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KOPOLIMERNYA 

 
 

ABSTRAK 
 

Pengelektropolimeran oksidaan anilina di dalam asid fosforik di atas grafit 

komposit pensil 2B telah disempurnakan dengan menggunakan beberapa garam 

takorganik yang dipilih sebagai elektrolit penyokong. Garam-garam ini menentukan 

darjah kekonduksian polianilina yang terbentuk mengikut turutan  CaCl2 > KCl > 

ZnCl2 > ZnSO4 > Ca3(PO4)2. Kehadiran samada 0.06 M Ca3(PO4)2 atau 0.2 M ZnSO4 

di dalam sintesis polianilina telah menyebabkan anjakan puncak redoks sebanyak 

250 mV ke keupayaan negative. Anjakan puncak ini hanya dipengaruhi oleh jenis-

jenis anion yang ada bukan nya kation. Kejadian ini memudahkan pembentukan 

kopolimer Ani dan orto-fenilindiamina. 

Morfologi lapisan nipis homopolimer polianilina juga telah diperiksa dengan 

mikroskop imbasan elektron pemancaran medan dan penyebaran tenaga pembelauan 

sinar-X. Keputusan menunjukkan morfologi permukaan homopolimer bergantung 

kepada elektrolit yang digunakan. Morfologi permukaan juga menentukan 

pembentukan hablur seperti bunga yang berbeza setiap garam takorganik.  

Sintesis homopolimer di dalam garam yang berbeza menambah keupayaan 

antioksidan. Polianilina dalam medium fosfat adalah agen penurunan yang kuat, 

berupaya mengaut radikal 1,1-difenil-2-pikrilhidrazil dalam metanol. Ia nya dua kali 

lebih berkesan sebagai antioksidan daripada polianilina dalam medium klorida. 

Penyediaan anod homo dan pengkopolimeran anilina dan pirola di atas grafit 

komposit di dalam asid para-toluena sulfurik akueus dengan dan tanpa kalium 

klorida (KCl) telah dilakukan. Kehadiran KCl di dalam medium telah meningkatkan 



 xiv

sifat struktur, optik dan morfologi polimer yang dihasilkan. Spektroskopi 

fotoelektron sinar-X membuktikan sintesis poli(anilina-ko-pirola) dengan kehadiran 

KCl mempunyai hampir setara unit pirol dan anilina di dalam tulang belakang 

polimer berbanding sintesisnya tanpa kehadiran KCl. 

Anjakan negatif inheren puncak redoks polianilina telah juga dilakukan di 

dalam pengkopolimeran anilina dengan orto-fenilinadiamina di atas grafit komposit. 

Grafit komposit terubahasuai poli(anilina-ko-pirola) menunjukkan gerak balas 

pengelektromangkinan terbaik terhadap pengoksidaan asid askorbik. Keupayaan 

puncak anod asid askorbik telah beranjak dari +0.5 V vs. Ag/AgCl (pada grafit 

komposit) ke +0.1 V vs. Ag/AgCl (pada grafit komposit terubahsuai poli(anilina-ko-

pirola)), menunjukkan proses elektod yang mudah bagi asid askorbik pada grafit 

komposit terubahsuai. 
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STUDIES ON ELECTROCHEMICALLY SYNTHESIZED POLYANILINE 
AND ITS COPOLYMERS 

 
 

ABSTRACT 

 
Oxidative electropolymerization of aniline in phosphoric acid on 2B pencil 

composite graphite was accomplished using some selected inorganic salts as 

supporting electrolytes. These salts determined the degree of conductivity of 

polyaniline formed, in the order of CaCl2 > KCl > ZnCl2 > ZnSO4 > Ca3(PO4)2. The 

presence of either 0.06 M Ca3(PO4)2 or 0.2 M ZnSO4 in the synthesis of polyaniline 

have caused the shifting of its redox peaks as much as 250 mV to the negative 

potential. The shifting of these peaks was only influenced by type of anions presence 

not the cations. This incident has prompted the formation of copolymer aniline and 

ortho-phenylenediamine. 

