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SINTESIS DAN SIFAT MESOMORFIK BAGI OLIGOMER PELBAGAI-FUNGSIAN 

BERSIMETRI DAN BUKAN-SIMETRI 

 

 

ABSTRAK 

 

 

Enam siri oligomer bersimetri dan tidak bersimetri dengan pelbagai kumpulan 

berfungsi telah disintesis dan dicirikan. Oligomer ini terdiri daripada dua siri dimer tidak 

bersimetri, tiga siri trimer bersimetri dan satu siri trimer tidak bersimetri. Siri pertama dimer 

tidak bersimetri, α-(4-benzilidina-tertukarganti-anilina-4’-oksi)-ω-[2-metilbutil-4’-(4”-

fenil)benzoatoksi]alkana terdiri daripada sepuluh homolog yang berbeza dari segi kumpulan 

tertukarganti, X = H, CH3, F, Cl and Br dan juga spaser C6H12 and C8H16. Dimer ini 

mempamerkan fasa nematik enantiotropik kecuali sebatian dengan X = H. Kedua-dua dimer 

dengan atom tertukarganti Br juga mempamerkan fasa SmA ‘intercalated’. Penyusunan 

‘intercalated’ ialah hasil daripada, sekurang-kurangnya sebahagiannya, interaksi lebih sesuai 

antara dua teras mesogenik berbeza. Dimer tidak bersimetri dalam siri kedua iaitu α-(4-

benzilidinakloroanilina-4’-oksi)-ω-[(4-(tiofena-2-karboksil)benzilidinaanilina-4’-oksi]-

alkana dengan spaser yang terdiri daripada C5H10 sehingga C12H24 adalah mesogen 

enantiotropik. Sifat nematogenik ini menunjukkan tentang pengaruh tarikan terminal antara 

teras 4-benzilidinakloroanilina dan tiofena-2-karboksilat. Kesan ganjil-genap yang kuat dari 

segi suhu peralihan nematik-isotropik dimer ini juga telah direkodkan. Dalam siri ketiga 

oligomer, trimer bersimetri 4,4’-bis{ω-[2-metilbutil-4’-(4”-fenil)benzoatoksi]alkiloksi- 

benzilidina}-1,4-diaminobenzena adalah nematogen dan smektogen kiral. Selain daripada 

fasa nematik kiral, setiap homolog dalam siri ini juga mempamerkan fasa SmA secara 

enantiotropik. Fasa SmC kiral feroelektrik juga diperhatikan untuk homolog dengan spaser 

daripada C5H10 sehingga C9H18. Tambahannya, ahli-ahli ganjil mempamerkan fasa biru dan 

fasa smektik bertertib-tinggi. Dua lagi siri trimer dengan kumpulan tertukarganti lateral iaitu 

4,4’-bis{ω-[2-metilbutil-4’-(4”-fenil)benzoatoksi]-3-metoksi-4-alkiloksibenzilidina}-1,4-
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diaminobenzena dan 4,4’-bis{ω-[2-metilbutil-4’-(4”-fenil)benzoatoksi]-3-bromo-4-

alkiloksibenzilidina}-1,4-diaminobenzena telah disediakan. Dengan kehadiran kumpulan 

metoksi lateral, empat trimer genap mempamerkan fasa nematik kiral enantiotropik 

sementara ahli ganjil tidak bersifat mesogenik. Sementara itu, setiap trimer tertukarganti-Br 

dalam siri mempamerkan fasa nematik kiral enantiotropik kecuali trimer dengan spaser 

C5H10 dan C11H22. Sementara trimer C5H10 tidak mesogenik, ahli dengan C11H22 

mempamerkan fasa nematik kiral monotropik. Trimer dengan spaser C7H14 dan C9H18 juga 

menunjukkan fasa biru. Kestabilan terma yang rendah dan sifat nematogenik trimer dengan 

kumpulan tertukarganti lateral adalah hasil daripada halangan lateral untuk interaksi antara-

molekul. Dalam siri keenam oligomer, trimer tidak bersimetri 4-etil- dan 4-

floroanilinabenzilidina-2’,4’-oksibis(4”-halogenoanilinabenzilidina-4”’-oksi)alkana 

mengandungi sama ada atom klorin atau bromin terminal. Trimer ini juga berbeza antara satu 

sama lain daripada segi spaser C4H8 and C6H12. Trimer ini adalah nematogenik dengan suhu 

peralihan yang rendah disebabkan arkitektur molekul bercabang. Tiga daripada homolog 

dengan kumpulan etil juga merupakan nematogen kekacaan dengan suhu peralihan kaca 

kurang daripada 15°C.  
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SYNTHESIS AND MESOMORPHIC PROPERTIES OF SYMMETRIC AND  

NON-SYMMETRIC MULTI-FUNCTIONALIZED OLIGOMERS 

 

 

ABSTRACT 

 

 

 Six series of novel symmetric and non-symmetric oligomers with multi-functional 

groups have been synthesized and characterized. The oligomers comprise two series of non-

symmetric dimers, three series of symmetric trimers and one series of non-symmetric 

trimers. The first series of non-symmetric dimers, α-(4-benzylidene-substituted-aniline-4’-

oxy)-ω-[2-methylbutyl-4’-(4”-phenyl)benzoateoxy]alkanes consists of ten homologues 

varying in terms of terminal substituents, X = H, CH3, F, Cl and Br as well as C6H12 and 

