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DWI-KESTABILAN OPTIK DI DALAM BAHAN-BAHAN 

DIELEKTRIK TAK LINEAR KERR 
 DAN FEROELEKTRIK. 

 
 
 
 

ABSTRAK 
 
 
 

 
Kestabilan optiks dwi dan kestabilan optiks pelbagai di dalam hablur Kerr tak linear 

dikaji.   Dua jenis sistem hablur penebat berion dipertimbangkan: bahan dielektrik 

biasa dan bahan ferroelektrik (FE) dengan struktur Perovskit. Kedua-dua 

ketakstabilan optiks ekstrinsik dan instrinsik dikaji.  Suatu analisis alternatif 

digunakan untuk memodelkan kestabilan optiks tersebut; berbanding dengan analisis 

lazim di mana pengkutuban tak linear biasanya dikembangkan sebagai siri Taylor 

dalam medan elektrik. Formalisma alternatif ini terbukti lebih sesuai untuk bahan 

tak linear yang tinggi seperti FE dan bagi ketaklinearan resonan. Kestabilan optiks 

ini terselah pada beberapa pembolehubah-pembolehubah fizikal seperti 

pengkutuban, pekali-pekali pantulan dan biasan. Kesan-kesan oleh ketebalan sistem, 

frekuensi operasi, parameter lembapan, dan pekali ketaklinearan ke atas kestabilan 

optiks bagi setiap sistem hablur dikaji. 

 
Persamaan Duffing yang menerangkan pengayun tak harmonik dan persamaan 

gelombang digunakan untuk memodelkan respons tak linear sistem dielektrik.  

Applikasi syarat-syarat sempadan lazim memberikan rumus analitik bagi pekali-

pekali pantulan dan biasan yang diungkap dalam sebutan amplitud medan tuju 

elektrik, pengkutuban dan parameter-parameter bahan yang lain. Keputusan-

 xiii



keputusan simulasi bernombor menunjukkan bahawa kestabilan optiks sistem 

bergantung kepada ketebalan bahan, pekali ketaklinearan, dan sudut tuju setiap 

sistem hablur.  Bagi kes alat resonan dielektik Fabry-Pérot, kestabilan optiksnya 

didapati bergantung kepada kepantulan cermin. 

 

Bagi sistem FE, respons tak linearnya dimodelkan dengan menggunakan persamaan 

dinamik Landau-Khalatnikov (LK).  Keupayaan tak harmonik tak linearnya 

diperolehi dari tenaga bebas Landau-Devonshire (LD) yang telah diungkap dalam 

sebutan pengkutuban sistem. Dengan menggunakan penghampiran frekuensi 

tunggal, persamaan LK dan persamaan gelombang digunakan untuk menghasilkan 

persamaan pengkutuban tak linear. Teknik ini membuatkan kestabilan optiks sistem 

menjadi bergantung kepada suhu. Ungkapan analitik bagi kedua-dua pekali pantulan 

dan biasan sebagai fungsi suhu dan parameter-parameter bahan yang lain 

diterbitkan.  Parameter-parameter input diperolehi dari data eksperimen yang sedia 

ada bagi hablur tunggal BaTiO3 untuk digunakan di dalam simulasi bernombor. 

Keputusan-keputusan simulasi bersetuju pada prinsipnya dengan pemerhatian 

eksperimen ke atas kestabilan optiks intrinsik di dalam hablur mono BaTiO3 dan di 

dalam bahan-bahan fotorefraktif FE. Didapati bahan-bahan FE ini sentiasa 

mempamerkan kestabilan jenis ‘threshold’. 

  
Bahagian terakhir kerja penyelidikan ini tertumpu kepada kajian kerentanan 

dielektrik bagi bahan pukal FE berhampiran sempadan fasa morfotropik (MPB).  Ini 

termasuk kajian  ke atas kerentanan linear dan taklinear (peringkat kedua dan ketiga) 

bagi kedua-dua had dinamik dan statik. Tabii kerentanan-kerentanan ini dikaji 

berhampiran MPB dengan menggunakan tenaga bebas LD dan persamaan dinamik 

LK.  Magnitud kerentanan-kerentanan dilakar sebagai fungsi bahan parameter 
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*
2 1β β β=  di mana 1β and 2β  adalah pekali-pekali di dalam ungkapan tenaga 

bebas LD. Dalam had statik, MPB diwakilkan oleh nilai . Dalam had ini, 

pemalar dilektrik linear adalah malar, kerentanan-kerentanan tak linear peringkat 

kedua dan ketiga mencapah di MPB.  Kerentanan dielektrik dinamik didapati 

mempunyai puncak atau puncak-puncak pada sesuatu nilai/nilai-nilai 

* 1β =

*β . 

