
PARAMETRIC SPIRAL AND ITS APPLICATION 

AS TRANSITION CURVE 

 

 
 

 
 
 

AZHAR AHMAD 

 

 

 

UNIVERSITI SAINS MALAYSIA 

 2009 



PARAMETRIC SPIRAL AND ITS APPLICATION  
AS TRANSITION CURVE 

 
 
 
 
 
 

by 
 
 
 

 

 

 

AZHAR AHMAD 

 

 

 

 

 

Thesis submitted in fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

 

 

 

September 2009 



Acknowledgements 

 

In the Name of Allâh, the Most Beneficent, the Most Merciful. 

First and foremost, I would like to express my deepest gratitude to my 

supervisor, Associate Professor Dr. Jamaludin Md. Ali, for his guidance during my 

research work and during the writing up of this thesis. He who had inspired me to 

discover the ideas of this research and continue gave the motivation to improve this 

work.  

I should also like to thank all members and staffs in the School of 

Mathematical Sciences, USM, who have given me assistance and provided the 

environment conducive to do this research works. My grateful acknowledgements to 

Universiti Pendidikan Sultan Idris and Malaysia Ministry of Higher Learning for 

providing me a big financial support to undertake this doctoral studies. Thanks also 

go to all my colleagues and staffs of Faculty of Sciences and Technology, UPSI for 

their support and encouragement during the course of this work. 

I must express my appreciation to my dear wife and my children for constantly 

support and sacrifice during the lengthy production of this thesis. A special thanks to 

my parents for their love and pray of my success. Finally, thanks are also due to my 

brothers and sisters. I would not have accomplished my goal without all of you. 

 

 ii



TABLE OF CONTENTS 

 
Acknowledgements 

Table of contents 

List of Figures 

Abstrak 

Abstract 

 

ii 

iii 

viii 

xi 

xiii 

CHAPTER 1 - INTRODUCTION 

1.1 Motivation 

1.2  Problem Statement 

1.3  Objectives  

1.4    Outline of the thesis 

 

1 

3 

6 

8 

8 

CHAPTER 2 - LITERATURE REVIEW AND BACKGROUND 

                          THEORY  

2.1  Previous works 

2.1.1 Characterization of parametric curves 

2.1.2  Parametric spiral 

2.1.3  Transition spiral 

2.2  Reviewing of Parametric Curve 

2.2.1  The General Bezier Curve 

2.2.2  Cubic Alternative Curve 

2.3  Reviewing of Differential Geometric 

2.3.1  Curvature 

11 

 

11 

11 

13 

16 

17 

17 

19 

23 

23 

 iii



2.3.2  Monotone curvature (MC) condition 

2.3.3  Continuity 

2.4  Notation and convention 

25 

26 

28 

 

CHAPTER 3 - CHARACTERIZATION OF PLANAR CUBIC  

                          ALTERNATIVE CURVE 

3.1  Introduction 

3.2  Description of Method 

3.3  Characterization of the non-degenerate curve  

3.4  Shape diagram 

3.5  Characterization of the degenerate curve  

3.6  A sufficient MC condition for cubic Alternative curves 

3.7     Numerical Example 

3.7  Summary 

 

29 

 

29 

30 

31 

36 

38 

40 

44 

45 

CHAPTER 4 - CONSTRUCTING TRANSITION SPIRAL USING  

                          CUBIC ALTERNATIVE CURVE 

4.1  Introduction 

4.2  Notation and convention 

4.3  Design of Method 

4.4  Specifying the radius of the small circle 

4.5  Specifying the beginning point 

4.6  Specifying the ending point 

4.7  Numerical Examples 

4.8  Summary 

46 

 

46 

48 

49 

58 

62 

63 

64 

64 

 iv



CHAPTER 5 - A PLANAR QUARTIC BEZIER SPIRAL 

5.1 Introduction 

5.2 Background and description of method 

5.3 A family of quartic Bezier spiral 

5.4 Acceptable region of ending point 

5.5  Drawing a quartic spiral segment  

5.6 A general form of quartic Bezier spiral 

5.7 Examples of quartic Bezier spirals 

5.8 Numerical Examples  

5.9 Summary 

 

66 

66 

67 

75 

84 

88 

90 

92 

94 

95 

CHAPTER 6 - APPROXIMATION OF CLOTHOID BY QUARTIC  

                          SPIRAL 

6.1  Introduction 

6.2  Description of methods 

6.3  Acceptable sub region of ending point 

6.4  Numerical Example 

6.5  Summary 

 

97 

 

97 

99 

100 

103 

105 

 

CHAPTER 7 - G2 TRANSITION CURVE USING QUARTIC BEZIER  

                          CURVE 

7.1  Introduction 

7.2  A planar quartic Bezier spiral  

7.3  A quartic Bezier spiral from a point to a circle  

7.4  Transition curve between two separated circles 

106 

 

106 

107 

109 

112 

 v



7.4.1 S-shaped transition curve 

7.4.2 C-shaped transition curve 

7.5  Transition spiral joining a straight line and a circle 

7.6  Transition spiral joining two straight lines 

7.7  Transition spiral joining a circle and a circle inside 

7.8  Summary 

 

114 

117 

119 

122 

125 

127 

 

CHAPTER 8 - G3 TRANSITION CURVE BETWEEN TWO STRAIGHT 

                          LINES 

8.1  Introduction 

8.2  Background  

8.2.1 Baykal’s Lateral Change of Acceleration 

8.2.2 Transition curve between two straight lines 

128 

 

128 

130 

131 

132 

8.3  Quartic Bezier spiral with G3 points of contact 135 

8.4  G3 Transition curve by quartic spiral 137 

8.4.1 New transition curve 

8.4.2 Lateral Change of Acceleration of transition spiral 

8.5  Numerical examples  

8.6  Comparisons of new transition curve with classical transition curve. 

8.7  Summary  

 

137 

141 

143 

144 

145 

CHAPTER 9 - CONCLUSION AND DISCUSSION 

9.1  Summary and Discussion 

9.2  Future Research Work 

 

147 

147 

152 

 vi



REFERENCES 

APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

LIST OF PUBLICATION 

 