The morphology of the homopolymer polyaniline films was also examined by 

a field emission scanning electron microscope and energy dispersive X-ray 

diffraction. The results showed that surface morphology of the homopolymer was 

dependent on the electrolytes used. The surface morphology also dictated each 

inorganic salt into different bloom-like crystal formations.  

The homopolymer synthesised in different salts has its antioxidant capacity 

increased. The phosphate medium polyaniline was a strong reducing agent, capable 

of scavenging 1,1-diphenyl-2-picrylhydrazyl radical in methanol. It was twice more 

effective as an antioxidant than the chloride medium polyaniline. 

The anodic homo and copolymerization of aniline and pyrrole on composite 

graphite in aqueous para-toluene sulphonic acid with and without potassium chloride 

(KCl) were investigated. The presence of KCl in the medium has improved the 

structural, optical and morphological properties of the resulting polymers. The X-ray 
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photoelectron spectroscopy confirmed that poly(aniline-co-pyrrole) synthesized in 

the presence of KCl has nearly equal units of both pyrrole and aniline in the 

polymeric backbone as compared to the one synthesized in absence of KCl.  

The inherent negative shift of redox peaks of polyaniline has also been 

investigated in the copolymerization of aniline and ortho-phenylenediamine on 

composite graphite. The poly(aniline–co–ortho-phenylenediamine) modified 

composite graphite showed excellent electro catalytic response towards the oxidation 

of ascorbic acid. The anodic peak potential of ascorbic acid has been shifted from 

+0.5 V vs. Ag/AgCl (at bare composite graphite) to +0.1 V vs. Ag/AgCl (at 

poly(aniline–co–ortho-phenylenediamine) modified composite graphite), indicating 

easier electrode process of ascorbic acid on the later.  
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CHAPTER 1 

 INTRODUCTION  

 

1.1. History of conducting polymers  

Conducting polymers are relatively new class of materials whose interesting 

metallic properties were first reported in 1977, with the discovery of electrically 

conducting polyacetylene [1]. The importance of this discovery was recognized in 

2000 when the Nobel Prize for Chemistry was awarded to the scientists who 

discovered electrically conducting polyacetylene in 1977 [2]. Since the discovery of 

polyacetylene, there has been much research into conducting polymers and many 

new conducting polymers have been synthesized. The most important, and common 

of these are polypyrrole [3], polyaniline [4], polythiophene [5] etc. There have been 

many potential applications suggested for these materials, including sensors [6, 7], 

electro-chromic devices [8, 9], corrosion inhibitor [10, 11], supercapacitor [12, 13], 

electromagnetic shielding [14, 15], polymeric batteries [16], polymeric actuators [17, 

18], etc. These wide ranges of applications are possible in part due to the ability to 

alter the electrochemical, optical, chemical and mechanical properties of conducting 

polymer by changing the monomer and or dopant incorporated into the polymer. 

 
1.2. Types of conducting polymers 

Conducting polymers can be classified mainly into three types: 

a) Intrinsically / inherently conducting polymers. 

b) Conducting polymer composites. 

c) Ionically conducting polymers. 

An organic polymer that possesses the electrical, electronic, magnetic and 

optical properties of a metal while retaining the mechanical properties, processibility 
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etc. commonly associated with a conventional polymer, is termed an “Intrinsically 

Conducting Polymer” more commonly known as “synthetic metal” [19].  

The most common examples of intrinsically / inherently conducting polymers 

are Polyacetylene, Polyaniline, Polypyrrole, Polythiophene, Poly(p-phenylene), 

Poly(phenylene vinylene) etc. The Figure 1.1 shows some of the conjugated 

polymers, which have been studied as intrinsically conducting polymers. 

The unique electronic properties of the conjugated polymers are derived from 

the presence of π - electrons, the wave functions of which are delocalized over a long 

portion of the polymer chain when the molecular structure of the backbone is planar. 

