspended algae 
and periphyton. 

• Reduced water clarity. 
• Taste and odor problems. 
• Blockage of intake screens and filters. 
• Fouling of submerged lines and nets. 
• Disruption of flocculation and chlorination processes at water treatment 

plants. 
• Restriction of swimming and other water-based recreation. 
• Harmful diel fluctuations in pH and in dissolved oxygen concentrations. 
• Dense algal mats reduce habitat quality for macroinvertebrates and fish 

spawning. 
• Increased probability of fish kills. 

 
 
 
 Many studies have been conducted to evaluate the effects of nutrient on the 

growth of periphytic organisms. Studies by Hutchinson (1967, 1975), Hynes (1972) 

and Nelson et. al (1973) found that nutrients such as nitrogen, phosphorus and 

carbon were important in determining the presence and the abundance of aquatic 

species. It has also been recognized that aquatic system or zone that has a different 

concentration or type of nutrients will create different aquatic communities (Weitzel, 

1979).  
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The concept of using organisms as an indicator has been widely used to 

determine the level of pollution. Patrick and Hohn (1956) and Patrick and Reimer 

(1966) had discussed on developing and using indicator community to monitor 

pollution. Aquatic ecosystems was defined as “healthy”, “semi-healthy”, “polluted” 

and “severely polluted” based on the quantitative evaluation of the number of diatom 

species (Patrick, 1949; Patrick and Hohn, 1956; Patrick and Reimer, 1966). The 

scheme is based on the concept of ‘indicator organisms’ that live in different types of 

environment where it can be used to represent a general level of pollution, and the 

relative abundance of particular indicator species that are used must be significant.  

 

Diatoms are good ecological indicators because they are found in abundance 

in most lotic ecosystem (Stevenson and Bahls, 1999). Since diatoms can be found in 

a wide range of ecological conditions, it can provide multiple indicators of 

environmental change. 

 

There are also disadvantages of using periphyton as a bioindicator. Even 

though the changes in nutrient concentration in water had been linked to changes in 

periphyton community, its influence had been variable or inconsistent (Vis, 1998; 

Notestein et al., 2003). For example, experiments on the effect of nutrient 

enrichment on algal density in freshwater has been contradictory. Marcus (1980) and 

Pringle (1990) reported an increase in algal density due to the increase in nutrient 

supply, but Miller et al. (1992) reported the opposite. Furthermore, some studies 

reported that nitrogen alone would stimulate periphyton growth (Stelzer and 

Lamberti, 2001) when light was not a limiting factor (Lohman et al., 1991; Mosisch 

et al., 2001). Moreover, studies by Bothwell (1985), Pan and Lowe (1994) showed 
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that the addition of phosphorus and nitrogen increased periphyton abundance. Dodds 

et al., (1997) and Winter and Duthie (2000) on the other hand, observed an increase 

in periphyton abundance when it was concurrently enriched with phosphorus and 

nitrogen. 

 

Even though some researches found that the addition of phosphorus, and 

nitrogen plus phosphorus resulted in greater biomass, they also noticed that the 

addition of nitrate alone showed not much difference in periphyton biomass from the 

controls (Notestein et al., 2003). Further analysis, showed that the differences 

between the treatments containing phosphorus alone, phosphorus plus nitrogen, and 

nitrogen alone were not significant (Notestein et al., 2003). Thus, making the 

differentiation of the effects of phosphorus, phosphorus plus nitrogen and nitrogen 

difficult. 

 

Sand-Jensen (1983) highlighted several reasons why it was not possible to 

accurately determine when and how physico-chemical parameters affected the 

growth of periphytic algae. The first reason was when periphyton growth patterns 

were examined in a fluctuating natural habitat, it was difficult to pinpoint a single 

regulating factor since there were many physico-chemical parameters that influenced 

periphyton growth. Sand-Jensen (1983) argued that the autotrophic and heterotrophic 

processes that happened internally within the boundary layer would change the 

chemical condition and could be different from the free water phase. The change in 

the chemical condition within the periphytic community depended on the rate of 

exchange with the free water process or the balance of opposing process within the 

periphytic layer. Another reason was that most measurements of physico-chemical 
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only focused on the free-water phase above the periphytic community and not within 

the community where the condition was different. The growth rates of periphytic 

algae also were either difficult or impossible to measure directly (Sand-Jensen, 

1983). 

 

Apart from the variable response to nutrient enrichment, the viability of 

periphyton as an indicator is also under threat from the grazing activity of 

invertebrate and fishes. It was reported that the grazer would increase the grazing 

pressure to periphyton due to enhanced food availability and this situation could 

offset the effect of nutrient enrichment (Hillebrand et al., 2000, 2002; Hillebrand and 

Kahlert, 2001; Hillebrand, 2002; Cosgrove et al., 2004). 

 

The inconsistencies in the periphyton reaction to the changes in water quality 

are likely caused by natural variability associated with periphytic communities 

(Weitzel et al, 1979; Morin and Cattaneo, 1992; Vis, 1998) and the differences 

between systems under study (i.e. stream vs river, temperate vs tropical region). The 

complex interaction of physical, chemical and biological factors that influence 

periphytic communities makes it difficult to detect water quality related changes in 

periphyton (Vis, 1998). This can be seen in a study by Guasch et al., (2003) where 

apart from the river water quality and light, the physical structure and biotic activity 

in the dense biofilm also plays a significant role in determining the condition within 

the matrix. Their study shows that the responses of periphyton toward the 

concentration of organic and inorganic substances in the water are influenced by 

their physiological state and density (Guasch et al., 2003). The thickness of 

periphyton can causes the creation of marked gradients of light (Meulemans, 1987; 
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