Pertambahan ini boleh difahami dengan menggunakan konsep frekuensi normal Tω  

dalam mod lembut FE.  Pertambahan dalam nilai kerentanan tak linear ini 

mempunyai potensi di dalam menjuruterakan bahan baru untuk applikasi beberapa 

peranti-peranti optiks. 
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OPTICAL BISTABILITY IN NONLINEAR KERR 
 DIELECTRIC AND  FERROELECTRIC MATERIALS 

 
 
 

ABSTRACT 
 

 
 
The optical bistability (OB) and multistability in Kerr nonlinear crystals are 

investigated.  Two types of ionic insulating crystals are considered: a typical 

dielectric and a ferroelectric (FE).  Both extrinsic and intrinsic optical instabilities 

are investigated.  An alternative analysis is used to model the OB; rather than the 

conventional analysis where the nonlinear polarization is usually expanded as the 

Taylor series in the electric field. The alternative formalism proves to be more 

suitable for highly nonlinear materials such as FE and for resonant-nonlinearities. 

The OB has its manifestation in various physical variables such as polarization, 

reflectance and transmittance coefficients. The effects of system thickness, operating 

frequency, damping parameter, and nonlinearity coefficient, on the OB of each 

crystal system are investigated. 

 
The Duffing equation describing an anharmonic oscillator and the wave equation are 

used to model the nonlinear response of the material.  Application of standard 

boundary conditions leads to analytical expressions for both reflectance and 

transmittance expressed in terms of the electric field incident amplitude, polarization 

and other material parameters. Numerical simulations show that the OB is dependent 

on the material thickness, nonlinear coefficient, and the angle of incidence. In the 

case of a dielectric Fabry-Pérot resonator, the OB is also found to be mirror 

reflectivity dependent. 

 

 xvi



For FE material, the nonlinear response is modeled using the Landau-Khalatnikov 

(LK) dynamical equation.  The nonlinear anharmonic potential is obtained from the 

Landau-Devonshire (LD) free energy expressed in terms of polarization. The LK 

equation and the wave equation are then used to produce a nonlinear polarization 

equation. This technique makes the OB becomes temperature-dependent.  Input 

parameters from available experimental data of a BaTiO3 single crystal are used in 

the numerical simulations. The simulation results agree in principle with the recent 

experimental observations of intrinsic OB in BaTiO3 monocrystal and other FE 

photorefractive materials. It is found that FE always exhibits a threshold-type of 

bistability. 

  
The last part of this work is devoted to studies of dielectric susceptibilities of bulk 

FE materials in the vicinity of the morphotropic phase boundary (MPB).  It includes 

studies on linear and nonlinear (second-order and third-order) susceptibilities for 

both the dynamic and static limit. The behaviour of the susceptibilities near the MPB 

is investigated using the LD free energy and LK dynamical equation.  The 

susceptibility magnitudes are plotted as a function of the material 

parameter *
2 1β β β=  where 1β and 2β are the coefficients in the LD free energy 

expression.  In the static limit, the MPB is represented by . In this limit, the 

linear dielectric constant, the second third-order nonlinear susceptibilities diverge at 

the MPB.  The dynamic dielectric susceptibility assumes a resonance-like peak(s) or 

peaks at certain value(s) of   

* 1β =

*β . The enhancement is explained using the concept of 

FE soft-mode. The enhancement of the nonlinear susceptibility may have its 

potential in engineering new materials for various optical device applications. 
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Chapter 1 

 
GENERAL INTRODUCTION  

 
1.1     Motivation of Study  

 
Optical technology is employed in CD-ROM drives and their relatives, laser 

printers, and most photocopiers and scanners. However, none of these devices are 

fully optical; all rely to some extent on conventional electronic circuits and 

components. Optical technology has made its most significant inroads in digital 

communications, where fiber optic data transmission has become commonplace. The 

ultimate goal is the so-called photonic network, which uses visible and IR energy 

exclusively between each source and destination.  

 
The current communication network operates based on a combination of both 

electronics and photonics (hybrid). It consists of nodes which are connected by a 

series of fiber-optic links. These fiber-optic links are used to transmit the 

information while the nodes decide which path the information should follow from 

source to destination (routing). While the fiber-optic links carry the information via 

light, the nodes are still mostly electrical. In the past, this hybrid technology has 

served the data-communication networks adequately. At present, this technology is 

predicted to breakdown as the demand for telecommunication services is increasing 

exponentially. The rapid growth of the Internet, expanding at almost 15% per month, 

demands faster speeds and larger bandwidths than electronic circuits can provide. 

Electronic switching limits network speeds to about 50 Gigabits per second (1 

Gigabit is 109 bits). 
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Fortunately, for long distance communications, a very high capacity dispersion-free 

transmission can be realized either by implementing solitons and other types of 

nonlinear pulse transmission in optical fiber. However, it seems that the bottlenecks 

are the data processing and switching components in the nodes. Therefore, the aim is 

to replace the nodes based on electrical technology by optical ones. As such, the 

study of optical phenomena in nonlinear waveguides (optical bistability) has been 

intensified, in the hope that these can be used for all-optical switching purposes.  

 

On the other hand, there has been intensive research for developing an optical 

computer that might operate 1000 times faster than an electronic computer 

(Abraham 1983, and, Brenner 1986). An optical computer is a computer that 

performs its digital computation with photons in visible light or infrared as opposed 

to the more traditional electron-based computation (silicon technology). The 

electronic computer have its fundament limit  since an electric current flows at only 

about 10 percent of the speed of light which limits the rate at which data can be 

exchanged over long distances. The fundamental components of any digital 

computer are; memory, processor, and terminals for information. The three basic 

functions of a computer are arithmetic operation, logical operations and the memory. 