C8H16 spacers. The dimers exhibit the enantiotropic nematic phase except compounds with X 

= H. Both Br-substituted dimers also exhibit the intercalated SmA phase. The intercalated 

arrangement is the result, at least in part, of the more favourable interaction between the two 

unlike cores. The non-symmetric dimers in the second series, α-(4-benzylidenechloroaniline-

4’-oxy)-ω-[4-(thiophene-2-carboxyl)benzylideneaniline-4’-oxy]alkanes with spacers ranging 

from C5H10 to C12H24 are all enantiotropic mesogens. The nematogenic properties indicate 

the predominant terminal attraction between the 4-benzylidenechloroaniline and thiophene-2-

carboxylate cores. Strong odd-even effect in terms of the nematic-isotropic transition 

temperatures of the dimers has also been recorded. In the third series of oligomers, the 

symmetric trimeric 4,4’-bis{ω-[2-methylbutyl-4’-(4”-phenyl)benzoateoxy]alkyloxy- 

benzylidene}-1,4-diaminobenzenes are chiral nematogens and smectogens. Apart from the 

chiral nematic phase, every homologue in this series also exhibits the SmA phase 

enantiotropically. The chiral SmC phase is also observed for the homologues with spacers 

from C5H10 to C9H18. Additionally, the odd members exhibit the blue phase and monotropic 

high-order smectic phase. Another two series of trimers with lateral substituents namely the 

4,4’-bis{ω-[2-methylbutyl-4’-(4”-phenyl)benzoateoxy]-3-methoxy-4-alkyloxybenzylidene}-
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1,4-diaminobenzenes and 4,4’-bis{ω-[2-methylbutyl-4’-(4”-phenyl)benzoateoxy]-3-bromo-

4-alkyloxybenzylidene}-1,4-diaminobenzenes have been prepared. With the presence of 

lateral methoxy groups, the four even trimers exhibit the enantiotropic chiral nematic phase 

whilst the odd members are not mesogenic. On the other hand, every Br-substituted trimer in 

the series exhibits the enantiotropic chiral nematic phase except the trimers with C5H10 and 

C11H22 spacers. Whilst the C5H10 trimer is not mesogenic, the member with C11H22 spacers 

exhibits the monotropic chiral nematic phase. The trimers with C7H14 and C9H18 spacers also 

show the blue phase. The lower phase thermal stability and nematogenic behaviour of the 

trimers with lateral substituents is the result of lateral hindrance for intermolecular 

interaction. In the sixth series of oligomers, the non-symmetric trimeric 4-ethyl- and 4-

fluoroanilinebenzylidene-2’,4’-oxybis(4”-halogenoanilinebenzylidene-4”’-oxy)alkanes 

incorporate either a terminal chlorine or bromine atom. The trimers also vary from each other 

in terms of C4H8 and C6H12 spacers. The trimers are nematogenic with low transition 

temperatures due to the branched molecular architecture. Three of the members with ethyl 

group are also glassy nematogens with glass transition temperatures less than 15°C.  
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1.0 INTRODUCTION 

 

1.1 Liquid crystals: History  

Liquid crystals are fascinating materials which have been utilized in many types of 

applications such as display devices. The first liquid crystal compound named cholesteryl 

benzoate was found in 1888 by F. Reinitzer (Kelker and Hatz, 1980). His initial observation 

uncovered that the compound possessed two distinctive phase transitions at 146.6 °C and 

180.6 °C, respectively. The substance exhibited iridescent colours in between these transition 

temperatures which were characteristic of a state later known as liquid crystal. By the 20th 

century, the correlating principles of liquid crystals and molecular structures had been 

developed by D. Vorländer. In general, as cited by Kelker and Hatz, the terminology of 

liquid crystals accepted today is based on the original work by G. Friedel. His pioneering 

work via polarizing microscopic observation introduced the terms such as nematic and 

smectic phases which have been used widely until today.   

 

 

1.2 Liquid crystals: Concept 

 Liquid crystal is known as the fourth state of matters besides solid, liquid and gas. As 

shown in figure 1.1, liquid crystal is an intermediate phase between a crystal and a liquid. It 

is important to mention that, in relative terms, only a small percentage of chemical 

compounds possess liquid crystalline properties. Most substances known today have only 

two phase transitions with respect to the increase of temperature. The two transitions are 

melting and boiling. However, a liquid crystal is different from conventional compounds as it 

has at least another phase transition to the liquid crystalline phase from the crystalline phase 

before clearing to the isotropic liquid.  
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For discussion on liquid crystals, the liquid-gas transition is not of interest because in 

the gas phase, molecules are in total random motion and do not possess any degree of 

ordering. The difference between these two phases is the molecules of a gas is widely 

separated from one another and move in a path largely unaffected by intermolecular forces.   

