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ABSTRAK 

(SINTESIS DAN PENCIRIAN HIDROKSIAPATIT BERKARBONAT 
SEBAGAI BAHAN BIO-SERAMIK) 

 

Dalam kajian ini, hidroksiapatit berkarbonat (CHA) disintesis menggunakan 
dua kaedah sintesis, iaitu melalui kaedah pemendakan dan pengemulsian nano. 
Kandungan karbonat di dalam larutan dipelbagaikan dengan nisbah CO3

2-/PO4
3-  

iaitu 1, 3, 5 dan 7, manakala pH dan nisbah Ca/P adalah tetap dengan masing-
masing 11 dan 1.67.   Kaedah penurasan vakum dan pengeringan digunakan dalam 
proses sintesis untuk menghasilkan serbuk CHA. Rawatan haba pada suhu berbeza, 
iaitu 600, 700, 800, dan 900o, dilakukan ke atas serbuk bagi menganalisa kestabilan 
haba. CHA pukal disediakan melalui kaedah penekanan, dengan diikuti 
pengkarbonatan bagi menghasilkan produk seramik daripada serbuk untuk terus 
permohonan. Proses penekanan dan masa pengkarbonatan dipelbagaikan semasa 
penyediaan CHA pukal. 

 Kesemua serbuk yang disintesis menghasilkan CHA jenis B, yang mana jenis 
ini sesuai untuk digunakan sebagai pengganti tulang asli, dengan saiz nanometer 
pada lingkungan 20-35 nm. Merujuk kepada keputusan yang diperoleh, didapati 
kandungan karbonat memberi pengaruh kepada sifat serbuk CHA. Dengan nisbah 
CO3

2-/PO4
3- yang tinggi, iaitu dengan nisbah 7, telah menyebabkan fasa kedua kalsit 

(CaCO3) terbentuk. Serbuk dengan kandungan karbonat yang tinggi juga 
menghasilkan kestabilan terma yang rendah semasa rawatan haba, yang mendorong 
pembentukan fasa CaCO3 dan CaO. Sebaliknya, serbuk CHA dengan nisbah CO3

2-

/PO4
3- adalah 1 menghasilkan fasa tunggal CHA dengan nisbah Ca/P yang 

menghampiri tulang asli. Di samping itu, serbuk CHA dengan komposisi ini juga 
menghasilkan kestabilan terma yang tinggi. Serbuk CHA dengan nisbah CO3

2-/PO4
3- 

yang rendah menunjukkan tiada apa-apa bukti pembentukan fasa sekunder semasa 
rawatan haba walaupun ada sesetengah kumpulan karbonat yang berpindah ke 
kawasan A semasa rawatan haba. Proses penekanan semasa membentuk CHA pukal 
juga memainkan peranan penting bagi ciri-ciri mekanikal.  CHA pukal yang telah 
disediakan melalui penekanan sebesar 8 MPa dan pengkarbonatan selama 72 jam, 
telah menunjukkan nilai DTS yang optimum pada 1.68 MPa. Pembentukan lapisan 
apatit juga didapati berlaku di dalam CHA pukal selepas perendaman dalam larutan 
SBF selama 14 hari. Ini menunjukkan bahawa CHA yang disintesis dalam kajian ini 
telah menunjukkan kebioserasian yang baik dengan kekuatan yang mencukupi dan 
ini menjadikan bahan ini sesuai untuk diaplikasikan sebagai pengganti tulang dalam 
kawasan tiada galas beban. 
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ABSTRACT 

 

 Carbonated hydroxyapatite (CHA) was synthesised from two synthesis 

routes, which were the precipitation method and nano-emulsion method. The 

carbonate content in the solution was varied with CO3
2-/PO4

3- ratio of 1, 3, 5 and 7, 

while pH and Ca/P ratio were constant at 11 and 1.67 respectively. Vacuum 

filtration and drying was used in the synthesis process to obtain the CHA powder. 

Heat treatment at different temperatures, which were 600, 700, 800 and 900oC, in 

flowing CO2 gas were performed to the powder to analyse the thermal stability. 

Moreover, bulk CHA was prepared by pressing method, followed by carbonation to 

produce the ceramic part from the powder for further application. The molding 

pressure and carbonation time were varied during the preparation of bulk CHA. 