 

 vii



LIST OF FIGURES 
 
  

 
 Pages 

Figure 2.1 An example of cubic Alternative curves with one of the 
parameter is fixed 
 

 22 

Figure 2.2 An example of cubic Alternative curves with 
( ) ( ), 2,1 , (α β =  )6,3 , ( )10,5  
 

 22 

Figure 2.3 Basis function with ( ) ( ), 3,α β = 3  
 

 22 

Figure 2.4 Basis function with ( ) ( ), 5,α β = 3  
 

 22 

Figure 3.1 Region for numbers of inflection points 
 

 33 

Figure 3.2 Shape of inflection and singularity 
 

 36 

Figure 3.3 Examples of cubic Alternative curve 
 

 37 

Figure 3.4 An example of the function ( )γ β  where  080θ =
 

 43 

Figure 3.5 Two examples of spirals; (a) with increasing monotone 
curvature, and (b) with decreasing monotone curvature. 
 

 44 

Figure 4.1 Location of two circles and the unit tangent vectors at 
the end points 
 

 48 

Figure 4.2 Value of  and 2/3a β  from shaded region gives the 
sufficient condition for spiral construction 
 

 55 

Figure 4.3 Region of  and a β  that gives spiral condition 
 

 58 

Figure 4.4 Two transition curves with different value of β , where 
the fixed a  from 0 0.491472a< ≤ . 
 

 61 

Figure 4.5 ( )tκ  and  of  '( )tκ 1S
 

 61 

Figure 4.6 ( )tκ  and   of  '( )tκ 2S
 

 61 

Figure 4.7 Two transition curves with different value of a  and β , 
where 0.491472 1a< <  
 

 62 

Figure 4.8 ( )tκ  and   of  '( )tκ 3S
 

 62 

Figure 4.9 ( )tκ  and  of  '( )tκ 4S
 

 62 

 viii



Figure 5.1  Position of control points and their barycentric 
coordinates 
 

 68 

Figure 5.2  Position of control points and their barycentric 
coordinates when 1 0α =  
 

 69 

Figure 5.3 An example of a single quartic Bezier spiral 
 

 84 

Figure 5.4 Curvature profile of the single spiral that illustrated in 
Figure 5.1 
 

 84 

Figure 5.5 An allowable region of ending point of quartic spiral 
with respect to canonical position 
 

 88 

Figure 5.6  Example of two spirals generated on the extremum 
values of θ  
 

 89 

Figure 5.7 A family of quartic spiral generated from the fixed 
1,ρ 0α , θ  and varieties of , where r 1 nr r< . 

 

 92 

Figure 5.8 The corresponding curvature profiles of quartic spirals 
generated in Fig. 5.7. 
 

 92 

Figure 5.9 A family of quartic spiral generated from the fixed 
1,ρ 0α ,  and different r θ  , where 1 nθ θ< . 

 

 93 

Figure 5.10 The corresponding curvature profiles of quartic spirals 
generated in Fig. 5.9. 
 

 93 

Figure 5.11 A family of quartic spiral generated from the fixed θ , 
, r 0α  ,and varieties of 1,ρ  

 

 94 

Figure 5.12 The corresponding curvature profiles of quartic spirals 
generated in Fig. 5.11. 
 

 94 

Figure 6.1  Nonparallel tangent vector of quartic spiral, T1 and 
tangent vector of clothoid U1 occurred if P4  and 
( )0.686848C τ =  are on y=0.250925x . 

 

 101 

Figure 6.2 The allowable sub region of ending point of quartic 
spiral to mimic the clothoid  
 

 103 

Figure 6.3 Clothoid and quartic spiral of Example 6.1 
 

 104 

Figure 6.4 Curvature plots of clothoid and quartic spiral of 
Example 6.1 
 

 104 

Figure 7.1  Transition spiral between a point and a circle 
 

 110 

 ix



Figure 7.2 S-shape transition curve 
 

 114 

Figure 7.3 C-shape transition curve 
 

 117 

Figure 7.4 Transition spiral between a straight line and a circle 
 

 120 

Figure 7.5 Transition spiral between two straight lines 
 

 122 

Figure 7.6 Transition spiral between two circles, where one circle 
is inside the other 
 

 127 

Figure 8.1 Transition curve between two straight lines 
 

 132 

Figure 8.2 Curvature and superelevation functions of a  classical 
transition spiral between two straight lines 
 

 134 

Figure 8.3 An example of LCA function of classical transition 
spiral 
 

 134 

Figure 8.4 Curvature profile of a single quartic Bezier spiral 
 

 137 

Figure 8.5 The first derivative of curvature functions of a single 
quartic Bezier spiral 
 

 137 

Figure 8.6 Transition curve of combination of spirals-circular arc 
 

 138 

Figure 8.7 Curvature and superelevation functions of the new 
transition spiral 
 

 142 

Figure 8.8 LCA function of the new transition spiral. 
 

 143 

 

 x



 xi

LINGKARAN PARAMETRIK DAN PENGGUNAANNYA 
SEBAGAI LENGKUNG PERALIHAN 

 

 

ABSTRAK 

 

Lengkung Bezier merupakan suatu perwakilan lengkungan yang paling popular 

digunakan di dalam applikasi Rekabentuk Berbantukan Komputer (RBK) dan 

Rekabentuk Geometrik Berbantukan Komputer (RGBK). Lengkungan berkenaan 

ditakrifkan secara geometri sebagai lokus titik-titik di dalam ruang tiga dimensi yang 

terjana oleh nilai-nilai parameternya. Oleh kerana lengkung Bezier juga merupakan 

suatu fungsi polinomial maka ia amat bersesuaian untuk diimplimentasi di dalam 

persekitaran interaktif komputer grafik. Walaubagaimanapun terdapat kekangan 

semulajadi fungsi polynomial yang menjadi penghalang bagi memperolehi sesuatu 

rupabentuk yang diingini. Bagi lengkung yang berdarjah rendah, umpamanya kubik 

dan kuartik, kita mungkin memperolehi bentuk-bentuk seperti juring, gelung dan titik 

lengkokbalas. Suatu lengkungan itu dikatakan ‘baik’ apabila ia memiliki bilangan 

ektrema kelengkungan sebagaimana kehendak perekanya. Pada amnya, ini tidak 

berlaku apabila kita menggunakan perwakilan Bezier. Oleh itu pembinaan lengkung 

yang baik mampu dicapai apabila kita menggunakan lingkaran kubik dan juga 

kuartik yang terkawal.  