All these functions are done by devices that have bistable states (true and false). In 

arithmetic operation the two states represent the numbers 0 and 1 of the binary 

number system. The memory of the computer also stores the results of arithmetic 

and logical operation in bistable devices. Thus a computer requires an optical 

transistor that can represent the values 0 and 1 in physical form. Moreover, optical 

transistors can be assembled into larger scale devices that perform the three logical 

functions: AND, OR and NOT.  
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Optical switching is a natural candidate to mediate between electronic systems and 

optical ones. The starting point of the optical transistor is an ingenious and widely 

used optical apparatus known as the Fabry-Perot interferometer. When the Fabry-

Perot apparatus is filled with an intensity-dependent nonlinear medium, and a 

powerful source of coherent radiation is focused, the transmitted intensity assumes a 

bistable state when the input laser is varied. Therefore, optical switches can be made 

in the form of thin nonlinear crystals. Current techniques of crystal growing or thin-

film fabrication make it possible to fabricate very large thin sheets. If an optical 

image was projected directly through a large sheet in which each small area served 

as an optical switch, the transmission from the switches would serve as a digital 

record of the image. Many kinds of processing and enhancement of the image could 

be done while the record was being made. 

 

In addition to the above, optical devices have an inherent capability for parallel 

processing since every pixel of a two-dimensional image can be both relayed and 

processed at the same time. This parallelism capability when associated with fast 

switching speeds would result in staggering computational power. For example, a 

calculation that might take a conventional electronic computer more than eleven 

years to complete could be performed by an optical computer in a single hour. It is 

also justified to consider applying the new optical information processing techniques 

for protecting data and biometrics against tampering (Javidi 1997).  Information can 

be hidden in any of several dimensions such as the phase, wavelength, spatial 

frequency or polarization of the light. 

 
In order to design such bistable devices, it is extremely important to understand the 

physical phenomena appearing in the structures. To predict the behaviour of light in 
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the structures; analytical descriptions or at least numerical simulations are essential. 

A major part of this thesis is devoted to the study of optical bistability in a Fabry-

Perot interferometer filled with an intensity-dependent Kerr nonlinearity. The 

intrinsic optical bistability results from a Kerr nonlinear film made of an insulating 

ionic crystal is also investigated. The optical bistability is investigated for both 

dielectric and ferroelectric materials. It is hoped that this work might help to 

contribute towards the understanding of optical bistability in a nonlinear materials in 

a hope that optical switches and eventually optical computers and all-optical digital 

networks become possible. 

 
For these all-optical devices to be implemented, it would be highly beneficial to 

search for highly-nonlinear optical materials. One way is to engineer a specific 

nonlinear material through the concept of morphotropic phase boundary (MPB) at 

which the dielectric and mechanical properties of the material is maximum. The 

MPB knowledge can be used as one of the general guiding principles in the search 

for materials with large NL dielectric susceptibility coefficients. Particularly, the 

MPB work presented here may stimulate further interest in the fundamental theory 

of nonlinear response of single ferroelectric crystals with simple structure such as 

BaTiO3 or PbTiO3. Such pure materials can be used for technological applications 

rather than material with complicated structure which require a complicated and 

costly process to process its solid solutions as well as introducing complexity in the 

study of the microscopic origins of their properties. 

 

1.2    Organization of the Thesis 

This thesis consists of seven chapters. Chapter 2 gives some general review on 

certain aspects of linear and nonlinear optics of dielectrics with emphasis on topics 
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directly related to this study. Chapter 3 contains an investigation on the optical 

bistability in a Fabry-Pérot resonator filled with a nonlinear Kerr dielectric material 

using the Maxwell-Duffing analysis. In this chapter we give a detailed analysis of 

optical bistability manifested through polarization and phase. We also differentiate 

between two distinct types of bistable behaviour, namely extrinsic and intrinsic 

optical bistability, and explain the physics behind each type. Chapter 4 gives a 

review on ferroelectric properties directly related to this study. This includes the 

basic concept of spontaneous polarization, hysteresis loop, the Landau-Devonshire 

theory of phase transitions, and ferroelectric soft modes. Finally, the application of 

ferroelectric materials is also presented. Chapter 5 presents the Maxwell-Duffing 

analysis to investigate the optical bistability in Kerr material ferroelectric materials. 

Particularly a ferroelectric Fabry-Pérot resonator and a ferroelectric film are 

considered. Here the thermodynamic free energy is used with the Landau-

Khalatnikov equation to develop a semi- analytical analysis suitable for ferroelectric 

materials. In chapter 6, we present the study on the behavior of the second and third-

order nonlinear susceptibilities in the vicinity of the morphotropic phase boundary 

(MPB) in ferroelectrics. Here, the origin of the large values of the NL susceptibility 

tensor components at the MPB is investigated. The enhancement of the dynamic 

nonlinear susceptibility tensors is investigated within the concept of the ferroelectric 

soft-mode. The enhancement of various elements of particular NLO process such as 

second-harmonic generation (SHG), optical rectification (OR), third-harmonic 

generation (THG), and intensity-dependent refractive index (IP) is investigated at 

the MPB.  In Chapter 7 we conclude the results of this study and suggest some 

possible areas for future work. 