All the synthesised powder was found to produce B-type CHA, which is the 

preferred substitution type in biological bone, in nanometer size of the range 20-35 

nm. Based on the results obtained, the carbonate content was found to influence the 

properties of the CHA powder. With high CO3
2-/PO4

3- ratio of 7, it was found that 

the secondary phase of calcite had formed. The powder with high carbonate content 

also had low thermal stability during heat treatment, which leads to formation of 

CaCO3 and CaO phases. On the other hand, CHA powder with CO3
2-/PO4

3- ratio of 

1 had produced single phase CHA with the Ca/P ratio close to biological bone. It 

also has high thermal stability, reaching 900oC. CHA powder with this composition, 

having low CO3
2-/PO4

3- ratio, showed no evident of secondary face formation during 

heat treatment although some of the carbonate group was found to move to A-sites 

during the heat treatment. The compaction pressure of bulk CHA also played 

important role in the mechanical properties. Bulk CHA that was prepared with 

molding pressure of 8 MPa and 72 hours of carbonation showed optimum DTS 

value at 1.68 MPa. The formation of apatite layer occurred in the bulk CHA after 

soaking in SBF solution for 14 days. This indicated that the CHA synthesised in this 

study has a good biocompatibility with sufficient strength to be applied as bone 

substitute in non-load bearing areas.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Background and Problem Statement 

The role of hydroxyapatite (HA), Ca10(PO4)6(OH)2, in biomedical application 

is well known. Hydroxyapatite has a long history of being used as a bioceramic 

material in bone grafting, bone tissue engineering and drug delivery system 

(Suchanek et. al., 2002). This is possible due to its properties of biocompatibility, 

bioactivity, osteoconductivity and non-toxicity. Furthermore, the function of 

hydroxyapatite in this biomedical application is largely determined by its similarity 

in chemical structure with biological apatite, which comprises the mineral phases of 

calcified tissues in the enamel, dentine and bone (Murugan and Ramakrishna, 2006). 

 

 As a mineral substance in the biological bone, HA is approximately 70% by 

weight and 50% by volume (Shackelford, 1999). However, biological apatite does 

differ from pure synthesised hydroxyapatite, in terms of structure, composition, 

crystallinity, solubility, biological reactivity and other physical and mechanical 

properties. It has been reported that biological apatite is usually calcium deficient 

with low crystallinity and always carbonated substituted. Carbonate is the major 

secondary ions, by weights, in the biological apatite besides the Ca2+ and PO4
2-. The 

amount of carbonate is about 3-8wt% of the hard tissues of the human body (Barinov 

et. al., 2006). Hence, lately, biological apatite is referred to as carbonate apatite.  
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Synthetic carbonated hydroxyapatite (CHA) is reported to be a better model 

for biological apatites than pure Hydroxyapatite. Carbonate ions can substitute, either 

in the hydroxyl groups (A-type) or the phosphate groups (B-type). These two types 

of substitutions can also occur simultaneously, resulting in mixed AB-type 

substitutions (Lafon et. al, 2008). Typically, the carbonate content in the mineral 

bone is dependent on the age. The value of A/B type ratio in the carbonated 

hydroxyapatite is reported to increase with increase of human age. A-type carbonated 

hydroxyapatite is mostly found in the old tissue, while B-type is found in the young 

tissue. B-type CHA is the most abundant species in human bone (Landi et. al., 2004).  

 

CHA has been reported to have better biological activity than pure 

hydroxyapatite. HA is the least soluble and the most stable material among the 

calcium phosphates and thus is undesirable characteristic because HA may impede 

the rate of bone regeneration upon implantation. Incorporation of carbonate into HA 

caused an increased in solubility, decrease in crystallinity, change in the crystal 

morphology and better biological activity (Porter et. al, 2005). CHA appears to be an 

excellent material for bioresorbable bone substitutes. The carbonate in the B-site, 

synthesised by precipitation method, has been found to reduce size of the precipitates 

and durability of the tooth enamel and bones against weak acids. Increasing the 

carbonate content in the apatite structure was also found to reduce the sintering 

temperature as well as the decomposition temperature at which HA decomposes to 

tricalcium oxide and calcium oxide (Sampath-Kumar et. al., 2000). 
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Various synthesis routes have been explored to produce nano-sized CHA. 