Tesis ini mengkaji tentang lingkaran kubik Alternative dan kuartik Bezier, 

serta penggunaannya sebagai suatu alternatif kepada perwakilan-perwakilan fungsi 

lingkaran yang sedia ada. Bagi lingkaran-lingkaran ini, ia telah diperolehi dengan 

menggunakan kaedah manipulasi aljabar ke atas variasi kelengkungan monoton bagi 

setiap perwakilan tersebut. Hasil kajian berjaya menunjukkan bahawa peningkatan 



 xii

darjah kebebasan mampu memberi kebebasan kawalan terhadap panjang lengkung 

serta berkemampuan untuk melaras fungsi kelengkungan yang berkaitan. Beberapa 

kaedah dan algoritma telah ditunjukkan bagi pembinaan lingkaran peralihan 1G , 2G , 

dan juga 3G . Selanjutnya, penggunaan lingkaran untuk masalah-masalah yang lazim 

dan baru juga telah dibincangkan, yang mana ia boleh digunapakai di dalam bidang 

RBK/RGBK.  



PARAMETRIC SPIRAL AND ITS APPLICATION  
AS TRANSITION CURVE 

 

 

ABSTRACT 

 

The Bezier curve representation is frequently utilized in computer-aided design 

(CAD) and computer-aided geometric design (CAGD) applications. The curve is 

defined geometrically, which means that the parameters have geometric meaning; 

they are just points in three-dimensional space. Since they are also polynomial, 

resulting algorithms are convenient for implementation in an interactive computer 

graphics environment. However, their polynomial nature causes problems in 

obtaining desirable shapes. Low degree (cubic and quartic curve) segments may have 

cusps, loops, and inflection points. Since a fair curve should only have curvature 

extrema wherever explicitly desired by the designer. But, generally curves do not 

allow this kind of behavior. Therefore, it would be required to constrain the proposed 

cubics and quartics, so that the spirals are designed in a favorable way.   

This thesis investigated the use of cubic spirals and quartic Bezier spirals as the 

alternative parametric representations to other spiral functions in the literature. These 

new parametric spirals were obtained by algebraic manipulation methods on the 

monotone curvature variation of each curve. Results are reported showing that the 

additional degree of freedom offers the designer a precise control of total-length and 

the ability to fine-tune their curvature distributions. The methods and algorithms to 

construct the , , and  transition spirals have also been presented. We 

explore some common and new cases that may arise in the use of such spiral 

segments for practical application of CAD/CAGD.  

1G 2G 3G

 xiii
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CHAPTER 1 

INTRODUCTION 

 

 

 

In this thesis the discussion is centered on the construction of the parametric curve 

with monotone curvature in computer aided geometric design (CAGD), a discipline 

in its own right after the 1974 conference at the University of Utah (Barnhill and 

Riesenfield, 1974). A curve with monotone curvature of constant sign is referred as 

spiral. Such curves are useful in various types of transition curves. Two 

representations of parametric polynomial planar curves are considered in this 

research; cubic Alternative curves and quartic Bezier curves. For these 

representations, the manipulation method on monotone curvature condition is used to 

achieve the sufficient condition of the spirals.  As the result of this research, the 

theory and algorithms developed here may give important contributions to the 

scientific and engineering community. 

Computer-Aided Geometric Design (CAGD) deals with the mathematical 

representation and approximation of three-dimensional physical objects. A major 

task of CAGD at early ages is to automate the design process of such objects as ship 

hull, car bodies, airplane wings, and propeller blades; usually represented by smooth 

meshes of curves and surfaces (Farin, 1997). Although the origin of CAGD was the 

use of geometry in engineering, CAGD is now extended in a wide range of 

applications such as Computer-Aided Design (CAD)/ Computer-Aided Manufacture 

(CAM).  
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Curves are considered as important graphical primitives to define geometric 

objects in computer graphics applications. It arises in many applications such as art, 

industrial design, mathematics, and numerous computer drawing packages and 

computer aided design packages have been developed to facilitate the creation of 

curves. A particularly illustrative application is that of computer fonts which are 

defined by curves that specify the outline of each character in the font. Special font 

effects can be obtained by applying various transformations such as shears, rotations, 

and scaling. Other tasks that are also needed in achieving the desirable curves are 

modifying, fairing, analyzing, and visualizing the curves. In order to execute such 

operations a mathematical representation for curves is required. In literatures, 

research in curve designs has been largely dominated by the theory of parametric 

polynomial curves, or just parametric curves for brevity, due to their highly desirable 

properties for controlled curve design and trimmed surface design.  

Two of the most important mathematical representation of curves and surfaces 

used in computer graphics and computer aided design are the Bezier and B-spline 

forms. The original development of Bezier curves took place in the automobile 

industry during the period 1958-60 by two Frenchman, Pierre Bezier at Renault and 

Paul de Casteljau at Citroen. The development of B-spline followed the publication 

in 1946 of a landmark paper on splines (Farin, 2006). Their popularity is due to the 

fact that they possess a number of mathematical properties which enable their 

manipulation and analysis, yet no deep mathematical knowledge is required in order 

to use the curves. According to Farouki and Rajan (1987), the Bezier curves are 

numerically more stable that other curve forms. Among the Bezier representation, the 

low degree curves are widely used in the CAGD application, such as quadratic, 

cubic, quartic, and quintic Bezier curves. A convex shape definitely exists by the use 
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of quadratic Bezier curve. Cubic Bezier curves provide a greater range of shapes than 

quadratic Bezier curves, since they can exhibit loops, cusps, and inflections. Since 

quartic Bezier curve is polynomial of degree four so it is more flexible than cubic 

Bezier curve.  

For purposes of this research, we are interested in simple curves. In 

mathematical terms, simple curves are curves made of a single polynomial span. 