 Chapter 2 

 
FUNDAMENTAL ASPECTS IN LINEAR AND NONLINEAR 

PROPERITIES OF DIELECTRIC MATERIALS 

 

 
2.1    Introduction 
This aim of this chapter is to provide some general review on the field of linear and 

nonlinear properties of dielectric materials related to this study. In the first section 

we review certain aspects in linear optics of dielectrics with emphasizing on some 

relevant condensed matter theories needed to understand this work.  Particularly, we 

introduce some basic information about ionic crystals, lattice modes, sources of 

polarizability, phenomenological theory of ionic crystals, and the linear Fabry Pérot 

interferometer. 

 
In the second-section we review certain aspects in nonlinear optics directly related to 

our work. More specifically, in the second-order nonlinear optics, we review the 

optical rectification (OR), and the second harmonic generation (SHG). In the third-

order nonlinear optics, we review the optical Kerr effect, and the third harmonic 

generation (THG). Further, we review certain nonlinear optical phenomenon related 

to optical Kerr-effect such as polarization and phase optical bistability  

 

2.2        Linear Optics of Dielectrics 
 
2.2.1       Ionic Crystals 
 
Crystals are classified according to their physical and chemical properties to ionic, 

covalent, metallic, or molecular. Ionic and molecular crystals are usually dielectrics 
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while covalent crystal may be dielectric or semiconductors. The type of chemical 

bond has its manifestation in the optical properties. For example, ionic and covalent 

crystals are transparent or absorbing in the infrared region while metals are opaque 

and reflect light well. We are mainly concerned here with the ionic type of crystals 

because of its importance in the field of nonlinear optics. Being readily available and 

among the simplest known solids, ionic crystals have been a frequent and profitable 

meeting place between theory and experiment. This is in contrast to metals and 

covalent crystals, which are bound by more complicated forces, and to molecular 

crystals, which either have complicated structures or difficult to produce as single 

crystals.  

 
In ionic crystals, the lattice-site occupants are charged ions held together primarily 

by their electrostatic interaction. Such binding is called ionic binding. For example, 

in a compound we can expect ionic bonding to predominate when atom A 

has a strong electropositivity and atom B has a strong electronegativity.  In this case 

electron transfer from one atom to another leads to the formation of A+B-.  For the 

main group elements the electron transfer continues until the ions have closed shell 

configurations. Therefore, ionic crystals can be described as an ensemble of hard 

spheres which try to occupy a minimum volume while minimizing electrostatic 

energy at the same time. Empirically, ionic crystals are distinguished by strong 

absorption of infrared radiation and the existence of planes along which the crystals 

cleave easily (Maier 2004). Most ionic crystals have large band gaps, and are 

therefore generally electronic insulators. In perfect lattice where all lattice sites are 

fully occupied, ions cannot be mobile. However, electrical conduction may occur via 

the motion of ions through these crystals due to high temperature or due to the 

presence of point defects.  

 (A) (B)n m

 7



Ionic crystals have at least two atoms in their base which are ionized. Charge 

neutrality demands that the total charge in the base must be zero. Examples of ionic 

crystals are alkali halides, moncovalent metal halides, alkaline-earth halides, oxides, 

and sulfides. The ideal ionic crystal is approached most closely by the alkali halides 

which have a simple chemical formula XY, where X is an alkali metal and Y is a 

halogen (Sirdeshmukh 2001). One of the most well known of these is sodium 

chloride (NaCl). Ionic crystals, especially alkali halides, are relatively easy to 

produce as large, quite pure, single crystals suitable for accurate and reproducible 

experimental investigations. In addition, they are relatively easy to subject to 

theoretical treatment since they have simple structures and are bound by the well-

understood Coulomb force between the ions.  

 
Ionic crystals come in simple and more complicated lattice types (Rao 1997). Some 

prominent lattice types of ionic crystals include the “NaCl Structure” where the 

lattice is face-centered cubic (fcc) with two atoms in the base: one at , the 

other one at 

(0,0,0)

( )1 2,0,0 . Many salts and oxides have this structure such as KCl, MgO 

or FeO. The second lattice type is “perovskite structure” with cubic-primitive lattice, 

but may be distorted to different symmetry. It is also known as the BaTiO3 or 

CaTiO3 lattice and has three different atoms in the base. For BaTiO3, it would be Ba 

at  , O at (0,0,0) (1 2,1 2 ,0)  and Ti at ( )1 2,1 2 ,1 2 . Other lattice types include 

the “CsCl Structure” and the “ZnS Structure”, and the ZrO2 as shown in Fig. 2.1. 
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Figure  2.1   Some prominent lattice types of ionic crystals 

 

 

  2.2.2      Lattice Modes 
 
A crystal lattice at zero temperature lies in its ground state, and contains no phonons. 