These methods mainly include chemical precipitation, hydrothermal synthesis, and 

mechano-chemical. A-type CHA is commonly prepared by exposing hydroxyapatite 

at high temperature under flow of carbon dioxide, while B-type CHA is generally 

synthesised using wet method from precipitation reaction in aqueous media with 

controlled parameters (pH, temperature, reagent concentrations) (Lafon et. al., 2008). 

Since the synthesis method influences the properties of CHA, it is of great 

importance to develop the synthesis method for CHA initial powder with suitable 

characteristic, i.e chemical composition, morphology and particle size. 

 

Carbonated hydroxyapatite is formed into a dense or porous bioceramics to 

be applied as bone substitute. CHA bioceramic is applied in non load-bearing areas 

due to its low mechanical reliability. To obtain high strength ceramic parts, sintering 

is often performed at a certain temperature. However, sintering of CHA would cause 

the decomposition of carbonate and also the formation of secondary phases. 

Carbonate substitution in the apatite is caused by lattice defects and this would 

depress the thermal stability. The thermal stability of the CHA can be controlled by 

varying the carbonate content, heating rate and calcination atmosphere (He et. al., 

2007a). Though some studies have been made to produce CHA powder and ceramic, 

the production of bulk CHA with varying and controlled amounts of carbonate ions 

in the apatite structure has never been totally investigated and is still difficult to 

achieve.  
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In the current research work, different synthesis methods were conducted to 

produce pure B-type carbonated hydroxyapatite with suitable chemical composition, 

morphology and particle size. The effects of the carbonate content and heat treatment 

atmosphere are also investigated to assess the thermal stability of synthesised CHA 

powder. In this study, bulk CHA was then prepared with an alternative method 

without exposing to any heat treatment process. This research is focused to produce 

carbonated hydroxyapatite with suitable chemical, physical, mechanical and 

biological properties that can be applied in the biomedical application.  

 

1.2 Objective of the Research 

The aim of this research is to produce carbonated hydroxyapatite biomaterial 

with adequate strength, good physical properties and biocompatibility. With this 

main objective, the following studies were conducted: 

 

1. Synthesis of CHA powder by two synthesis methods, i.e. precipitation and nano-

emulsion routes. 

2. Characterization of the physical and chemical properties as well as the thermal 

stability of as-synthesised CHA powder. 

3. Preparation of bulk CHA by carbonation method and characterizing the physical 

and mechanical properties. 

4. Investigation of the bioactivity of bulk CHA using simulated body fluid (SBF) 

solution. 
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1.3 Project Overview 

In this study, two methods were selected to synthesis carbonated 

hydroxyapatite. These were the precipitation and nanoemulsion methods. These 

techniques were selected due to the simple process, availability of the equipments 

and also easily adjustable parameters with potentially good results. The amount of 

carbonate addition was varied in order to study the formation of carbonate in 

carbonated hydroxyapatite, while pH and temperature were maintained at constant 

value. The CHA bulk was prepared by uniaxial pressing method and followed by 

carbonation. Various parameters were investigated in preparing the bulk CHA. The 

compaction pressure was varied using several different loads. The time of 

carbonation was also studied. Thermal stability of the powder was also analyzed in 

this study by varying the heat treatment temperature of the as-synthesised powder 

under CO2 atmosphere. 

 

The phase of the as-synthesised powder was examined using X-ray 

diffraction. The presence of carbonate ions was confirmed using Fourier 

Transformed Infra-Red (FTIR) Spectroscopy. The ratio of Ca/P in the powder was 

measured by XRF. Field Emission Scanning Electron Microscope and Transmission 

Electron Microscope was used to characterize the morphology of the as-synthesised 

powder, the heat treated powder and the fracture surface of bulk samples. The 

density and the porosity of the bulk CHA samples were measured, and the 

mechanical properties of the bulk CHA were determined by using Diametral Tensile 

Strength (DTS) test. The bioactivity of the bulk CHA was also investigated by in 

vitro test in the SBF solution. The formation of hydroxyapatite on the surface bulk 
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CHA was analyzed by SEM method. The general flow chart in this study is shown in 

Figure 1.1.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1 General flow chart of the research  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

The use of bone substitutes in human surgery has dramatically increased over 

the last few decades. These materials has been used to guide and expand the bone 

healing tissue, to become integrated within it and then subjected to the same 

remodelling process as the actual bone (Frayssinet et. al, 1998). Autograft, which is 

graft transplanted from part of the patient’s body to another part, is designated as the 