It is therefore necessary that there are no large torsion angles at the bonds, which 

would decrease the delocalization of the π – electrons system [20]. 
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Figure 1.1: Examples of inherently conducting polymers. 
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1.3. Application of conducting polymers 

Researches show that conducting polymers exhibit conductivity from the 

semiconducting range (~10−5 S cm−1) right up to metallic conductivity (~104 S cm−1). 

With this range of electrical conductivity and low density coupled with low cost 

polymeric conductor pose a serious challenge to the established inorganic 

semiconductor technology. There are mainly two groups of applications for organic 

conducting polymers which are briefly described below: 

Group I: These applications just use the conductivity of the polymers. The 

polymers are used because of either their lightweight, biological compatibility for 

ease of manufacturing or cost. Electrostatic materials, Conducting adhesives, 

Electromagnetic shielding, Printed circuit boards, Artificial nerves, Antistatic 

clothing, Piezoceramics, Active electronics (diodes, transistors), Aircraft structures.  

Group II: This group utilizes the electroactivity character property of the 

materials. Molecular electronics, Electrical displays, Chemical, Biochemical and 

Thermal sensors, Rechargeable batteries and Solid electrolytes, Drug release 

systems, Optical computers, Ion exchange membranes, Electromechanical actuators, 

'Smart' structures, Switches.  

 

1.4. Syntheses of selected conducting polymers 

Various methods [21] are available for the synthesis of conducting polymers. 

However, the most widely used technique is the oxidative coupling involving the 

oxidation of monomers to form a cation radical followed by coupling to form di-

cations and the repetition leads to the polymer. Electrochemical synthesis is rapidly 

becoming the preferred general method for preparing electrically conducting 

polymers because of its simplicity and reproducibility. The advantage of 

electrochemical polymerization is that the reactions can be carried out at room 
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temperature. By varying either the potential or current with time the thickness of the 

film can be controlled. 

Electrochemical polymerization of conducting polymers is generally 

employed by: (1) constant current or galvanostatic; (2) constant potential or 

potentiostatic; (3) potential scanning/cycling or sweeping methods. Standard 

electrochemical technique which employs a divided cell containing a working 

electrode, a counter electrode and a reference electrode generally produces the best 

films. The commonly used anodes are chromium, gold, nickel, palladium, titanium, 

platinum and indium-tin oxide coated glass plates. Semi-conducting materials such 

as n-doped silicon [22], gallium arsenide [23], cadmium sulphide and semi-metal 

graphite [24] are also used for the growth of polymer films. Electrochemical 

synthesis can be used to prepare free standing, homogeneous and self doped films. 

Besides this, it is possible to obtain copolymers and graft copolymers. Polyazulene, 

polythiophene, polyaniline, polycarbazole and several other polymers have been 

synthesized using this approach. 

 

1.4.1. Polyaniline 

The largest use of aniline and its derivatives is in dye production. They are 

thus important ingredients in color industry. Every year, thousands of new colors and 

shades are generated and tested in industry. Polyaniline is one of the oldest artificial 

conducting polymers [25] and its high electrical conductivity among organic 

compounds has attracted continuing attention [26]. Aromatic amines are also 

involved in the search for potentially interesting new compounds in materials science 

[27]. 

The anodic oxidation of aniline to the final product, polyaniline, is quite complex 

and there is still a controversy as regards the reaction pathway. The main question to 
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be answered concerns the chemical nature of the intermediates. For instance, it was 

widely believed even in early papers [28] that, in acidic media, the polymerization 

process involves a coupling of aniline radical cation that is formed in the initial 

oxidation step. The cation, being an acid, would be stabilized in acidic conditions. 

Initial intermediate species produced during aniline oxidation (Figure 1.2) have been 

known to be head-to head, tail-to-tail and head-to-tail type linkages whose molar 

ratio depends on pH of the medium. Aniline couples mainly tail-to-tail, and head-to-

tail under acidic conditions. However the head-to-head coupling reported at high pH 

values.  
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Polyaniline is composed of aniline repeat units connected to form a 

backbone. The existence of a nitrogen atom lying between phenyl rings allows the 

formation of different oxidation states (doping) that can affect its physical properties. 