According to thermodynamics, when the lattice is held at a non-zero temperature its 

energy is not constant, but fluctuates randomly about some mean value. These 

energy fluctuations are caused by random lattice vibrations. The atoms vibrate as a 

linear chain independent of the number of different atoms per lattice cell. Due to the 

connections between atoms, the displacement of one or more atoms from their 

equilibrium positions will give rise to a set of vibration waves propagating through 

the lattice. The amplitude of the wave is given by the displacements of the atoms 

from their equilibrium positions. A phonon is a quantized mode of vibration 
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occurring in a rigid crystal lattice, such as the atomic lattice of a solid (Kittel 1995). 

Because these phonons are generated by the temperature of the lattice, they are 

sometimes referred to as “thermal phonons”. 

 
In solids with more than one atom in the smallest unit cell (non-primitive unit cell), 

there are two types of phonons: "acoustic" and "optical".  A schematic diagram for 

both acoustic and optical phonons is shown in Fig. 2.2(a). Acoustic phonons 

correspond to a mode of vibration where positive and negative ions in a primitive 

unit cell vibrate together in phase (Ashcroft 1976).  Acoustic phonons have 

frequencies that become small at the long wavelengths, and correspond to sound 

waves in the lattice. Therefore, it does not couple with electromagnetic waves. For 

each atom in the unit cell, one expects to find three branches of phonons (two 

transverse, and one longitudinal). A solid that has N atoms in its unit cell will have 

3(N-1) optical modes. And again, each optical mode will be separated into two 

transverse branches and one longitudinal branch (Waser 2005).   

 
Optical phonons always have some minimum frequency of vibration, even when 

their wavelength is large. They are called "optical" because in ionic crystals, they are 

excited very easily by light or infrared radiation. This is because they correspond to 

a mode of vibration where positive and negative ions in a unit cell vibrate against 

each other (out of phase) leaving the center of mass at rest as shown in Fig. 2.2(b). 

Thus, they create a time-varying electrical dipole moment which allow coupling to 

the electromagnetic waves either by absorbing or scattering. Optical phonons that 

interact in this way with light are called infrared active. Optical phonons are often 

abbreviated as LO and TO phonons, for the longitudinal and transverse varieties 

respectively. A vibration of the atoms perpendicular to the propagation corresponds 
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to a TO wave while a vibration in the direction of the propagation corresponds to an 

LO wave. The dispersion relation between the frequency of the mode ω and its wave 

vector k have two branches Fig. 2.2(a), the first branch is the TA mode with 

frequency vanishes linearly with wavevector, and the other branch is the TO mode 

where the frequency has a finite value at   0k = . 

 
In general, each mode of the phonon dispersion spectra is collectively characterized 

by the relating energy, i.e. the frequency and wave vector k, and is associated with a 

specific distortion of the structure. The local electric field in ionic crystals leads to a 

splitting of the optical vibration modes. The LO mode frequency is shifted to higher 

frequencies while the TO mode frequency is shifted to lower frequencies. The 

softening of the TO modes is caused by a partial compensation of the short-range 

lattice (elastic) forces on one hand and the long-range electric fields on the other 

hand.   

 

 

(a) (b) 

Figure 2.2   (a) Transverse acoustic (TA) and optic mode (TO) of the phonon spectrum.  
(b) a pattern of atomic displacements for an  acoustic  and an optical phonon  mode of 
the same wave vector (Waser 2005). 
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If the compensation is complete, the TO-mode frequency becomes zero when the 

temperature approaches , cT (   )  0TO cT Tω → → , and the soft phonon condenses 

out so that at Tc a phase transition to a state with spontaneous polarization takes 

place (ferroelectric phase transition). At the zone center , the wavelength of 

the TO mode is infinite

0 k →

λ →∞ . In this case the optical modes have highest energy 

where the two sublattices move rigidly against each other Fig. 2.2(c). In this case, 

the dispersion curve is nearly constant and assumes its maximum and the optical 

modes couple strongly to the electromagnetic field. In the case of the softening of 

the TO mode, the transverse frequency becomes zero and no vibration exists 

anymore “frozen in” (Waser 2005).  The relation between 2
TOω and T at the zone 

center is found to be linear as shown in Fig. 2.2(d) suggesting the temperature 

dependence of the optic mode frequency relates to the phase transitions. 

 

 

Figure 2.2(c)    freezing of the TO modes for T → Tc (Waser 2005). 
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Figure 2.2(d)  Frequency of the TO mode and dielectric behavior at the phase 

transition 

 

 

2.2.3     Sources of Polarizability 
 
The constitutive equation that includes the response of the material to the applied 

electromagnetic field is written as;  

 0D E Pε= +  (2.1) 

where  is the electric displacement. The term D 0 Eε  represents the vacuum 

contribution caused by the externally applied electric field and P  is the electrical 

polarization of the matter. This relation is independent of the nature of the 

polarization which could pyroelectric, piezoelectric or dielectric polarization. The 

macroscopic polarization created by the dipoles adds to the vacuum contribution and 

sums up to the displacement field D .  For different frequencies, different types of 

oscillators will dominate the response. The strength of this response depends also on 

the oscillator density and on the inertia of the excitation mechanism. For a pure 
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dielectric response, the polarization is proportional to the electric field in a linear 

approximation by 

                            0 0orP E D r Eε χ ε= = ε      (2.2) 

Equations. (2.1)-(2.2) describe the mean properties of the dielectric. The dielectric 

susceptibility χ is related to the relative dielectric constant rε  by 1rχ ε= − . 