 

crystal                        liquid                         gas 

            liquid crystal

 
 

                         Figure 1.1: Primary phase transitions and phase transitions  

         involving liquid crystalline phase (in dotted box) 

                      

                      

1.3 Mesophases 

 The liquid crystalline phase is known as mesophase. There are many mesophases 

which have been discovered but these phases can be categorized into two major ones; 

nematic and smectic phases. The nematic phase is exhibited at higher temperature in 

comparison to the smectic phase. The nematic phase has more similarities to the liquid phase 

whilst the smectic and crystal phase are more similar to each other.  

 

1.3.1 Nematic phase 

 In the nematic phase, the molecules possess some degree of orientational order. In 

average, the molecules are all aligned towards similar direction in the nematic phase. The 

orientational direction is represented by the director (figure 1.2). There is no positional 

ordering in the nematic phase.  
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Figure 1.2: Nematic phase (Barόn, 2001)  

 

1.3.1.1 Chiral nematic phase 

 The chiral nematic phase is also known as the cholesteric phase. In the chiral nematic 

phase, the chiral center of every molecule provides intermolecular force which enables 

molecules to align at a slight angle from one another. This leads to a stack of nematic layers 

with the local director in each layer twisted around a single axis as illustrated in figure 1.3. 

The overall molecular orientation in the chiral nematic phase is visualized as a continuous 

twisting pattern like a helix from one layer to another.  
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Figure 1.3: Chiral nematic phase (Barόn, 2001) 

 

1.3.2 Smectic phase 

 Unlike the nematic phase, the smectic phase possesses some similarities to the crystal 

phase as the smectic molecules are arranged in layer-like ordering. In other words, there exist 

positional orders in a smectic phase. In the smectic phase, the molecules also possess 

orientational order which is similar to that of a nematic phase. 

 

1.3.2.1 Non-chiral smectic phase 

 Based on the differences in molecular orientation and packing in the smectic layers, 

more than ten different smectic modifications have been reported. The simplest smectic 

phase is known as the smectic A (SmA) phase. In the SmA phase, molecules are aligned 

perpendicular to the smectic plane as shown in figure 1.4(a). In the layers, molecules do not 

have any particular positional order. The SmA phase has been observed in various liquid 



 5 

crystalline compounds such as the 5,5’-substituted-2,2’-bipyridines with flexible alkoxy 

terminals (Douce et al., 1996). 

 The SmA phase can be further classified into different types such as the monolayer, 

bilayer, interdigitated and intercalated SmA phase. The monolayer SmA phase (SmA1) is the 

simplest SmA phase and is the most frequently encountered SmA phase. The SmA1 layer 

thickness corresponds to the length of the molecule. Bilayer SmA (SmA2) phase with layer 

spacing twice the molecular length is usually observed for liquid crystals with a terminal 

dipolar group such as cyano or nitro group. This is due to the electrostatic interaction arising 

from the opposite direction of longitudinal component with regard to the cyano or nitro 

dipoles (Madhusudana, 2001). In the interdigitated SmA (SmAd) phase, the layer thickness is 

more than the length of one molecule but less than the length of two molecules. The SmAd 

phase is usually observed for liquid crystals with two different mesogenic cores in the 

molecular structure. The driving force for this phase is however not confined to only the 

presence of two unlike cores in the structure, as electrostatic interaction between certain 

groups like the polar and polarizable cyanobiphenylyl groups is known to play a key role in 

inducing interdigitation. The length of the terminal flexible chain is also important in the 

sense that if the chain length is more than the length of the flexible core, the long terminal 

chain cannot be accommodated in the available space leading to the formation of 

interdigitation (Attard et al., 1994). Contrary to SmAd, the smectic layer periodicity in the 

intercalated SmA (SmAc) phase is approximately half the molecular length. The 

intercalation, which often occur among the non-symmetric dimers, results from a specific 

interaction between the unlike mesogenic cores enhanced by an entropy gain resulting from 

the uniform mixing of such groups (Blatch et al., 1997). The observations of SmAc phase for 

symmetric dimers is less common, but nevertheless, it has also been reported for the 

symmetric dimers incorporating two biphenyl groups with terminal OC4H9 groups. The 

intercalated smectic phase is possibly driven by an interaction between the carbonyl groups 
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which link the spacer to the mesogenic units and the ether groups which connect the terminal 

chains to the mesogenic moieties (Attard et al., 1994 and Watanabe et al., 1993). 

 The smectic C (SmC) phase is the tilted analogue of the SmA phase. In each SmC 

layer, molecules are arranged in similar order as in SmA phase. However, as illustrated in 

figure 1.4(b), in every SmC layer, molecules are tilted at a constant tilt angle (θ) with respect 

to the layer normal. From X-ray diffraction analyses, reports have shown that for a number of 

liquid crystal materials, the θ in the SmC phase is temperature dependent. In other words, the 

θ of the SmC molecules may increase or decrease with respect to the changing of 

temperature.   