These curves have the special properties because they are the fairest curves possible 

and make very simple surfaces that are easy to edit. 

 

1.1  Motivation 

For CAD systems that are used for designing curves and surfaces, it is necessary to 

generate smooth curves or surfaces that satisfy the designer’s task purpose. The 

overall smoothness of the curves or surfaces always referred as fairness; which is a 

very general property of the curves. It is not only used to illustrate object in terms of 

aesthetic values (for example, car bodies) but also important on functional values (for 

example, highway design). 

Fairness is a somewhat slippery concept; there is no commonly agreed upon 

criterion for quantifying it. It is still an open question (Klass, 1980; Farin and 

Sapidis, 1989).  No one can exactly define it, but they know when they see it. While 

the concept of fairness is subtle, there certainly is agreement on a coarse level. All 

measures of fairness agree that a circle is the fairest curve to traverse 2π  of angle. 

At the other extreme, a polygon, with its sharp corners at the control points, is 

definitely not fair.  There are many definitions of the fairness of curves. For example, 

there are the curves with minimum strain energy, the curves that can be drawn with a 

small number of French curve segments and the curves whose curvature plots consist 



 4

of a few monotone pieces (Farin and Sapidis, 1989, Yoshida and Saito, 2006). The 

interested reader is referred to (Moreton, 1992) for a collection of definitions.  

Most measures of fairness are based on curvature. Intuitively, curvature is the 

position of the steering wheel when driving a car along the curve. When driving 

along a fair curve, thus steering wheel can be described as in “sweet” or smooth 

motion, and this steering wheel motions is economical. A fair curve would not have 

sharp or wild variations in curvature. Preserving the sign is useful, especially for 

curves with inflection points;  turning the steering wheel from one side to the other, 

passing through the central position in which the wheels are straight (zero curvature). 

Absolute curvature is also equal to the reciprocal of the radius of the osculating 

circle; the circle that locally “kisses” the curve. A circular arc, of course, has constant 

curvature.  

This steering wheel analogy is an interesting way to visualize the underlying 

geometry of curvature, and has directly relevant in the application of highway and 

railway track design. For high-speed trains, even higher derivatives have direct 

physical meaning. When curvature varies, the forces experienced at the front of the 

train are different from those experienced at the back, causing stresses and noise. The 

discontinuous speed of curvature corresponds directly to forces experienced by 

passengers. 

We can plot curvature versus arc length and thus obtain the curvature plot of 

the curve. The curvature plot can be used for the definition of fair curves. According 

to Farin, (1997), “A curve is fair if its curvature plot consists of relatively few 

monotone pieces”. The curvature plot of a parametric curve is a display of the 

function, ( )sκ , where κ  is the curvature at the arc-length s . From the shape of 

curvature plot and its derivatives, ( ) ( )n sκ , 1n ≥ , we may gain more precise 
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information about the behavior of the curves. For simple curves, we might have 

convex curve, inflection points, or singularities (a loop and a cusp) (Sakai, 1999). 

And for spline curves, we might obtain more than for a single curve, plus the 

roughness of curvature plot, which refers it to discontinuity of curvature’s derivative. 

In addition, for monotonic curvature plot of a parametric curve; either increasing or 

decreasing, we will obtain a spiral. 

Spirals are visually pleasing curves of monotone curvature; and they have the 

advantage of not containing curvature maxima, curvature minima, inflection points 

and singularities. Many authors have advocated their use in the design of fair curves 

(Farin, 1997). These spirals are desirable for applications and the benefit of using 

such curves in the design of surfaces, in particular surfaces of revolution and swept 

surfaces, is the control of unwanted flat spots and undulations (Walton and Meek, 

1998b). The spiral curve has also been used widely in practice because of its 

functional values, such as in highway design, or the design of robot trajectories. For 

example, it is desirable that a transition curve between two circular arcs in the 

horizontal layout of highway design be free of curvature extrema (except at its 

endpoint) (Baass, 1984). In the discussion about geometric design standards in 

AASHO, Hickerson in (Hickerson, 1964) states that “sudden changes between curve 

of widely different radii or between long tangents and sharp curves should be 

avoided by the use of curves of gradually increasing or decreasing radii without at 

the same time introducing an appearance of forced alignment”. The transition curve 

which based on combination of clothoid spirals is popular mainly because its 

curvature is a linear function of its arc length (Baass, 1984). Use of this form of 

transition spiral has been a part of standard practice in North American railroad track 

design for many years and continues to be the standard practice today (Klauder, 
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2001). And the importance of this design feature is highlighted in (Gibreel et al., 

1999) that links vehicle accidents to inconsistency in highway geometric design.  

Curvature is central in many other application domains as well. There is 

compelling evidence that the human visual system perceives curves in terms of 

curvature features, motivating a substantial body of literature on shape completion, 

or inferring missing segments of curves when shapes are occluded in the visual field 

(Moreton, 1992). 

 

1.2  Problem Statement 

The lack of ease of curvature control of a parametric cubic segment in geometric 

design has been discussed in 

 Fairing of curves (Farin, 1992; Sapidis, 1994). 

 Identifying which segments of polynomial curve have monotone curvature, 

and using such segments in the design of curves and surface (Walton and 

Meek, 1996a,b; 1998a,b) 

Methods for curve fairing typically depend on an examination of curvature 

plot. Techniques such as knot removal, adjustment of data point, degree elevation 

and reduction, are then applied to improve the curvature plot, such as reduce the 

number of monotone pieces. This process is usually iterative and may change the 

original curve. 

An alternative technique of curve fairing is to design with fair curves. In this 

approach, the designer works with spiral segments (i.e., curve segments of monotone 

curvature) and fit them together to form a curve whose curvature plot has relatively 

few monotone pieces. The advantage of this method is that the designer knows a 

prior that the segments of the curve have monotone curvature and can thus adjust 
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them interactively to obtain a desired curve; a posterior examination of curvature 

plots, or fairing, is not necessary and the curve need not be changed later to make it 

fair (Walton and Meek, 1990; 1998a). The disadvantage of this approach is that such 

spiral segments are not as flexible as the usual NURBS curves, and thus not always 

suitable for practical applications. 