In general, three distinct forms are available, depending on the degree of oxidation of 

the nitrogens (Figure 1.3): 

(a) A leucoemeraldine base is a fully reduced form which contains only benzene 

rings in the polymer chain. 

(b) An emeraldine base is a half oxidized form, where both benzene and quinoidal 

rings are present. 

(c) A pernigraniline base is a fully oxidized form. 

The conducting emeraldine salt form can be obtained by oxidative doping of 

leucoemeraldine base or by protonation of emeraldine base (Figure 1.4). 
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Figure 1.3: Different forms of polyaniline. 
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Figure 1.4: Formation of a polyaniline salt following oxidation and protonation of  
                    bases. 
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Electrically conducting polymers in their pristine and doped states have been 

the materials of great interest for their applications in modern technologies. Among 

all conducting polymers polyaniline has a special representation, probably due to the 

fact that new applications of polyaniline in several fields of technology are expected. 

Although polyaniline is one of the most important conducting polymers around, 

detailed study on its structure and properties only begun in the 1980s [29-35]. 

Generally, it is accepted that polyaniline is a redox polymer. Figure 1.5a 

shows this blend where polyaniline has both the reduced benzenoid unit (y) and the 

oxidized quinoid unit (1 – y) [36]. Polyaniline may exist in several oxidation states, 

i.e. from the completely reduced leucoemeraldine state (Figure 1.5b), where 1 – y = 

0, to the completely oxidized pernigraniline state, where 1 – y = 1. The half-oxidized 

emeraldine base state, where 1 – y = 0.5, is composed of an alternating sequence of 

two benzenoid units and one quinoid unit [37, 38]. Even though each of these three 

states of polyaniline possesses quite interesting physical and chemical properties, 

they, actually, are insulators. However, the insulator blue emeraldine base may be 

conducting if it is doped with protic acids and become green protonated emeraldine 

or emeraldine salt with dc conductivity in the metallic region (ca. 1~5 S cm−1) [39]. 

The later may also be obtained via a redox doping process of either its corresponding 

reduced leucoemeraldine or oxidized pernigraniline, by either a chemical or an 

electrochemical step in acid conditions (Figure 1.5b). The deprotonation of 

emeraldine salt revert this to emeraldine base.  
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Polyaniline is prepared either by chemical or electrochemical oxidation of 

aniline under acidic conditions. The method of synthesis depends on the intended 

application of the polymer. Whenever thin films and better patterns are required, an 

electrochemical method is preferred. 

1.4.1(a) Chemical synthesis 

Chemical polymerization of aniline has been carried out in an acidic solution 

[40-44]. This acidic condition provides the solubilization of the monomers as well as 

the formation of emeraldine salt as a conducting polyaniline. Figure 1.6 depicts a 

chemical polymerization mechanism of aniline in acidic solution using an oxidizing 

agent. Aniline monomer forms the anilinium ion in acidic medium and chemical 

polymerization results in the formation of protonated, partially oxidized form of 

polyaniline. The initial step involves formation of the aniline radical cation. The next 

step is followed by the coupling of N- and para-radical cations with consecutive 

rearomatization of the dication of para-aminodiphenylamine. The oxidation process 

of the diradical dication makes the fully oxidized pernigraniline salt form of 

polyaniline due to the high oxidizing power of the oxidant such as ammonium 

persulfate ((NH4)2S2O8). Whereas “head-to-tail” coupling is predominant, some 

coupling in the ortho-position also occurs, leading to conjugation defects in the final 

product. 
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Figure 1.6: Polymerization mechanism of aniline [45]. 
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After consuming all the oxidant, the unreacted aniline monomer reduces the 

pernigraniline to produce the green emeraldine salt as the resultant polymer. From 

the viewpoint of color change in solution, the formation of para-

aminodiphenylamine reflects pink, and the formation of protonated pernigraniline 

becomes deep green. Green emeraldine salt precipitates after reduction of 

pernigraniline in the final step. In the termination step, green emeraldine salt forms 

as a conductive polyaniline form and it can be converted to emeraldine base with an 

alkaline solution or an excess of water. The emeraldine base can be transformed to 

two non-conductive polyaniline such as the completely oxidized pernigraniline and 

reduced leucoemeraldine depending on oxidation states. Imine sites of the 

emeraldine base are easily protonated in acid condition, which results in the 

formation of green emeraldine salt as a conducting polyaniline [46]. The 

conductivity of polyaniline was affected by degree of protonation and oxidation. In 

addition, the structural and conformational factors derived from polymerization 

condition also affect the conductivity of polyaniline. 