Equations (2.2) are only valid for small fields. Large amplitudes of the ac field lead 

to strong nonlinearities in dielectrics, and hysteresis loops in ferroelectrics. This 

macroscopic point of view does not consider the microscopic origin of the 

polarization (Kittel  1995). The macroscopic polarization P is the sum of all the 

individual dipole moments  of the material with the density . p j jN

 pP j j
j

N=∑  (2.3) 

In order to find a correlation between the macroscopic polarization and the 

microscopic properties of the material, a single (polarizable) particle is considered. 

A dipole moment is induced by the electric field at the position of the particle which 

is called the local electric field Eloc  

 P E lo c= α  (2.4) 

where α is the polarizability of an atomic dipole. If there is no interaction between 

the polarized particles, the local electric field is identical to the externally applied 

electric field 0E Eloc = . The local field Eloc  at the position of a particular dipole is 

given by the superposition of the applied macroscopic field E0 and the sum of all 

other dipole fields. In general, there are five different mechanisms of polarization 

which can contribute to the dielectric response (Kittel 1995). 
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• Electronic polarization exists in all dielectrics. It is based on the 

displacement of the negatively charged electron shell against the positively charged 

core. The electronic polarizability is approximately proportional to the volume of the 

electron shell. Thus, in general electronic polarization is temperature-independent, 

and large atoms have a large electronic polarizability. 

 
• Ionic polarization is observed in ionic crystals and describes the 

displacement of the positive and negative sublattices under an applied electric field. 

 
• Dipolar polarization describes the alignment of permanent dipoles. At 

ambient temperatures, usually all dipole moments have statistical distribution of 

their directions. An electric field generates a preferred direction for the dipoles, 

while the thermal movement of the atoms perturbs the alignment.  

 
• Space charge polarizability is caused by a drift of mobile ions or electrons 

which are confined to outer or inner interfaces. It can exist in dielectric materials 

which show spatial inhomogeneities of charge carrier densities. Its effects are not 

only important in semiconductor field-effect devices, but also in ceramics with 

electrically conducting grains and insulating grain boundaries as well. Depending on 

the local conductivity, the space charge polarization may occur over a wide 

frequency range from mHz up to MHz and is temperature-independent. 

 
• Domain wall polarization exists in ferroelectric materials and contributes to 

the overall dielectric response. The motion of a domain wall that separates regions 

of different oriented polarization takes place by the fact that favored oriented 

domains with respect to the applied field tends to grow. 
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 The total polarizability  of dielectric material results from all the contributions 

discussed above. The contributions from the lattice are called intrinsic contributions, 

in contrast to extrinsic contributions.  

α

 

                    e i dip domain space charge

intrinsic extrinsic

= + + + +α α α α α α    (2.5) 

 

If the oscillating masses experience a restoring force, a relaxation behavior is found 

(for orientation, domain walls, and space charge polarization). Resonance effects are 

observed for both ionic and electronic polarization.  In the infrared region between 1 

and 10 THz, resonances of the molecular vibrations and ionic lattices constituting 

the upper frequency limit of the ionic polarization are observed. 

 
 Fig. 2.3 presents a schematic picture of different polarization mechanisms that 

occur in solid materials. The figure shows that for different frequencies, different 

oscillators are excited. In these frequency intervals, close to the oscillator 

resonances, the polarizability of the material varies strongly with frequency. For 

frequencies between the resonances the polarizability is almost constant. It is 

characteristic for an oscillator that there is a resonance region with strong absorption 

and dispersion. A resonance located at a high frequency will give frequency-

independent contribution at all lower frequencies, whilst a low frequency resonance 

will not contribute at sufficiently high frequencies due to inertia.  
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Figure 2.3 Total polarizability (real part) versus frequency for dipolar substance. The 
parts of the spectrum where the resonances are located are indicated. , , and  
are resonances of the electronic polarization, ionic polarization, and dipolar 
polarization respectively. 

eω iω dω

 

 

2.2.4       Phenomenological theory for Ionic insulators 
 
when an electric field interacts with a nonlinear medium, the material is thought of 

as a collection of charged particles (electrons and ions). Upon applying the electric 

field, the positive charges tend to move in the direction of the field while the 

negative one move the opposite way. In dielectric material, the charged particles are 

bounded together yet the bond has certain elasticity. The slight displacement of the 

positive and negative charges from their equilibrium positions results in an induced 

electric dipole moments. Because the applied field varies sinusoidally at optical 

frequencies, the charged particles oscillate at the same frequency as the incident 

field. The oscillating dipoles in turn radiate into the medium and modify the way in 

which the wave propagates. Since the ion cores of the medium have much greater 

mass than the electrons, the motion of electrons becomes more significant for high 
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optical frequencies (ultraviolet and visible). For lower frequencies (infrared), the 

motions of the ions become more important, particularly, our main concern is the 

ionic lattice vibrations in solids. 