The curvature of some spirals, for example the clothoid spiral (Walton and 

Meek, 1989; 1992), and the logarithmic spiral (Baumgarten and Farin, 1997), are 

simple functions of their parameters and are thus more easily controlled than the 

curvature of a parametric cubic curve. Unfortunately, such curves which usually 

mean more overhead on implementation. They are also not as flexible as cubic curve 

segments. Furthermore, many existing CAD software packages are based on 

NURBS, hence addition of non-polynomial based curve drawing may not be feasible. 

As the alternative, Walton and Meek (1996a,b) introduce a planar cubic Bezier and 

Pythagorean hodograph (PH) spiral and show the suitability in the applications such 

as highway design, in which the clothoid has been traditionally used. Those spirals 

tended the 2G  orders of continuity, and contain zero curvature at one end point of its 

segment.  

Despite the growing interest in cubic Bezier and PH quintic spiral 

representation, not in literature has yet recorded about the use of other polynomials 

representation; i.e. quartic Bezier curves, and curves with shape parameters such as 

cubic Alternative curves (Jamaludin,1994), which is a cubic Bezier-like curves. 

Furthermore, 2G continuity at joints when composing a curve from the segments 

using cubic Bezier and PH quintic spiral seem as a smooth transition, but it is not 

adequate for application such as highway design if road-vehicle dynamics is taken 

into account.  
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This research desires to construct the parametric spiral as alternative to Walton 

and Meek (1996a,b), by considering two parametric polynomial curves; quartic 

Bezier and cubic Alternative curves. Moreover, we analyze the application of these 

representations as transition curves in CAD/CAGD. 

 

1.3  Objectives 

The objectives of this research are; 

• To characterize the shape of a cubic Alternative curve.  

• To derive the spiral condition of a cubic Alternative curve for transition curve 

between two circles. 

• To construct a family of quartic Bezier spiral that suitable for approximating 

2G  Hermite data of clothoid. 

• To analyze the application of quartic Bezier spiral in the various 2G  

transition curves.  

• To construct a family of 3G  quartic Bezier spiral for horizontal geometry of 

route designs. 

 

1.4  Outline of the thesis 

The following is a brief outline of the thesis. Chapter 1 presents the central 

motivation and problem as the essential of the thesis. Chapter 2 presents the outline 

of previous works and some basic concepts that contain in CAGD, which is needed 

to understand the sequel. Much of this material is available in standard texts, to 

which the interested reader is referred for more details.  

In the Chapter 3, we focus on finding the necessary and sufficient condition of 

shape parameter of cubic Alternative curve on convexity of curve, inflection point 
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and singularities. Some additional remarks on constructing curves that satisfy the 

monotone curvature condition is presented. This chapter is preliminary step toward 

understanding the capability of shape parameters of the cubic Alternative curve.  

Chapter 4 presents a necessary and sufficient condition of cubic Alternative 

curve for transition curve between two circles whereby one circle is inside the other. 

The degree of smoothness of contact tended are 2G  and 3G .  The key problem is to 

analyze the relationship between the first derivation of curvature of parametric curve 

as a monotone curvature test and its sign, as well as its shape parameter.  

In Chapter 5, we discuss a method for constructing a family of planar quartic 

Bezier spiral. The method is based on analyzing the monotone curvature condition. 

We also defined theorems and corollaries that related to this spiral. Furthermore, the 

coordinate free function of quartic Bezier spiral and the algorithm for fulfill the given 

1G  Hermite data is described. This is a theoretical result, which is proven by a rather 

long proof. Chapter 6 discusses the comparison between quartic Bezier spiral 

obtained from Chapter 5 and the standard clothoid. It is start with detail discussion 

on finding the allowable region of end point of the quartic spiral, which allow the 

approximation of 2G  Hermite data of clothoid. 

Chapter 7 presents a family of quartic Bezier spiral that have 3G  contact at one 

end. Various 2G  transition curves which involves combination of point-circle, 

straight line-circle, two straight lines, and two circles; S-shape, C-shape, and oval 

shape, are showed. Chapter 8 presents the family of quartic Bezier spiral that hold 

3G  contact at two endpoints. Curvature profile of this spiral and the application on 

the transition between two straight lines are discussed. A comparison of the new 

transition curve that based on quartic spiral over classical transition curve is 

exclusively discussed, which relate to the vehicle-road dynamics. Finally, the 
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conclusion on the accomplishment of the thesis and suggestion for further work is 

presented in Chapter 9. 
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CHAPTER 2 

LITERATURE REVIEW AND BACKGROUND THEORY 

 

 

 

This chapter reviews the literature and background theory used in characterization of 

parametric curves, the development of parametric spiral of 2G  continuity, and 3G  

transition spiral. The theorems presented in this chapter have been used frequently in 

the following chapters 

 

2.1  Previous works 

2.1.1  Characterization of parametric curves 

Characterization of a curve is carried out to identify whether a curve has any 

inflection points, cusps, or loops. The characterization of the cubic curve has wide-

ranging applications, for instance, in numerically controlled milling operations. In 

the design of highways, many of the algorithms rely on the fact that the trace of the 

curve or route is fair; an assumption that is violated if a cusp is present. Inflection 

points often indicate unwanted oscillations in applications such as the automobile 

body design and aerodynamics, and a surface that has a cross section curve 

possessing a loop cannot be manufactured.  

Previous work in this area has been done by Wang (1981), who produced 

algorithms based on algebraic properties of the coefficients of the parametric 

polynomial and included some geometric tests using the B-spline control polygon. 

Su and Liu (1983) have presented a specific geometric solution for the Bezier 

representation, and Forrest (1980) has studied rational cubic curves. DeRose and 
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Stone (1989) describes a geometric method for determining whether a parametric 

cubic curve such as a Bezier curve, or a segment of a B-spline, has any loops, cusps, 

or inflection points. Since the characteristic of the curve does not change under affine 

transformations (the transformations including rotation, scaling, translation, and 

skewing), the curve can be mapped onto a canonical form so that the coordinates of 

three of the control points are fixed. Sakai and Usmani (1996) has extended the case 

of parametric cubic segments earlier resolved by Su and Liu (1983) to the case of the 

cubic/quadratic model for computing a visually pleasing vector-valued curve to 

planar data. A general purpose method to detect cusps in polynomial or rational 

space curve of arbitrary degree is presented in Manocha and Canny (1992). Using 

homogeneous coordinates, a rational curve can be represented in a nonrational form. 