“golden standard” of all bone substitution materials. However, the available amount 

of proper bones substitution is generally limited and the implantation requires a 

second operation which is very painful (Neumann and Epple, 2006).  Therefore, 

there is high clinical demand for synthetic bone substitution materials. Schwartz et. 

al. (1999a) reported that they had used biphasic calcium phosphate ceramic, 

consisting of 65% hydroxyapatite and 35% β-TCP, since 1996 for bone defect filling 

in any orthopaedic or trauma operation where autograft use was not possible or even 

wanted. Currently the worldwide biomaterials market is valued at close to 

US$24,000M. Orthopedic and dental applications represent approximately 55% of 

the total biomaterials market (Ben-Nissan, 2004). 

 

In recent years, synthetic hydroxyapatite has been extensively used as the 

synthetic bone substitution materials due to its excellent biocompatibility and its 

similar characteristics with biological bone. However, although the chemical 

structure of hydroxyapatite is similar with the biological bone, in reality biological 
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bone contains several other ions which is absent in the pure synthetic hydroxyapatite. 

Carbonate is one of the major ions that substitute apatite structure in the biological 

bone (Tadic et. al., 2002). Consequently, a number of studies have been focussed on 

the production of synthetic carbonate substituted hydroxyapatite (CHA) ceramics for 

bone substitute. 

 

This review discusses an overview of biomaterial definitions. The topic on 

bioceramic material, as a part of biomaterials, will be explained in more details with 

its classifications and applications. The overview of bone structure and its properties 

will be described as well. As CHA is calcium phosphate based bioceramics, the 

properties of this bioceramic are presented in this chapter. This is followed by the 

review of the synthesis of CHA powder.  

 

2.2 Natural Human Bone 

Bone may be simply described as a biocomposite of organic and mineral 

phases. It is a complex mineralized living tissue that shows a certain degree of 

strength and rigid structure while maintaining some degree of elasticity (Currey, 

2008). The organic phase of bone mostly consists of collagen and minor amounts of 

important non-collageneous proteins. Bone mineral is an impure version of 

hydroxyapatite, essentially a carbonate substituted apatite. In particular, there is 3-

8% of carbonate replacing the phosphate groups with other minor constituents such 

as magnesium, sodium, and fluoride. It is sometimes referred to as carbonate 

substituted hydroxyapatite (LeGeros et. al., 2006). Bone also contains bone-forming 

cells (osteoblasts) and bone-resorbing cells (osteoclasts) and various osteoinductive 
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growth factors and molecules. In most bones, the weight proportions of major 

components are 60-70% of mineral substances, 20-30% of collagen and other 

organic components, and the remaining is water (Weiner and Zaslansky, 2004). The 

composition of human bone is shown in Table 2.1. 

 

Table 2.1 Composition of human bone (Hench and Wilson, 1993) 

Constituent Bone (wt %) 

Calcium, Ca2+ 24.5 

Phosphorus, P 11.5 

Sodium, Na+ 0.7 

Potassium, K+ 0.03 

Magnesium, Mg2+ 0.55 

Carbonate, CO3
2- 5.8 

Fluoride, F- 0.02 

Chloride. Cl- 0.10 

Total inorganic 65.0 

Total organic 25.0 

Absorbed H2O 9.7 

 

 

Most bioceramic implants are in contact with bone. Therefore, it is important 

to know the various types of bone in the body. There are two types of bones that are 

most concerned in the use of bioceramics. They are the cancellous bone and the 
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cortical bone (Hench and Wilson, 1993). Figure 2.1 shows the structure of a long 

bone, consisting of the cortical and the cancellous bone. 

 

 

Figure 2.1 Longitudinal section of a human femur (Meyers et. al., 2008) 

 

2.2.1 Cortical Bone 

Cortical or the compact bone is a dense bone consisting of parallel cylindrical 

units and found in the shafts of long bones (Currey, 1998). As explained before, the 

main constituents are mineral hydroxyapatite, the fibrous protein, collagen and water. 

There is some non-collagenous organic material. The mineral is variant of 

hydroxyapatite, which is hydrated calcium phosphate: Ca10(PO4)6(OH)2. The crystals 

are impure, particularly with about 3-8% of carbonate replacing the phosphate 

groups, making the mineral technically a carbonate apatite. Various other 

substitutions can also take place (Bhat, 2005). 
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The mineral, hydroxyapatite with carbonate substitution, has plate-like 

morphology with small crystal size about 4 nm x 50 nm x 50 nm. The density of 

cortical bone is about 1.99 g/cm3 and has range of values for the mechanical 

properties (Currey, 1998). Table 2.2 gives the general mechanical properties of 

cortical bone. 