 
The response of an ion to the optical electric field is that of a particle in an 

anharmonic potential well. The mechanical analogy of this is that the position of the 

particle in response to the optical field is governed by the equation of motion of an 

oscillator. The motion of charged particles in a medium can be considered linear 

with the applied field only if the displacement is small. However, for large distance, 

x, the restoring force is significantly nonlinear in x. The anharmonic response gives 

rise to an induced polarization which can be considered approximately linear or 

significantly nonlinear depending on the magnitude of the applied field. When the 

anharmonic terms are included, there is no longer an exact solution to the equation 

of motion.  

 
The originator of the classical dipole oscillator model is Lorentz, so it is also called 

the Lorentz model. In this model, the light is treated as electromagnetic waves and 

the ions are treated as classical dipole oscillators. The forced damped cubic Duffing 

equation describes an oscillator with reduced mass M  acting upon a nonlinear 

restoring force   and a periodic external force ( )V x Eq  is described by the 

following equation of motion  

 

 ( )
2

12 Eloc
x xM V x∂ ∂
+ Γ + ∇ =

∂ ∂t t
q                                     (2.6) 

 
In the former equation, ( )x t  is the displacement of the ions from its equilibrium 

position and q is the effective charge. The effective charge is usually smaller than 
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the charge on the electron because the transfer of the electron in the alkali halides for 

example from the alkali atom to the halogen atom is not complete. The cubic 

Duffing oscillator describes the motion of a classical particle in a double well 

potential ( ) 2
1

1 1
2 4

V x x x 4
2λ λ= +  with 1λ and 2λ being the linear and the 

nonlinear spring constant respectively.  The one dimensional Duffing potential is the 

simplest binding potential which may lead to a bistable response. Therefore;  

 
2

3
1 1 22 Elocxx xM x qλ λ∂ ∂

+ Γ + + =
∂ ∂t t

                                      (2.7) 

 
Application of external field results in the rotation of these randomly oriented 

dipoles to align with the direction of the field ( )p = −qx t . In a small volume (but 

still have large number of dipoles) all initially considered to be oscillating in phase, 

the magnitude of the initial macroscopic polarization is pP N= Where p is the dipole 

moment and N is the dipole density (Number of dipoles per unit volume). Therefore, 

the nonlinear equation of motion for the macroscopic polarization 

 

                                  
2

2 3
02

P P P P = Elocγbω∂ ∂
+ Γ + +

∂ ∂t t
                        (2.8) 

 
 
In the above, 2

0 1 Mω λ=  is the resonance frequency, 2Nq Mγ =  is the coupling 

constant,  2 2
2b M Nλ= q  is the basic nonlinear constant, and   1 MΓ = Γ  is the 

damping parameters. In linear régime, to derive the linear dielectric constant from 

the above equation, we ignore the nonlinear term by setting the coefficient to zero b

 

                                       
2

2
02

P P P Elocω γ∂ ∂
+ Γ + =

∂ ∂t t
                                    (2.9) 
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Consider the driving field and the polarization to be time-harmonic with ( )exp iω− t  

dependence. Therefore, the ionic polarization  may be written as;  iP

 
  ( )2 2

0i locP E iγ ω ω ω= − − Γ                                        (2.10) 

 
The frequency-dependence of the material response reflects the fact that a material's 

polarization does not respond instantaneously to an applied field, the response must 

always be “causal” (arising after the applied field). Now, recalling the basic 

definition for the electric displacement; 

 
                                           ( ) ( )0 0r i eD E E P Pε ε ω ε= = + +     (2.11) 

 
In the above equation, accounts for the electronic polarization exists in the crystal 

due to the displacement of  the electrons in the atomic shells from the positive ion 

cores.  Substituting (2.10) into (2.11) 

eP

 

                          ( ) ( )2 2
0 0 01

ionicelectronic

e locP E iε ω ε γ ε ω ω ω⎡ ⎤= + + − − Γ⎣ ⎦                 (2.12) 

 
For 0ω ω , both ionic and electronic contributes results in the familiar static 

dielectric constant  (or simply ( )0rε sε ). At the opposite end of the spectrum, 

0ω ω , the ionic contribution vanishes because the frequency there becomes too 

high for the ions to follow the oscillation of the field. In that range, the dielectric 

constant is denoted by ( )rε ∞  (or simplyε∞ ) and contains only the electronic 

contribution. Therefore, the former equation may now be written as (Omar 1996) 

 
                   ( ) ( ) ( )2 2 2

s T T iε ω ε ε ε ω ω ω ω∞ ∞
⎡ ⎤= + − − − Γ⎣ ⎦                (2.13) 
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In equation (2.13), ( )ε ω  is written in terms of readily measured parameters. Table 

(2.1) shows these parameters for some ionic crystals. 

 

Table (2.1)   Infrared lattice data for some ionic crystals (Omar 1996). 