Based on such a nonrational representation of a curve, Li and Cripps (1997) 

proposed a method to identify inflection points and cusps on 2-D and 3-D rational 

curves.  

Walton and Meek (2001), and Habib and Sakai (2003a) have presented results 

on the number and location of curvature extrema for whole cubic parametric cubic 

curves. Thus, the number and location is determined without its practical 

computation. In Habib and Sakai (2003a), a characteristic diagram or shape diagram 

of nonrational cubic Bezier is shown. 

Yang and Wang (2004) studies the characterization of a hybrid polynomial, C-

curve. C-curve is affine images of trochoids or sine curves and uses this relation to 

investigate the occurrence of inflection points, cusps, and loop. The results are 

summarized in a shape diagram of C-Bezier curves; this shape diagram is like the 

one in Su and Liu (1983). For a Bezier-like curve, Azhar and Jamaludin (2006) have 

characterized rational cubic Alternative representation by using the shoulder point 
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methods and it is only restricted for trimmed shape parameters. From our 

observation, many of stated authors use discriminant method for the characterization 

process. We used the similar method to study the characteristic of cubic Alternative 

curve for untrimmed shape parameters, as discussed in Chapter 3. 

In recent studies, Juhasz (2006) derived more general condition by examining 

parametric curves that can be described by combination of control points and basis 

functions. The curve can either be in space or in plane. All of the related control 

points are fixed but one. The locus of the varying control point that yields a zero 

curvature point on the curve is a developable surface.  

 

2.1.2  Parametric spiral 

Curvature continuous curves with curvature extrema only at specified locations are 

desirable for applications such as the design of highway or railway routes, or the 

trajectories of mobile robots. Such curves are referred to as being fair (Farin, 1997). 

Fair curves and surfaces are also desirable in the design of consumer products and 

several other computer-aided design (CAD) and computer-aided geometric design 

(CAGD) applications (Sapidis, 1994). Curve segments, which have no interior 

curvature extrema, are known as spiral, and thus are suitable for the design of fair 

curves. Besides conic sections, spirals are the curves that have been most frequently 

used (Baass, 1984; Svensen, 1941).  

Work on designing 2G  curve from polynomials curve, which has no interior 

curvature extrema, was denominated by Walton and Meek. The cubic Bezier and 

Pythagorean hodograph (PH) quintic spirals were developed by Walton and Meek 

(1996a,1996b). These are polynomial and are thus usable in NURBS based CAD 

packages. In both the cubic and PH quintic Bezier spirals, the spiral condition was 
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determined by imposing ( )' 1 0κ =  where the curvature of the corresponding curve is 

( )tκ . The Pythagorean hodograph curve, introduced by Farouki and Sakkalis 

(1990), has the attractive properties that its arc-length is a polynomial of its 

parameter, and the formula for its offset is a rational algebraic expression. Both of 

these curves; cubic Bezier and Pythagorean hodograph curve quintic has eight 

degrees of freedom. It was forced to be a spiral by placing restrictions on it to ensure 

monotone curvature (Walton and Meek, 1996b). In doing so the number of degrees 

of freedom was reduced to five. Although thus spirals can be used to obtain smooth 

transition curve, but not free to approximating clothoid which also has five degrees 

of freedom. The main contribution of these researches is the determination of fair 

curve composed of two cubic and PH spiral segments, which its used for the various 

transitions encountered in general curve and highway design, as identified by 

Baass(1984). Thus transition curve cases in highway design, namely, straight line to 

circle, straight line to straight line, circle to circle with a C-shape, circle to circle with 

a S-shape, and circle to circle where one circle lies inside the other with an oval 

transition.   

In Walton and Meek (1998b), expressions for regular quadratic and PH cubic 

spiral segments are derived for the cases of starting at a non-inflection point with a 

given radius of curvature with decreasing or increasing curvature magnitude, up to a 

given non-inflection point. This limitation allows them to be used only in the 

transition curve between circle to circle with an oval-shape. The advantage in 

studying this work is the determination of a fair curve by a single quadratic and PH 

cubic spiral segments. 

In further works, the number of degrees of freedom in the cubic spiral has been 

increased to six (Walton and Meek, 1998a). This additional freedom is then exploited 
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to draw guided 2G  curves composed of spiral segments. Similarly, PH quintic spiral 

has been increased to six in two different ways; (i) by moving the second control 

point along the line segment joining the first and third control points (Farouki, 1997), 

and (ii) by relaxing the requirement of a curvature extremum at 1t =  (Walton and 

Meek, 1998b). In Habib and Sakai (2003b) a tension parameter is introduced for the 

cubic Bezier and PH quintic transition curves developed in Walton and Meek 

(1996a; 1996b). This parameter is used as an additional degree of freedom to fix one 

endpoint of the transition curve. With relaxing one of the constraints in Walton and 

Meek (1996b), Habib and Sakai (2003b) constructed a PH quintic spiral similar to 

that developed in (Farouki, 1997), i.e., maintaining the constraint ( )' 1 0κ = . Thus 

additional freedom is used for shape control of transition curves, composed of a pair 

of PH quintic spirals, between two fixed circles. 

A further generalization, increasing the number of degrees of freedom in the 

cubic Bezier spiral to seven, was recently developed (Walton et al., 2003). With this 

generalization, two spirals joined at their point of zero curvature such that their 

tangent directions are parallel (hence a 2G  join) can be used for 2G  Hermite 

interpolation. Walton and Meek (2004) has increased the number of degrees of 

freedom in PH quintic spiral to seven. This additional degree of freedom allows both 

endpoints of a PH quintic spiral to be specified, followed by ranges from which an 

ending tangent angle and an ending curvature can be selected. Not only does the 

additional freedom provide the PH quintic spiral with more flexibility than the 

clothoid, but it also allows the construction of a PH quintic spiral that matches the 

2G  Hermite data of a clothoid. Recently, Habib and Sakai (2007) introduced a 

tension parameter, similar to that in Habib and Sakai (2003b) to construct 2G  

transition curves between two circles with shape control. And a method of examining 
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conditions under which such 2G  Hermite interpolation can be done was presented by 

Walton and Meek (2007). The problem considered in this paper is 2G  transition 

curve with two fixed points.  Most recently, Cai and Wang (2009) presented a new 

method for drawing a transition curves joining circular arcs by using a single C-

Bezier curve with shape parameter. 