 

                        
                                   (a)                                                           (b) 

 

Figure 1.4: Molecular arrangement in (a) SmA phase with Z = optic axis; 

                                  (b) SmC phase (Barόn, 2001)  

 

 Apart from the SmA and the SmC phases of which the layers are unstructured, the 

hexatic smectic phases namely the SmB, SmF and SmI phases have also been observed. In 

the SmB phase, the director is perpendicular to the layers with long-range hexagonal bond-

orientational order. The bond-orientational order represents the long range orientational but 

short range positional ordering of molecules within a smectic layer (Dierking, 2003). The 

illustration of the molecular organization in a SmB phase is given in figure 1.5.  
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Figure 1.5: SmB phase (Barόn, 2001)  

 

 Contrary to the SmB phase, the director in the SmF and SmI phases is tilted with 

respect to the layer normals. For the SmF phase, the director is tilted towards the side of the 

hexagons as shown in figure 1.6(a). On the other hand, the molecules in the SmI phase tilt 

towards the apex of the hexagon (figure 1.6(b)). The in-plane positional correlations in the 

SmI phase are slightly greater than in the SmF phase.   

 

 
 

Figure 1.6: Illustration of the respective tilt directions of the director in the  

                                 (a) SmF; (b) SmI phases 
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1.3.2.2 Chiral smectic phase 

 The chiral smectic C (SmC*) phase is one of the most widely discussed chiral smectic 

phases (Lunkwitz et al., 1998 and Hamaneh and Taylor, 2005). A host of materials exhibiting 

the SmC* phase have been synthesized such as the mesogenic derivatives of 2S,3S-2-

halogeno-3-methylpentanoic acid (Szydłowska et al., 1999). In the similar manner to SmC 

phase, in every layer molecules are tilted at a constant tilt angle with respect to the axis 

perpendicular to the plane. In addition to this, the SmC* molecules are arranged in a 

macroscopic helical pattern as the result of precession of the tilt about the same axis from one 

layer to another (figure 1.7). For a particular material, the rotation always occurs in the same 

direction whether it is left-handed or right-handed (Singh, 2002).  

 

 
 

Figure 1.7: SmC* phase with P = helical pitch (Barόn, 2001) 
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1.3.2.3 Unidentified smectic phase 

 Irrespective of whether the liquid crystals are optically active or not, there have been 

few cases whereby a smectic phase cannot be determined conclusively by powder X-ray 

diffraction, mesophase texture observation and even miscibility studies. In such cases, the 

smectic phase is often called as smectic X (SmX) which represents an unidentified smectic 

phase. One such example is exhibited by the five-ring λ-shaped mesogenic compounds of 

which three unidentified smectic phases have been observed (Yamaguchi et al., 2005). 

Another example of unidentified smectic phase has also been discussed for a laterally 

fluorinated banana-shaped liquid crystal (Lee et al., 2001).  

 

1.3.3 Blue phase 

 The blue phase is often observed in between the chiral nematic phase and the 

isotropic phase. In terms of structure, the blue phase possesses three-dimensional spatial 

distribution of helical director axes leading to a frustrated structure as shown in figure 1.8 

(Meiboom et al., 1981 and Barόn, 2001). Within every double twist cylinder, the local 

director rotates around any given radius of the cylinder. At the core of the cylinder, the 

director is oriented parallel to the cylinder long axis. On moving outwards, the local director 

twists along any radius until the twist angle is approximately 45° at the edge of the double 

twist cylinder. The blue phase only exists in chiral liquid crystalline materials with smaller 

helical pitch (Stegemeyer, 1999). This characteristic has been reported for the non-symmetric 

dimers with odd parity of which the pitch is smaller in comparison to the even counterparts 

(Blatch et al., 1997). Other examples of liquid crystals which have also exhibited the blue 

phase are the three-ring terephthalates with four ester linkages (Fodor-Csorba et al., 1998). 
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Figure 1.8: A blue phase model consisting of double-twist cylinders  

                                       forming a cubic lattice (Barόn, 2001) 

 

 

1.4 Mesogen 

 A mesogen is a compound which can exist as a liquid crystal phase under suitable 

conditions of pressure, temperature and concentration. Based on the aspect of molecular 

structure, mesogens can be divided to several types including the calamitic, discotic, banana-

shaped, laterally branched and oligomeric systems.  

 

1.4.1 Calamitic mesogens 

 Calamitic mesogens are also known as rod-like mesogens due to the linearity of the 

molecular structure. As such, majority of calamitic mesogens involves para-para aromatic 

substitutions to give the rod-like structures. Calamitic mesogens possess high shape 

anisotropy which are favourable for layered molecular arrangement in the mesophase. Two 

examples of calamitic mesogens are shown in figure 1.9(a) and (b).  
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Figure 1.9: Two examples of calamitic mesogens (a) N-[4-(4-octyloxybenzoyloxy)-2- 

                         hydroxybenzylidene]-3-aminopyridine (Takase et al., 2003); (b) 4-[(S)-2- 

                         chloro-4-methylpentanoyloxy]-4’-[4-propylbenzoyloxy]biphenyl (Schacht  

                         et al., 1998) 

 

1.4.2 Discotic mesogens 

 Discotic mesogens are mesogens with disc- or sheet-shaped structures. The 

mesophases formed by columnar stacking of discotic mesogens are called the columnar 

mesophases. An example of discotic mesogen is shown in figure 1.10. 
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Figure 1.10: Inositol ether (Tschierske, 1998) 
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1.4.3 Banana-shaped mesogens 