 

Table 2.2 Mechanical properties of cortical bone (Currey, 1998) 

Mode Orientation σu (MPa) σy (MPa) e 

Tension 
Longitudinal 133 114 0.031 

Tangential 52 n/a 0.007 

Compression 
Longitudinal 205 n/a n/a 

Tangential 130 n/a n/a 

 

 

2.2.2 Cancellous Bone 

Cancellous bone, also known as trabecullar or spongy bone, is less dense than 

the cortical bone. It occurs across the ends of the long bones and is like a honeycomb 

in cross section. It is composed of short struts of bone material called trabeculae. The 

volume fraction of cancellous bone typically ranges from 0.60 for dense cancellous 

bone to 0.05 for porous trabecular bone (Hench and Wilson, 1993). 

 

Cancellous bone has a relatively uniform composition that is similar to 

cortical bone tissue but is slightly less mineralized and slightly more hydrated than 
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cortical tissue (Bhat, 2005). Being a heterogeneous open cell porous solid, 

cancellous bone has anisotropic mechanical properties that depend on the porosity of 

the specimen as well as the architectural arrangement of the individual trabeculae. 

Cancellous bone is linearly elastic until yielding at approximately 1-2%. After 

yielding, it can maintain a relatively large deformation. Typically the modulus of 

human cancellous bone is in the range 0.010-2 GPa. Strength which is linearly and 

strongly correlated with modulus is typically in the range 0.1-30 MPa (Keaveny, 

1998). Table 2.3 shows the mechanical properties of cancellous bone. 

 

Table 2.3 Mechanical properties of cancellous bone (Keaveny, 1998) 
 

Property Cancellous Bone 

Compressive Strength (MPa) 2-12 

Flexural Strength (MPa) 
 10-30 

Tensile strength (MPa) 
 0.1-20.0 

Strain to failure 
 5-7 

Young’s Modulus 
(GPa) 0.1-2.0 

Fracture Toughness, KIC 
(MPa.m1/2) N.A. 

 

 

2.3 Bone Grafting 

The value of bone transplantation is increasing over the years. Transplant 

bone surgery is done at least ten times more often than any other transplantable 

organ. Thus, bone grafting or bone substitute has become critical in orthopaedic 

surgery (Sutherland and Bostrom, 2003). 
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Bone graft can be defined as an implanted or transplanted tissue from another 

part of the body or any synthetic material to reconstruct bone defect. Bone grafts 

should have a good local and systemic compatibility, the capability of being 

substituted by bone and of completely filling any defect (Schnettler et. al., 2004). 

Bone graft source can be adopted from another part of human body (autograft and 

allograft), animal (xenograft), or synthetic biomaterial. 

 

2.3.1 Autogenous Bone Grafting 

The most compatible source of bone graft tissue is offered by humans 

themselves. Autogenous bone grafting is a method where the bone is transplanted 

from part of a patient’s body to another. This bone grafting provides all three 

elements for generating and maintaining bone tissue, which are osteogenic progenitor 

cells, osteoinductive growth factors and osteoconductive matrices. The autogenous 

bone graft is considered as the “golden standard” of bone grafting (Schieker et. al., 

2006). 

 

However, it has been pointed out that bone autograft has several drawbacks, 

including invading a healthy site to collect the required bone. The amount of 

collectable bone is limited and the collected bone is also limited in its form. 

Moreover, this method requires secondary operation procedure which is costly, time 

consuming and sometimes causes additional trauma (Ishikawa et. al., 2003). 
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2.3.2 Allogeneic Bone Grafting 

Allogeneic bone grafting is also a method that replaces the bone tissue with 

the tissue from humans themselves.  The difference with the autograft is that the 

tissue source is not from the same individual. This type of grafting is not restricted 

by harvest availability as found in autogenous grafting (Sutherland and Bostrom, 

2003). 

 

In practice, fresh allografts are rarely used because of immune response and 

the risk of transmission of disease. Allogeneic bone grafting carries the potential risk 

of transmitting tumour cells and a variety of bacterial and viral infections including 

those that cause AIDS or hepatitis on patients. Additionally, blood group-

incompatible bone transplantation can cause the development of antibodies within 

ABO systems (Schnettler et. al., 2004). 