1.4.1(b) Electrochemical synthesis 

  Electrochemical synthesis of polyaniline is a radical combination reaction 

and is diffusion controlled. Electropolymerization is generally carried out in aqueous 

protonic acid medium and this can be achieved by any one of the methods given 

here: 

i) Galvanostatic: constant current in the range of 1-10 mA. 

ii) Potentiostatic: at constant potentials −0.7 to 1.1 V versus SCE.  

iii) Sweeping the potential: between two potential limits −0.2V to +1.0V vs. SCE. 

 In the case of Ani electropolymerization, the radical cation of aniline 

monomer is formed on the electrode surface by oxidation of the monomer [40, 47-

50]. This process is considered to be the rate-determining step. Radical coupling and 
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elimination of two protons make mainly paraformed dimers. Chain propagation 

proceeds with oxidation of the dimer and aniline monomer on the electrode surface. 

In this step, the radical cation of the oligomer couples with a radical cation of aniline 

monomer. In the final step, polyaniline is doped by the acid present in solution. The 

growth of polyaniline has been considered to be self catalyzed. This means that the 

polymers are formed at the higher rate as the more monomers are deposited onto the 

polymer surface. It involves the adsorption of the anilinium ion onto the oxidized 

form of polyaniline, followed by electron transfer to form the radical cation and 

subsequent reoxidation of the polymer to its most oxidized state. 

 

1.4.2. Polypyrrole  

 Polypyrrole is an inherently conductive polymer due to excluded π 

conjugation of electrons, which is stabilized by the heterocyclic group. Polypyrrole is 

an especially promising conductive polymer for commercial applications, owing to 

its high conductivity, good environmental stability and ease of synthesis. It is easy to 

prepare by standard electrochemical techniques and its surface charge characteristics 

can easily be modified by changing the dopant anion that is incorporated into the 

material during synthesis. 

Conducting polypyrrole can be prepared by various methods such as 

chemical, electrochemical, vapor phase etc. The different two oxidation states of 

polypyrrole are shown in the Figure 1.7. 
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Figure 1.7: Various oxidation states of polypyrrole. 
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1.4.2(a) Chemical synthesise 

 Polypyrrole has been prepared in the presence of various oxidizing agents 

like sulfuric acid, nitrous acid, quinones or ozone. The material obtained was in the 

insulating range 10−10 to 10−11 S cm−1 [51]. This could be then doped with halogenic 

electron acceptors such as bromine and iodine to achieve a stable conductivity of 

10−5 S cm−1 [52]. 

In recent times, polypyrrole is synthesized chemically in conducting state, because 

the polymer oxidation occurs with oxidant salts acting as dopant agents. Several 

metallic salts such as FeCl3, Fe(NO3)3, K3[Fe(CN)6], CuCl2 and CuBr2, have been 

employed for the polymerization of pyrrole [53-55]. Ferric salts are the most 

commonly used oxidants for the chemical synthesis of highly conductive polymer 

complexes. 

 Figure 1.8 describes a typical mechanism for chemical oxidation 

polymerization of pyrrole. In the initiation step, radical cations (C4NH5
+) are 

generated by the oxidation of pyrrole monomer. A radical-radical coupling occurs 

between two radical cations, and forms a dimer with deprotonation, leading to a 

bipyrrole. The bipyrrole is reoxidized and couples with other radical cations. This 

process is repeated consecutively during the propagation step. The termination takes 

place due to the nucleophilic attack of water molecules or impurities in the polymer 

chains. 