 Banana-shaped mesogens possess the bent molecular structure due to the 1,3- 

aromatic substitution at the center of the rigid mesogenic core. Due to the unique bent 

structure, banana-shaped liquid crystals exhibit unconventional mesophases such as the B6 

mesophase and few chiral mesophases even if the molecules do not contain any chiral 

centers. An example of banana-shaped liquid crystals is 4,6-dichloro-1,3-phenylenebis[4-(4-

n-octyloxyphenyliminomethyl)benzoate] with the molecular structure as shown in figure 1.11 

(Lee et al., 2003). 
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Figure 1.11: 4,6-Dichloro-1,3-phenylenebis[4-(4-n-octyloxyphenyliminomethyl)- 

                              benzoate] (Lee et al., 2003) 

 

1.4.4 Laterally branched mesogens 

 An alkyl or aromatic group can be introduced to a calamitic mesogen at a lateral 

position to form the laterally branched mesogen. Until 1983, it was generally accepted that a 

lateral substituent would diminish the liquid crystalline properties with the extent of the 

effect depending on the size of substituent. However, in 1983 and 1984, it was then found 

that compounds with large flexible lateral substituents are also mesogenic as well (Vora and 

Prajapati, 2002). Since then, a host of novel compounds with different type of lateral 

substituents have been reported. The molecular structure for one of these compounds is 

shown in figure 1.12. However, vast majority of these reported laterally branched mesogens 
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are monomeric, e.g. not oligomeric, in terms of molecular constitution. As such, the 

mesogenic group is present as one interconnected unit as a whole with the flexible alkyl 

groups either attached at the terminals or as lateral substituent itself.  

 

O

ON

NH25C12O

O

O

OC4H9

OC4H9

 
 

Figure 1.12: 4-Dodecyloxy-2’-(4-butoxybenzoyloxy)-4’-(4-butoxybenzoyloxy)- 

                               azobenzenes (Berdagué et al., 1993) 

 

1.4.5 Oligomeric mesogens 

 Oligomeric mesogens have been given considerable amount of attention as these 

compounds are used as models for the semi-flexible main chain liquid crystal polymers 

(Imrie and Henderson, 2002 and Pal et al., 2007). The shortest liquid crystal oligomer, the 

dimer consists of two mesogenic units connected by one flexible group called the spacer in 

every molecule. A symmetric dimer possesses two identical mesogenic fragments. However, 

the mesogenic units may not be necessarily the same to each other. In the case where the 

mesogenic units are different from each other, non-symmetric liquid crystal dimers are 

formed. The examples of symmetric and non-symmetric dimers are shown in figure 1.13(a) 

and (b), respectively.  
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Figure 1.13: Respective example of symmetric dimer and non-symmetric dimer 

                              (a) α,ω-bis(4-pentylanilinebenzylidene-4’-oxy)butane (Date et al., 1992);  

                               (b) α-(4-cyanobiphenyl-4’-oxy)-ω-(4-butylanilinebenzylidene-4’-oxy)- 

                               hexane (Hogan et al., 1988) 

 

 Recently, another series of non-symmetric dimers have been reported, of which the 

dimers contain cholesterol and 4-(trans-4-n-hexylcyclohexyl)benzoic acid moieties linked 

with the central spacer through two ester bonds (Yu et al., 2008). The general structure of the 

dimer is given in figure 1.14.  
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Figure 1.14: Structure for the dimer which contains cholesterol and 4-(trans-4-n-hexylcyclo- 

         hexyl)benzoic acid moieties (Yu et al., 2008) 

 

 

 The trimeric liquid crystals contain three mesogenic cores separated by two flexible 

spacers in every molecule. In a similar manner to liquid crystal dimers, the trimers can be 
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non-symmetric as well. For trimers, the asymmetry can be introduced to the structure by 

incorporating two spacers with different number of methylene units or two different 

mesogenic cores. A trimer can also be non-symmetric by having an asymmetric central core 

despite having both terminals identical to each other. The examples of symmetric and non-

symmetric trimers are depicted in figure 1.15(a) and (b), respectively. 

 

CNC OC
4
H

8
O OC

4
H

8
ON

 
 

(a) 

 

CNOC
6
H

12
O

OC
6
H

12
O

N

N

C
8
H

17

 
 

(b) 

 

Figure 1.15: Respective example of symmetric trimer and non-symmetric trimer  

                               (a) 4,4’-bis[ω-(4-cyanobiphenyl-4’-yloxy)butyloxy]biphenyl;  

                               (b) mesogen incorporating 5-octylpyrimidine-2-yl and 4-cyanophenyl  

                                    moieties (Yoshizawa et al., 2005) 

 

1.5 Structure-property relationship of liquid crystals 

 The liquid crystalline properties of mesogenic compounds are governed by the 

molecular structures and the attributes as the result of these structures. It is known that by 

substituting certain atom or group of atoms in a molecule, the liquid crystalline properties 

may also be altered. The correlation between chemical constitution and liquid crystalline 

properties of which is available today is largely based on the early work by D. Vorländer, C. 