 

Symbol ( )0rε  ( )rε ∞  13,10 rad/sTω  13,10 rad/sLω  *q q  
LiF 8.9 1.9 5.8 12 0.87 
NaF 5.3 1.75 4.4 7.8 0.93 
NaCl 5.62 2.25 3.08 5 0.74 
NaBr 5.99 2.62 2.55 3.9 0.69 
KBr 4.78 2.33 2.18 - 0.76 
AgCl 12.3 4.04 1.94 3.4 0.78 

 
 
We also note that, the resonance frequency 0ω is related to the transverse optical 

frequency Tω  through the linear relation (Ashcroft 1976 ) 

 [ ]2 2
0 2 2s Tω ε ε ω∞= + +  (2.14) 

 
 
Equation (2.12) may also be written in alternative form in terms of the plasma 

frequency 2 2
0p Nq Mω ε= (Bohren 1998); 

 
                              ( ) ( )2 2 2

0p iε ω ε ω ω ω ω∞
⎡ ⎤= + − − Γ⎣ ⎦                   (2.15) 

 
Equation (2.15) may be written in the form  ( ) ( ) (i )ε ω ε ω ε ω′ ′′= +  where the real 

and imaginary parts are.  

 

                     ( ) ( )
( ) ( )

2
0

2
0 02 2

pω ω ω
ε ω ε

ω ω ω
∞

−
′ +

2⎡ ⎤− + Γ⎣ ⎦
                   (2.16) 
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( )
( ) ( )

2

2
0 04 2

pω
ε ω

ω ω ω

Γ
′′                             2⎡ ⎤− + Γ⎣ ⎦

              (2.17) 

 
he above process of separating the dielectric constant ( )ε ω

ing param

T to its real and 

imaginary parts has its importance to estimate the damp eter  (Bohren 

1998). From (2.17), the maximum value of 

Γ

ε ′′  at 0ω ω=  is approximately 2
0pω ωΓ . 

The width of the bell-shaped curve of ''ε isΓ  i.e. ε ′′  falls one-half its aximum 

value when  

                                              

 m

( )0 2ω ω− ≈ ±Γ                  (2.18) 

 
etting the Derivative of (1.16) with respect to ( )0ω ω−S  equal to zero, therefore, 

max max1 2ε ε′ ′′= +  and min max1 2ε ε′ ′′= −  occurs at 0 2ω ω− = +Γ  and 0 2ω ω− = −Γ  

respectively. Because of the superposition principle for amplitudes in the harmonic 

approximation, the complex polarizability is an additive quantity. Therefore, the 

dielectric function for a collection of oscillator is just the sum over the various 

oscillators (Bohren 1998). 

 
                          ( ) ( )2 2 2

0p j j
j

iε ω ε ω ω ω ω∞
⎡ ⎤= + − − Γ⎣ ⎦∑     (2.19) 

 
he dielectric function may also be written in terms of refractive index 

2 nk  where   is the complex 

refractive index, n is the real refractive index, and k  is the extinction coefficient. For 

normal incidence, the reflectivity R of an optical medium may be written as 

 

T

( ) ( ) ( ) ( ) 22 2 2n n i n iε ω ω ω ω ⎡ ⎤= = − = − +⎡ ⎤⎣ ⎦ ⎣ ⎦k k n

  ( ) ( ) ( ) ( )2 2 21 1 1 12 2R n n n n⎡ ⎤ ⎡ ⎤= − + = − + + +⎣ ⎦ ⎣ ⎦k k                         (2.20) 
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Fig. 2.4 shows the linear frequency-dependent dielectric function ( ) ( )ε ω ε ω′=  

( )iε ω′′+  versus frequency ω  based on multiple oscillator m

ents the real part 

odel. The dashed curve 

repres ( )ε ω′  while the solid curve represents the imaginary part 

( )ε ω′′ . The parameters Tω  and Lω  is the transverse an

phonon frequencies respectively. 

d longitudinal optical 

Lω is the frequency where ( )ε ω′ vanishes 

while Tω is the frequency where ( )ε ω′

m values at 

→∞

T

. Thus the absorp

coefficients have their maxim

tion and extinction 

u ω . The phenom

reflection and absorption by the lattice ar ometimes called “res

ena of a strong infrared 

tstrahlen”.  An e s

important feature of Fig. 2.4 that the real part ( )ε ω′ of the dielec

negative in the frequency range 

tric function is 

T Lω ω ω< < . This me  ans that in the range

T Lω ω ω< < , 0n =  and 0≠k  which shows that the reflectivity 1R = .  Therefore, 

an incident wave with frequency in the range T Lω ω ω< < does not propagate in the 

crystal and suffers a total reflection. 

 
e dependence of reflectance R on the frequency  Fig. 2.5  illustrates th ω  for MgO as 

determined by (2.19) for a two oscillator model (solid line) in comparison to the 

experimental results (in circles) measured by Jasperse (1966).  The round off edges in 

of the reflectance spectrum in Fig. 2.5 is due to the damping term in equation (2.19). 

Such damping may be due to any of the phonon-collision mechanism or loss of 

energy to the environment.  
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Figure 2.4 The linear frequency-dependent dielectric function ( ) ( )ε ω ε ω′=  

( )iε ω′′+  versus frequency ω  for MgO. The dashed curve represents the real part 

( )ε ω′  while the solid curve represents the imaginary part ( )ε ω′′ (Jasperse 1966). 

 
 

 
 
Figure 2.5  Reflectance R versus wavenumber; the solid line represents the theory, 
while the measurements (circles) are from Jasperse (1966). 
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