1.4.2(b) Electrochemical synthesis 

 It is reported that [56] the electrosynthesis of polypyrrole film proceeds via 

the oxidation of pyrrole at the platinum electrode to produce an unstable P-radical 

cation which then reacts with the neighboring pyrrole species. The cyclic 

voltammograms of these solutions show an irreversible peak for the oxidation of 

pyrrole at +1.2 V versus the saturated calomel reference electrode (SCE) [57].  
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Figure 1.8: Polymerization mechanism of pyrrole [58]. 
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The mechanism of the overall reaction for the formation of fully aromatized 

product is very complicated and involves series of oxidation and deprotonation steps. 

In practice polypyrrole films are prepared by the electro-oxidation of pyrrole in one 

compartment cell equipped with platinum working electrode, gold wire counter 

electrode and a saturated calomel reference electrode. A wide variety of solvents and 

electrolytes can be used as the electrical resistance of the solution is high and the 

nucleophilicity does not interfere with the polymerization reaction. These conditions 

can be accomplished by selecting solutions where the electrolyte is highly 

dissociated and which are slightly acidic. Films of various thicknesses can be 

prepared by changing the current density. Many other authors have investigated the 

process of electrochemical deposition of conducting polypyrrole [59]. 

1.4.2(c) Vapour phase deposition 

 This technique, although known for depositing polypyrrole films since about 

a decade ago [60]. The gas phase preparation of polypyrrole has been described by 

Chen et al. [61]. Conducting polymer films were prepared in a similar manner to the 

chemical vapor deposition method [60]. The polypyrrole films were prepared in two 

ways i.e. by vapor phase polymerization using H2O2 or HCl, or by chemical vapor 

deposition of polypyrrole doped with FeCl3. Bhattacharya and Misra [62] have used 

polyvinyl chloride-cupric chloride complex film as base polymer and polypyrrole 

was vapor phase polymerized on this. Wang et al. [63] have also made polypyrrole 

films by this method. They used polyethyleneoxide and FeCl3, which were first 

dissolved in a suitable solvent, from which, films were cast on glass slides. These 

were dried and exposed then exposed to pyrrole vapors. The sample showed in-situ 

growth of polypyrrole films, which also developed crystalline order. 
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1.4.3. Poly-ortho-phenylenediamine     

 The polymers of aromatic diamines including phenylenediamines, 

diaminonaphthalenes, diaminoanthraquinones, benzidine, naphthidine, and 

diaminopyridine have received increasing attention. These monomers are very 

susceptible to oxidative polymerization via oxidation of one or both amino groups to 

give linear polyaminoaniline, linear polyaminonaphthylamine, ladder polyphenazine, 

and phenazine unit containing polymers. It is believed that investigations on the 

aromatic diamine polymers are more attractive since they exhibit more novel 

multifunctionality than polyaniline and polypyrrole. The polymers have shown 

apparently different characteristics versus widely researched conducting polymers 

such as polyaniline and polypyrrole in the application of electrocatalysis, 

electrochromics, sensors, electrode materials, heavy metal ion complex, and 

detection [64-66], although the polymerization mechanism and properties of the 

polymers have not been definitely reported. It should be appreciated that the 

aromatic diamine polymers possess good multifunctionality partially due to one free 

amino group per repetitive unit on the polymers. Most of the polymers of the 

aromatic diamines have been prepared by electrochemical polymerization, but only a 

small number of polymers were obtained through chemically oxidative 

polymerization. 

1.4.3(a) Chemical synthesis    

 Thus far, only a few reports have described the formation of polymeric 

products by chemical oxidation of aromatic diamines. However, relatively few 

reports have appeared on the synthesis and structure of the polymers from aromatic 

diamines prepared by chemically oxidative polymerization. The oxidative 

polymerization was generally accomplished as follows: first, phenylenediamine    

monomers and oxidant were separately dissolved in acidic aqueous solutions. Then 
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the polymerization reaction was initiated by steadily adding oxidant solution drop 

wise into the monomer solution at 25-30 °C for meta-phenylenediamine and para-

phenylenediamine in common inorganic or organic acidic aqueous solutions and 118 

°C for ortho-phenylenediamine only in glacial acetic acid. The drop wise addition of 