Weygand, C. Wiegand and G. W. Gray (Kelker and Hatz, 1980). The general criteria in order 

for molecules to be mesogenic are as follow:  
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a) The most favourable geometry of liquid crystal molecules is rod-like and narrow 

reflecting high shape anisotropy.  

b) The molecules possess high anisotropy of polarizability.  

c) The melting point of the compound must not be too high. 

d) Permanent dipolar groups are present in the molecules. 

 

1.5.1 Structure-property relationship of liquid crystal oligomers 

1.5.1.1 The influence of spacer length and parity on the liquid crystalline properties of 

oligomers  

Previous researches have shown that the liquid crystalline properties of oligomeric 

mesogens are strongly dependent on the length and parity of the flexible spacers, in a manner 

strongly reminiscent of that seen for the semi-flexible main chain liquid crystalline polymers 

(Henderson and Imrie, 2005). In a homologous series for instance, the dimers and trimers 

with shorter spacers may exhibit liquid crystalline properties which differs from those 

observed for the longer counterparts. One of such unique characteristics which have been 

noted for the symmetric dimers is the decreasing tendency to exhibit smectogenic properties 

upon increasing spacer length (Date et al., 1992).  

 In general, the dependence of transition temperatures of oligomers upon substituting 

the spacers with different number of methylene units, n can be observed as the zigzag 

alternation pattern of which the temperature is often lower for the homologues with odd-

parity spacers. For example, in a series of eight-ring tetramers with two azo and two Schiff 

base linkages, the melting points exhibited pronounced alternation as n was increased 

although attenuation was not observed upon ascending this series (Henderson and Imrie, 

2005). The behaviour is explained by the change in conformational statistical weights of the 

spacer on melting into a nematic phase is small for an even-parity spacer but large for an 

odd-parity spacer. This behaviour may also reflects that the tetramers with even spacers 
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which presumably adopt more elongated conformations, pack more efficiently into a crystal 

lattice than the odd counterparts, which adopt, on average, bent molecular shapes. 

 

1.5.1.2 The influence of unlike cores and non-symmetric structures on the liquid crystalline 

properties of oligomers  

 The non-symmetric oligomers exhibit liquid crystalline properties differently from 

the oligomers with symmetric molecular architectures. In recent years, the non-symmetric 

oligomers have been increasingly given attention by researchers to understand how these 

non-symmetric molecules interact with each other especially to exhibit smectic phases with 

untypical layer periodicities. One of such examples is the α-(4-cyanobiphenyl-4’-yloxy)-ω-

[4-(5-alkylpyrimidine-2-yl)phenyl-4”-oxy]alkanes of which the observed smectic phases are 

either intercalated or interdigitated in nature (Yoshizawa et al., 2006). The details on the 

intercalated and interdigitated smectic phases have been described in section 1.3.2.1. 

 

1.5.2 Chirality effect on liquid crystalline properties 

 Chirality is an inherent property of many natural systems such as DNA and enzymes. 

In liquid crystals, chirality can be introduced in several different ways. It can be introduced 

within the mesogen by incorporation of chiral centers. Another way which is more 

commonly practiced in producing materials for applications is the addition of chiral dopant to 

an achiral host phase (Dierking, 2003).  

 The presence of one or several chiral centers in a mesogen can tremendously modify 

the organization of the mesophases (Pansu, 2003). For instance, novel structures like the 

helical superstructures of the N* and SmC* phases can be induced. The physical properties 

of mesophases are modified by the loss of mirror symmetry. Tilted chiral smectic phases can 

exhibit spontaneous polarization and thus these mesophases are pyroelectric (Dierking, 

2003).   
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1.6 Application of liquid crystals  

 Liquid crystals have been widely used in many high-tech applications such as 

displays. Liquid crystal displays have dominated the flat panel technology in products such 

as LCD television and personal digital assistant (PDA). A flat display typically contains a 

thin layer of liquid crystalline mixture in between two extremely thin glass plates with 

transparent electrodes twisted by 90° from each other. Polarizing filters are positioned at the 

outside of the plates whilst the colour filter, transparent electrodes and orientation layers are 

situated at the inside. The first polarizing filter only allows light of only a particular plane of 

oscillation to pass through it and subsequently reaches the liquid crystals. The applied 

voltage orients the molecules perpendicular to the glass plates. The light follows this new 

orientation and unable to pass through the second filter which is at 90° to the first filter. 

Therefore the pixel is black. By removing the voltage, the molecules return to the original 

twisted arrangement. The light follows this twist and is now able to traverse the second filter 

to give a bright pixel. A liquid crystal display contains million of pixels. The bright and dark 

pixels produce a pattern which gives the desired image. 

Apart from liquid crystal displays, the natural characteristics of liquid crystalline 

phases have also been exploited for the development of other technological applications. For 

instance, the helical structures in the chiral smectic C and chiral nematic phases have been 

recognized for their use in electro-optic and thermochromic devices, respectively (Hemine et 

al., 2007 and Yelamaggad and Shanker, 2008). Besides, the electroclinic property of the 

orthogonal layered phase, the chiral smectic A phase holds great promise in spatial light 

modulation applications (Yelamaggad and Shanker, 2008).  