 

2.1.3  Transition spiral 

Although in many applications 1G  continuity is adequate, for applications that 

depend on the fairness of a curve or surface, especially those that depend on a 

smooth transition of reflected light, e.g., automobile bodies, or those that require 

smooth transition of high-speed motion, e.g., horizontal geometry of highways, 1G  

or even 2G continuity is not adequate. For these applications, at least 3C  continuity 

is required to achieve the desired results (Farin, 1997).  

3G  continuity in geometrical design of highway and railroad track has 

exclusively related to the vehicle-road dynamics. Although curve shape in which the 

curvature changes linearly with distance along the curve is visually pleasing but it is 

not the good form of spiral from the point of view of vehicle-road dynamics. The 

problem is that there is an abrupt change in acceleration, it is perceived as a “jerk” 

experience by moving body on the combination curve in which the spiral is used.  In 

the literature, there is a number of studies in designing a new curve has been done.  

Curves such as Blosss, Sinusoidal, Cosine (Klauder, 2001), and POLUSA (Lipicnik, 

1998) were discovered. The recent transition curve began with Baykal et al. (1997) 

and continued with Tari (2003), and Tari and Baykal (2005). Alternative forms of 

curvature of new curves presented by those authors provide the continuity of its first 

derivatives at the start and end of the spiral; this transition curve is definite as 3G  
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fashion.  Deriving the curves from those curvatures always ends up with numerical 

technique and it is neither polynomial nor rational representation. This major 

drawback motivates us to consider parametric curves because NURB representation 

is widely used in geometrical design packages.  

 

2.2  Reviewing of Parametric Curve 

We begin by recalling some definitions and properties of parametric polynomial 

curves represented in Bezier and Alternative form. 

 

2.2.1  The General Bezier Curve 

Given 1n +  control points 0 1, ,..., nP P P , the Bezier curve of degree n  is defined to be 

(Hoschek and Lasser, 1993) 

( ) ( ),
0

n

i i n
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R t P t
=

= Β∑      (2.0) 
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are called the Bernstein polynomials or Bernstein basis functions of degree n . They 

are often referred to as integral Bezier curves to distinguish from rational Bezier 

curves. The polygon formed by joining the control points 0 1, ,..., nP P P  in the specified 

order is called the Bezier control polygon.  The quantities 
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Properties of the Bernstein Polynomials 

The Bernstein polynomials have a number of important properties which give rise to 

properties of Bezier curve. 

i. Positivity 

The Bernstein polynomials are non-negative on the interval [0,1],  

( ), 0i n tΒ ≥    [0,1]t∈ . 

ii. Partition of Unity 

The Bernstein polynomials of degree n  sum to one on the interval [0,1], 

( ),
0

1
n

i n
i

t
=

Β =∑   [0,1]t∈ . 

iii. Symmetry  

( ) ( ), , 1n i n i nt t−Β = Β − ,  for 0,...,i n= . 

iv. Recursion 

The Bernstein polynomials of degree n  can be expressed in terms of the 

polynomials of degree 1n − . 

( ) ( ) ( ) ( ), , 1 1, 11i n i n i nt t t t t− − −Β = − Β + Β ,   for 0,...,i n= ,  

where ( )1, 1 0n t− −Β =  and ( ), 1 0n n t−Β = .  

The positivity and partition of unity properties lead to two important properties of 

Bezier curves, namely the convex hull property and the invariance under affine 

transformation which we shall describe in the next section. 

 

Properties of the Bezier Curves 

A Bezier curve ( )R t  of degree n  with control point 0 1, ,..., nP P P  satisfies the 

following properties. 
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i. Endpoint Interpolation Property 

( ) 00R P=  and ( )1 nR P= . 

 

ii. Endpoint Tangent Property 

( ) ( )1 0' 0R n P P= −  and ( ) ( )1' 1 n nR n P P −= − . 

iii. Convex Hull Property (CHP) 

Thus every point of a Bezier curve lies inside the convex hull of its 

defining control points. The convex hull of the control points is often 

referred to as the convex hull of the Bezier curve. 

iv. Invariance under Affine Transformations 

Let Φ  be an affine transformation (for example, a rotation, translation, or 

scaling). Then  

( ) ( ) ( ), ,
0 0

n n

i i n i i n
i i

P t P t
= =

⎛ ⎞Φ Β ≡ Φ Β⎜ ⎟
⎝ ⎠
∑ ∑ . 

v. Variation Diminishing Property (VDP) 

For a planar Bezier curve ( )R t , the VDP states that the number of 

intersections of given line with ( )R t  is less than or equal to the number 

of intersections of the line with the control polygon. 

Finally, the quartic Bezier curve is defined in global parameter 0 1t≤ ≤  from (2.0)-

(2.1) when 4n = .  

 

2.2.2  Cubic Alternative Curve 

Alternative basis function is a relatively new set of basis function in the field of 

computer aided geometric design (Jamaludin, 1994). As compared to the cubic 

Bezier basis function, these basis functions have two parameters to change the shape 
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of their curve. It is convenient to control the curve by adjusting the parameters rather 

than to change the control points as what happens to the cubic Bezier polynomial 

curve. The discussion on shape control of this parametric curve can be found in 

(Jamaludin et al., 1996; Azhar and Jamaludin, 2003; 2004; 2006). The cubic 

Alternative basis functions are defined for [ ]0,1t ∈  as below; 

2
0 ( ) (1 ) (1 (2 ) )t t tαΜ = − + −   

2
1 ( ) (1 )t t tαΜ = −    

2
2 ( ) (1 )t t tβΜ = −  

2
3 ( ) (1 (2 )(1 ))t t tβΜ = + − − .     (2.2) 

where α  and β  are shape parameters. For 3α β= = , the cubic Alternative 

functions reduce to the cubic Bernstein Bezier basis functions. We will obtain cubic 

Ball basis functions when 2α β= = , and if 4α β= =  then (2.2) are known as basis 

functions for cubic Timmer.  