 

2.3.3 Xenogeneic Bone Grafting 

Xenograft is another type of bone grafting whereby the bone graft is 

transferred from other mammalian species (Neumann, 2006). Bovine graft, e.g kiel 

bone, is a typical example of xenogeneic bone graft. Similar with allograft, xenograft 

is generally associated with potential infections. This graft tends to be less effective 

than allograft despite antigenicity treatment. Antigenicity means the ability of a 

substance to trigger the immune response in a particular organism. Generally, the 

graft must be impregnated with the host marrow. However, it elicits an acute 

antigenic response with a high failure rate (Tancred et. al, 1998). 
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2.3.4 Alternative Synthetic Materials 

As there is limited availability of autogenous graft and high risk of infections 

in allogeneic and xenogeneic grafts, bone substitutes of synthetic materials are now 

considered useful alternatives. In the last decade, technological research has moved 

towards the synthesis of new substituting materials mimicking natural bone tissue 

(Tampieri et. al., 2005). These synthetic materials have to fit the basic criteria of 

bone implants which are: 

1. Compatible with the physiological environment, and 

2. Its mechanical properties should be closely matched with the tissue being 

replaced. 

The synthetic bone substitutes are safe and proven as an alternative to other bone 

graft. They provide a suitable environment for the body to repair or produce its own 

bone, either replacing the bone graft substitute over time with the original bone, or 

combining with the bone graft substitute to form a strong repaired bone (Tadic, 

2004).  

 

2.4 Biomaterials 

The term biomaterials can be interpreted in many ways. Black (1992) defined 

biomaterials as a nonviable material used in a medical device, intended to interact 

with biological systems. Williams (1992) defined it as a material intended to 

interface with the biological systems to evaluate, treat, or replace any tissue, organ, 

or function of the body. As a simple definition, biomaterials can be defined as a 
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synthetic material used to replace part of a living system or to function as intimate 

contact with living tissues (Park and Bronzino, 2003). 

 

In reality, biomaterial applications had begun as far back as ancient Egypt and 

Phoenicia, where loose teeth were bound together with gold wires for tying artificial 

ones to neighbouring teeth (Park et. al., 2000). From as early as 19th century, 

artificial materials and devices have been developed to a point where they can 

replace various components of the human body. In the early 1900s bone plates were 

successfully implemented to stabilize bone fractures and to accelerate their healing 

(Ben-Nissan, 2004)  

 

The success of biomaterials in the body depends on factors such as the 

material properties, design and biocompatibility of the material used. 

Biocompatibility involves the acceptance of an artificial implant by the surrounding 

tissues and the body as whole (Park and Bronzino, 2003). The compatibility 

characteristics which may be important in the function of an implant device made of 

biomaterials include adequate mechanical properties such as strength, stiffness and 

fatigue and biological characteristics of the material (Schwartz et. al., 1999b). 

 

Biomaterials can be broadly categorized under the four categories: metal, 

polymer, ceramic, and composite. Each material has their own benefits. Metallic 

biomaterials have mechanical reliability that other class of biomaterials could not 

succeed. Ceramic biomaterials have excellent biocompatibility while implanted in 
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the body. On the other hand, polymer biomaterials are easy to manufacture to 

produce various shapes with reasonable cost and desired mechanical and physical 

properties. Composite biomaterials offer a variety of advantages in compare to 

homogeneous materials (Lakes, 2003). The advantages and disadvantages of each 

category of biomaterials are briefly explained in Table 2.4. 

 

Table 2.4 Class of materials used as biomaterials (Park and Lakes, 2007) 

Materials Advantages Disadvantages Examples 

Polymers (nylon, silicone, 

rubber, polyester, etc) 

Resilient, easy to 

fabricate 

Not strong, deforms 

with time, may 

degrade 

Sutures, blood vessels, 

other soft tissues, hip 

socket 

Metals (Ti and its alloys, Co-

Cr alloys, Au, Ag, stainless 

steel, etc) 

Strong, tough, 

ductile 

 

May corrode, 

dense, difficult to 

make 

Joint replacements, 

dental root implants, 

bone plates and screws 

Ceramics (alumina, zirconia, 

calcium phosphates including 

hydroxyapatite, carbon) 

Very bio-

compatible 

Brittle, not 

resilient, weak in 

tension 

Dental and 

orthopaedic implants 

Composites (carbon-carbon, 

wire- or fiber- reinforced bone 

cement) 

Strong, tailor-

made 
Difficult to make 

Bone cement, dental 

resin 

 

 

2.5 Bioceramics 

Kingery et. al. (1976) defined ceramic as the art and science of making and 

using solid articles that have their essential component as inorganic and non metallic 

materials. In recent years, ceramics are used to replace various part of the body, 
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especially for bone substitute. Ceramics used in medical and dental practices for the 

human body are classified as bioceramics (Bilotte, 2003).  