 Whilst the monomeric form of liquid crystals have been widely used in various 

technological devices, the application of the liquid crystalline oligomers mainly lies in 

serving as a research model for the industrially important semi-flexible main chain liquid 

crystalline polymers. This is possible due to the similarities in terms of liquid crystalline 
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transitional properties between the oligomers and polymeric systems based on previous 

findings (Attard et al., 1994 and Imrie and Luckhurst, 1998). In the industries, the liquid 

crystalline polymers are utilized in the production of high strength fibers. Compared to other 

polymers, liquid crystalline polymers are advantageous as these materials possess 

outstanding properties such as high resistance to extreme weathers, radiation, burning and 

almost all chemicals. Such characteristics of liquid crystalline polymers make them highly 

suitable to replace other conventionally used materials including metals. The type of liquid 

crystalline polymers produced is dependent on the incorporated functional groups, for 

example, terephthalic acid and 4-hydroxybenzoic acid. The concept in the making of these 

high-strength materials firstly involves the orientation of the polymers in the desired liquid 

crystalline phase and subsequently quenching to produce highly ordered solid.  

 

 

1.7 Objectives of the research 

 The unique relationship between chemical constitution of liquid crystals and the 

induced mesomorphic characteristics has made the syntheses of novel mesogens an exciting 

area of research. Over the years, through rigorous investigations, many significant and 

interesting findings have been reported including: 

a) Intercalated and interdigitated smectic phases 

b) Reentrant mesophases (Pal et al., 2007) 

c) Host of chiral mesophases including the ferroelectric SmC* phase (Liao et al., 2006) 

d) Mesogens with unconventional shapes such as H and λ shapes  

 

 These findings have deepened our understanding on liquid crystals as well as 

triggered the keenness in many researchers, including myself, to explore further. In addition 

to the numerous interesting findings on liquid crystals in general, the unconventional liquid 
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crystalline properties of oligomers have also been inspirational leading to our preparation of 

six series of novel dimers and trimers incorporating various mesogenic groups. In the Liquid 

Crystal Research Laboratory, my PhD research project was conducted based on these six 

objectives: 

a) To synthesize a host of new liquid crystal dimers and trimers which are symmetric 

and non-symmetric in terms of molecular architecture 

b) To study the molecular organization of the dimeric and trimeric molecules in the 

nematic and smectic phase and how structural asymmetry may influence the 

molecular arrangement and induce unconventional mesophases 

c) To investigate the impact of chirality on liquid crystalline properties of trimers  

d) To uncover how different substituents at certain positions in the mesogenic fragment 

can influence the liquid crystalline properties as well as mesophase thermal stability 

e) To make comparison and extend our research findings on the novel dimers and 

trimers in terms of spacer dependent odd-even effect to the polymeric system  

f) To study the impact of lateral branching on the trimers in terms of presence or 

absence of certain mesophases and suppression in transition temperatures  
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2.0 EXPERIMENTAL  

 

2.1 Chemicals 

 The fine chemicals used for the syntheses of compounds were purchased from major 

companies including Merck, Acros Organics, Sigma-Aldrich, Fluka and Fisher Scientific. In 

addition, the purchase of several fine chemicals from Tokyo Chemical Industry was 

supported by Soka University, Japan. The chemicals were used directly from the bottles 

without further purification. The complete list of these chemicals is given in table 2.1. 

 

       Table 2.1: List of chemicals used for the syntheses and respective assays 

____________________________________________________________________ 

 

        Compound                           Assay, %      Company                                     Assay, % 

____________________________________________________________________ 

 

        1,8-Dibromooctane
a
                   ≥97        1,5-Dibromopentane

b
                          97        

        Aniline
a
                         ≥99   1,6-Dibromohexane

b
                            98              

        4-Chloroaniline
a
             ≥99   1,9-Dibromononane

b
                            97 

        4-Bromoaniline
a
             ≥98   1,10-Dibromodecane

b
                          97   

        4-Methylaniline
a
             ≥99         1,11-Dibromoundecane

b
                    ≥98 

        4-Ethylaniline
a
             ≥98   1,12-Dibromododecane

b
                      96     

        1,4-Diaminobenzene
b
            ≥99   1,7-Dibromoheptane

c
                           97   

        4-Aminophenol
b
                           98    Vanillin

d
                                            ≥98       

        4-Fluoroaniline
b
                           98          Potassium carbonate anhydrous

e
      ≥99 

        4-Hydroxybenzaldehyde
b
            99          Potassium iodide

e
                              ≥99  

        2,4-Dihydroxybenzaldehyde
b
      98          4-(4-Hydroxyphenyl)benzoic acid

f
   ≥98  

        2-Thiophenecarbonyl chloride
b
   98          (RS)-2-Methyl-1-butanol

f 
                 ≥97   

        1,4- Dibromobutane
b
                   99          (S)-(-)-2-Methyl-1-butanol

f 
              ≥98  

_____________________________________________________________________ 

      
a-f

 chemicals obtained from Merck, Acros Organics, Sigma-Aldrich, Fluka, Fisher  

          Scientific and Tokyo Chemical Industry in similar order              
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2.2 Equipment 

Various chemical and physical analyses were conducted to characterize the 

intermediary and title compounds using instruments which are listed as follow:  

1. The melting points of the compounds were determined using Gallenkamp melting 

point apparatus. 