 

The cubic Alternative basis functions satisfy the following properties; 

i. Positivity 

If 0 , 3α β≤ ≤ , the cubic Alternative basis function in (2.2) are 

nonnegative on the interval [ ]0,1t ∈ , i.e. 

( ) 0i tΜ ≥    0,1, 2,3i =  

ii. Partition of Unity 

The sum of the cubic Alternative basis function is one on the interval 

[ ]0,1t ∈ , i.e., 

( )
3

0

1i
i

t
=

Μ =∑  
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Referring to Jamaludin (1994), cubic Alternative curve which has been used is 

defined by  

  0 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( );     0 t 1R t P t P t P t P t= Μ + Μ + Μ + Μ ≤ ≤  (2.3) 

where 0 1 2 3, , ,  P P P P  are control points of the curve. In general, the cubic Alternative 

curve possesses some interesting properties: 

• Endpoint Interpolation Property - ( ) 00R P=  and ( ) 31R P= . 

• Endpoint Tangent Property - 1 0'(0) ( )R P Pα= −  and 3 2'(1) ( )R P Pβ= − . 

• Invariance under Affine Transformations. 

Let Φ  be an affine transformation. Then  

( ) ( ) ( )
3 3

0 0
i i i i

i i
P t P t

= =

⎛ ⎞
Φ Μ ≡ Φ Μ⎜ ⎟
⎝ ⎠
∑ ∑  

• Convex Hull Property 

 

In general, the cubic Alternative curve violated the Convex Hull property for 

,α β ∈ . But if 0 , 3α β≤ ≤ , it satisfies the positivity and the partition of unity 

properties this lead to the convex hull property of the curve. 

The above properties of the cubic Alternative curve assist us to understand the 

behavior of the curve. The values of α  and β  will affect the cubic Alternative curve 

geometrically. The parameter α  has a stronger influence on the first half of the curve 

while parameter β  has a stronger influence on the second half. This phenomenon is 

illustrated in Figure 2.1. This figure showed an example of curves segments for given 

control points on the edge of a rectangle and ( ),α β  is given by constant 3α = , and 

2, 1,0,1,2,3, 4,5β = − − .            
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Figure 2.1 An example of cubic Alternative curves with one of the parameter is fixed. 
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Figure 2.2 An example of cubic Alternative curves with ( ) ( ) ( ) ( ), 2,1 , 6,3 , 10,5α β =  
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       Figure 2.3 Basis function with ( ) ( ), 3,3α β =                Figure 2.4 Basis function with ( ) ( ), 5,3α β =  
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Figure 2.2 shows three curves drawn with ( ) ( ) ( ) ( ), 2,1 , 6,3 , 10,5α β =  for 

( )0 1 2 3P P P P=   is control polygon.  Figure 2.3 and 2.4, show basis functions with 

( ) ( ), 3,3α β =  and ( ) ( ), 5,3α β = , respectively. It is clear that parameters α ,β  give 

a great impact on the shape control of a cubic Alternative curve. 

 

2.3  Reviewing of Differential Geometry 

The following treatment of a planar curve can be found in books of differential 

geometry such as Boehm and Prautzsh (1994), Marsh (1999), Rogers (2001), 

Guggenheimer (1963) and many related papers.  

 

2.3.1  Curvature 

In this thesis, a planar curve is defined as follows. 

Definition: An oriented planar curve is an ordered set in 2 , given by 

( ) ( ) ( )( ),R t x t y t=   [ ]0,1t∈ ,   (2.4) 

with direction from 0t =  to 1t = . If ( ) ( )R u R v=  with 0 1u v< ≠ < , then ( )R t  is a 

self-intersection point at u (or at v ). If ( )R t  is differentiable at ( )R u  and 

( )' 0R u = , then ( )R u  is an irregular point. Generally, the position of ( )R t  at t  is 

the point given by itself: ( )R t ; for regular point, the tangent at t  or ( )'R t  is the 

oriented line which passes through point ( )R t , with direction given by the vector 

( )'R t .  The signed curvature of a plane curve ( )R t  is (Hoschek and Lasser, 1993) 

 3
'( ) "( )( )

'( )
R t R tt

R t
κ ×

=        (2.5) 
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As we often use only the sign of the curvature, some times the denominator ( ) 3
'R t  

is omitted. The signed radius of curvature ( )r t  is the reciprocal of (2.5), which for 

( ) 0tκ ≠ , it is given by; 

( ) ( )
1r t
tκ

=      (2.6) 

The magnitude of ( )r t  can be geometrically interpreted as the radius of the 

osculating circles, i.e. the circle constructed in the limit passing through three 

consecutive points on the curve (Faux and Pratt, 1988). If ( ) 0tκ = , then the radius 

of curvature is infinite. ( )tκ  is a positive sign when the curve segment bends to left 

and it is a negative sign if it bends to right at t . Let '( )R t  and ''( )R t  be the first and 

second derivations of ( )R t , respectively. From the first derivative of ( )tκ  gives 

Lemma 2.0 

( )
5'( )

'( )

t
t

R t
κ

Λ
= .      (2.7) 

where  

( ) ( ) ( ){ } { } { }{ }' ' '( ) ''( ) 3 '( ) ''( ) '( ) ''( )dt R t R t R t R t R t R t R t R t
dt

Λ = • × − × • . (2.8) 

Straight forward from (2.7), the second derivative of ( )tκ  gives 

Lemma 2.1  

( )
7''( )

'( )

t
t

R t
κ

ϒ
= ,      (2.9) 

where  

( ) ( ) ( ){ } ( ) ( ){ }' ' 5 '( ) ''( )dt R t R t t t R t R t
dt

ϒ = • Λ − Λ • .  (2.10) 
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