oxidant solution is beneficial for obtaining polymers with a relatively high molecular 

weight and narrow molecular weight distribution because the oxidation 

polymerization of the aromatic diamines is highly exothermic. Finally, the reaction 

continued for at least 12 h. The resulting powder product was filtered and dried at 

temperatures lower than 60 °C. A drying temperature of higher than 60 °C might 

lead to cross-linking of the polymers. The acids used for the preparation of aromatic 

diamine polymers mainly include HCl and glacial acetic acid. The effective oxidants 

are persulfate, iodine, H2O2, ceric ammonium nitrate, and Cu(NO3)2. Among them, 

the persulfates including Na+, K+, and NH4
+ persulfates are commonly employed as 

oxidizing agents. Note that the oxidant is not necessary to the chemical oxidative 

polymerization of meta-phenylenediamine and para-phenylenediamine. For 

example, meta-phenylenediamine and para-phenylenediamine in oxidant-free acetic 

acid aqueous solution can polymerize into polymers with the characteristics of 

semiconductors at polymerization yields of 15% and 60%, respectively. However, 

the oxidant is required for the chemically oxidative polymerization of ortho-

phenylenediamine because no oxidative polymer of ortho-phenylenediamine can be 

obtained even if reaction at flux temperature in acetic acid aqueous solution is 

allowed to proceed for 8 h. Moreover, the oxidative polymerization yield of ortho-

phenylenediamine is usually the lowest and the yield of para-phenylenediamine the 

highest [67]. 

 

 



 23

1.4.3(b) Electrochemical synthesis 

    Polarographic investigations of ortho-phenylenediamine were reported with gold, 

graphite, and platinum electrodes in HCl and buffer (pH=1–4) solutions, and the 

oxidation potential, critical oxidation potential, and polarographic half-wave 

potential of ortho-phenylenediamine were given first by Lord and Rogers in 1954 

[68]. Parker and Adams examined the anodic polarography of three 

phenylenediamines (ortho, meta and para) on a rotating Pt electrode using a current-

scanning technique in 1956 [69]. They observed a linear relationship between 

limiting current and para-phenylenediamine concentration. The 

electropolymerization mechanism of three phenylenediamines was first suggested by 

Elving and Krivis in 1958 [70]. They proposed that the oxidation mechanism of three 

phenylenediamines depends on the phenylenediamine monomer structure and 

solution pH value [71]. 

Poly-ortho-phenylenediamine can be prepared electrochemically in acid, 

neutral and alkaline solutions and is very stable in both aqueous solutions and air 

[72, 73]. The ease of dissolution of poly-ortho-phenylenediamine in organic solvents 

such as dimethyl sulfoxide makes it one of the so-called soluble electroactive 

polymers and thus provides more flexibility in the studies of its structures [73-76]. 

Electrochemical techniques, insitu FTIR spectroscopy [73, 77], resonant Raman 

spectroscopy [78], radiometry [79], the electrochemical quartz crystal microbalance 

(EQCM) [80] and other methods have been employed to study the 

electropolymerization mechanism, to characterize the polymer films and to develop 

various applications of poly-ortho-phenylenediamine. 

 During the electropolymerization process, polymer film is deposited on the 

electrode surface and the formation of soluble oligomers might occur. The local 

concentration of the oligomers near the electrode surface might be very high, 
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depending on the solubility and the diffusivity of the oligomers. The polymer films 

formed might be very porous.     

 Generally, ortho-, meta-, and para-phenylenediamines undergo oxidative 

polymerization to give phenazine ring containing ladder polymers with free amino 

groups [72, 75, 76]. Rothwell and co-workers [72] proposed a ladder-like, 

asymmetrical “quinoid” structure with phenazine-like units, while Yano and 

Yamasaki [74] suggested a ring-opened 1,4-substituted benzenoid-quinoid structure. 

The mechanisms of electropolymerization were very complicated in nature [72, 74]. 

poly-ortho-phenylenediamine film should possess a mixture of ladder-like and ring-

opened structures (Figure 1.9). 
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