 

In general, bioceramics show better biocompatibility with tissue response 

compared to polymer or metal biomaterials (Bilotte, 2003). Based on their excellent 

biocompatibility, they are used as implants within bones, joints and teeth in the form 

of bulk materials of specific shape. They are also used as coatings on a substrate or in 

conjunction with metallic core structures for prosthesis (Desai et. al., 2008). In other 

situations, bioceramics are used as reinforcing components in a composite, 

combining the characteristics of both into a new material with enhanced mechanical 

and biochemical properties. Ceramic structures can also be modified with varying 

porosity for bonding with the natural bones (Hench and Wilson, 1993). 

 

In order to be classified as a bioceramic, the ceramic materials have to exceed 

the properties listed in Table 2.5. 

 

Table 2.5 Desired properties of implantable bioceramics (Bilotte, 2003) 

1. Non-toxic 

2. Non carcinogenic 

3. Non allergic 

4. Non-inflammatory 

5. Biocompaticle 

6. Biofunctional for its lifetime in the host 
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However, despite the excellent biocompatibility of bioceramics, the problems 

that occur in conventional ceramics are also exist in bioceramics. Primary drawbacks 

of bioceramics are their brittleness, low strength and inferior workability. 

Consequently, bioceramics are very sensitive to notches or microcracks because they 

do not deform plastically (Bilotte, 2003). 

 

2.5.1 Classification of Bioceramics 

In general, bioceramics can be described according to the tissues response in 

three terms. These are bioinert, bioactive and bioresorbable. Table 2.6 summarized 

the implant-tissue response of each type of bioceramics. 

 

Table 2.6 Consequences of implant tissue interactions (Hench and Wilson, 1993) 

Implant-tissue Reaction Consequence Example 

Bioinert 
Tissue forms a non-adherent 

fibrous capsule around the implant 

Alumina (Al2O3), Zirconia 

(ZrO2) and Carbon 

Bioactive 
Tissue forms an interfacial bond 

with the implant 

Hydroxyapatite, Bio-glass, 

A-W glass 

Bioresorable Tissue replace implant 

β-tricalcium phosphate, 

carbonated hydroxyapatite, 

calcium carbonate 

 

 

 
The relative chemical activity of different types of bioceramics is compared 

in Figure. 2.2. As showed in Table 2.6 and shown in the Figure. 2.2, bioinert implant 
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does not form a bond with the bone. In the case of bioactive ceramic, a bond forms 

across the implant-tissue interface. On the other hand, resorbable bioceramic actually 

dissolve in the body and is replaced by the surrounding tissue (Carter and Norton, 

2007). 

 

 

Figure 2.2 Relative reactivity of different type of bioceramics (Carter and Norton, 

2007) 

 

2.5.1.1 Bioinert Ceramics 

The term bioinert refer to any material that has minimal interaction with its 

surrounding tissues once placed within human body. This type of bioceramic shows 

little chemical reactivity, even after long term of exposure to the physiological 

condition and therefore shows minimal interfacial bonds with the living tissues 

(Bhat, 2005). Bioinert ceramics are relatively stable in a human body and do not 

show harmful response or bioactivity. They resist corrosion and wear and have all 

the properties listed in Table 2.6. Generally, fibrous capsules are developed around 

bioinert implants at their interface. The thickness of the capsules depends on the 
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tissue compatibility of the bioinert material. Materials with excellent tissue 

compatibility allow thinner fibrous capsules. Thus, its biofunctionality relies on 

tissue integration through the implants (Ben-Nissan, 2004). 

 

Single oxide ceramic, alumina (Al2O3) and Zirconia (ZrO2), as well as carbon 

are typical examples of bioinert ceramic. They allow the formation of thin fibrous 

capsules in the interface and do not form a bonding to bone. Bioinert ceramics are 

usually applied as bone plates, bone screws, artificial joints, artificial heart valves 

and femoral-head component (Bilotte, 2003; Li and Hastings, 1998). 