2. The CHN microanalyses were carried out on a Perkin Elmer 2400 LS Series CHNS/O 

analyzer. The samples were sealed in tin capsules prior to the analyses.  

3. The Fourier Transform infrared spectroscopy (FT-IR) analyses were performed on a 

Perkin Elmer 2000-FTIR spectrometer. The powder samples were mixed 

homogenously with potassium bromide and subsequently compressed into pellets. 

The samples were then analyzed in the range of 4000-400 cm
-1

. 

4.  The Fourier Transform nuclear magnetic resonance spectroscopy (FT-NMR) analyses 

were conducted using the Bruker 300 MHz and 400 MHz Ultrashield
TM

 

spectrometers. The samples were dissolved in deuterated chloroform containing 

tetramethylsilane as the internal standard. Due to the partial solubility of several 

compounds in CDCl3 at room temperature, the spectrometer internal heater was also 

used to maintain the NMR sample temperature at 55 °C from the point at which the 

shimming and wobbling was initiated until the scans were completed.  

5. The liquid crystalline texture for the compounds were observed using a Carl Zeiss 

Axioskop 40 polarizing optical microscope equipped with a Linkam TMS94 

temperature controller, LTS350 hot-stage and LNP cooling system. For additional 

optical texture studies, the homeotropic alignment was achieved by coating the 

microscope slides and glass covers with stearic acid dissolved in chloroform prior to 

deposition on the surface. The evaporation of chloroform resulted in a thin, 

transparent film of the stearic acid on the glass surfaces (Dierking, 2003). 



 23 

6. The thermal properties of the liquid crystals were investigated via differential 

scanning calorimetry (DSC) and the analyses were carried out using two different 

instruments as follow: 

i. Seiko DSC120 Model 5500 differential scanning calorimeter at Faculty of 

Engineering, Soka University, Tokyo, Japan 

ii. Seiko DSC6200R differential scanning calorimeter at Chemical Resources 

Laboratory, Tokyo Institute of Technology, Yokohama, Japan 

The heating and cooling rates of the Seiko DSC120 Model 5500 and DSC6200R 

differential scanning calorimeters are ±2 °Cmin
-1

 and ±5 °Cmin
-1

, respectively. For 

every series of compounds, only one model of differential scanning calorimeter was 

used to ensure that the thermal properties of the compounds in that series are 

comparable to one another.  

7. The powder X-ray diffraction analyses were performed on a Bruker D8 

diffractometer equipped with a Göbel mirror, Vantec linear detector and vertical 

goniometer at Department of Chemistry, Warsaw University, Warsaw, Poland. 

Sample temperature was controlled by Anton Paar heating stage and the -  scans 

were performed every 0.5 °C.  

 

2.3 Synthesis and characterization 

 All compounds were synthesized, recrystallized and analyzed at standard atmospheric 

pressure of 101.325 kPa.  
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2.3.1 First series 

α-(4-Benzylidene-substituted-aniline-4’-oxy)-ω-[2-methylbutyl-4’-(4”-phenyl)- 

benzoateoxy]alkanes, 4a-4j 

The overall synthetic routes towards obtaining α-(4-benzylidene-substituted-aniline-

4’-oxy)-ω-[2-methylbutyl-4’-(4”-phenyl)benzoateoxy]alkanes, 4a-4j are shown in figure 2.1. 

The experimental procedure for every step is given from section 2.3.1.1 to 2.3.1.4. 

 

2.3.1.1 Synthesis of (RS)-2-methylbutyl-4’-(4”-hydroxyphenyl)benzoate, 1 

 4-(4-Hydroxyphenyl)benzoic acid (1.50 g, 7.0 mmole) was dissolved in 40 mL of 

(RS)-2-methyl-1-butanol in a round-bottom flask. As heat was gradually applied, catalytic 

amount of concentrated sulphuric acid was added slowly to the stirring mixture and refluxed 

at 90 °C for 24 h. After reflux, the excess (RS)-2-methyl-1-butanol was left at room 

temperature to evaporate off. The yellow precipitate was recrystallized thrice from the 

mixture of chloroform and hexane to give the desired white ester.  

 

 

2.3.1.2 Synthesis of 4-hydroxy-4’-benzylidene-substituted-anilines, 2a-2e 

 4-Hydroxybenzaldehyde (0.98 g, 8.0 mmole) was dissolved in 40 mL of absolute 

ethanol in a round-bottom flask. An ethanolic solution of the corresponding aniline (8.0 

mmole) was then added dropwise and the mixture was refluxed for 10 h. The resulting 

solution was left to evaporate off at room temperature. The brown precipitate was 

subsequently recrystallized from chloroform to yield the desired intermediate categorized as 

Schiff base. The general molecular formula and amounts of corresponding anilines for the 

five syntheses are listed accordingly in table 2.2.  
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