 

2.5.1.2 Bioactive Ceramics 

A bioactive material is a material that obtains a specific biological response at 

the interface of the material, which would result in the formation of a bond between 

the tissues and the material. A bioactive ceramic undergoes chemical reactions in the 

body, but only at its surface (Bilotte, 2003). Upon implantation, surface-reactive 

ceramics form strong bonds with the closest tissue. The surface reactive implants 

respond to local pH changes by releasing Ca2+, Na+ and K+
 ions and lead to bonding 

of tissues at the interfaces (Hench and Wilson, 1993). The ion exchange reaction 

between the bioactive implant and the surrounding body fluids, in some cases, results 

in the formation of a biogically active carbonated apatite (CHA) layer on the implant 

that is a mimic to the mineral phase of bones (Ben-Nissan, 2004). 
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Common bioactive ceramics used in orthopaedic surgery are dense 

hydroxyapatite, bioglass, ceravital, and A-W glass ceramic. However, the 

mechanical properties of these bioactive ceramic are generally weaker than bioinert 

ceramics. Only A-W glass ceramic has higher mechanical strength than cortical 

bone. Thus they are not suitable for major load-bearing implants such as joint 

implants. Bioactive ceramics are most frequently used as bone defect fillers. They 

are supplied in the forms of block, porous material and granules (Hench and Kokubo, 

1998).  

 

2.5.1.3 Bioresorable Ceramics 

Bioresorbable refers to a material that, upon placement within the human 

body, would start to dissolve and slowly be replaced by advancing tissues. In other 

words, resorbable implants are designed to degrade gradually with time and be 

replaced with natural tissues (Bilotte, 2003). It leads to tissue regeneration, instead of 

their replacement. The rate of degradation varies from one material to another. The 

advantage of this implant is that it will be replaced by normal, functional bone thus 

eliminating any long term biocompatibility problems. However, during the 

remodelling process, the load bearing capacity of the implant could possibly be 

weakened and result in mechanical failure. Therefore, the resorption rates of the 

material should be matched with the repair rates of body tissues (Hench and Wilson, 

1993). 

 

Plaster of Paris is one of the first resorbable bioceramic that was used as bone 

substitute. Examples of other resorbable ceramics are β-tricalcium phosphate, 
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calcium carbonate, calcium sulphate and carbonate apatite. They are used as bone 

repair due to disease or trauma, bone defect filler and also as drug delivery devices 

(Bilotte, 2003). 

 

2.5.2 Application of Bioceramics 

Interest of ceramics as biomedical applications has increased over the last 

thirty years. Recently bioceramics have acquired a lot of attention as candidates for 

implant materials since they possess some highly desirable characteristics, such as 

biocompatibility and inertness, for some applications. Bioceramics used singularly or 

with additional of natural, organic, polymer, or metallic materials are amongst the 

most promising of all synthetic biomaterials for hard and soft tissue applications. In 

addition to their application as bone graft substitutes or autograft extenders, some of 

these bioceramics are efficient carriers for growth factors or drugs, and as scaffolds 

for tissue engineering (LeGeros et. al., 2006). 

 

Generally, bioceramics are used in dense, porous or granular form (Bilotte, 

2003). Dense ceramics are used where high mechanical strength is required. Porous 

ceramics are used for large bone defect reconstruction in non-load bearing area. On 

the other hand, granular ceramics are used as fillers to fill medical defects such as a 

hole. Bioceramics can also be used as a reinforcements or matrices in composite 

biomaterials and as a coating for metallic biomaterials. They are produced in a 

variety of forms and phases and serve many different functions in repairing the part 

of the body (Ishikawa et. al., 2003). Figure 2.3 summarized the applications of 

bioceramics in human body. 
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Figure 2.3 Illustration of clinical uses of bioceramics (Hench and Wilson, 1993) 

 

2.6 Calcium-Phosphate Based Bioceramics 

The dominant inorganic component of human hard tissues is apatite, which 

exists in several forms of calcium phosphate. The calcium phosphate compounds are 

abundant in nature and living systems. Carbonated hydroxyapatite (CHA) of varying 

crystallinity and concentration of minor elements constitute the mineral phase of 
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