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Abstract

Bioprocess control consists of establishing a
strategy for the management of the biocatalyst
environment. Bioprocesses include several different
units in which a near optimal environment is desired
for microorganisms to grow, multiply, and produce a
desired product. However, bioprocess control provides
special challenges due to significant process
variability and the complexity of biological systems. In
this paper, various control strategies that have been
implemented in bioprocess reactor for the last twelve
years from 1995 to 2006 are reviewed. Four major
control schemes; i.e. model predictive control, neural
network based control, adaptive control and fuzzy
control are mainly discussed in this work and their
effectiveness control schemes are also highlighted.
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1. Introduction

The processing of biological materials and
employing biological agents such as cells, enzymes, or
antibodies have been recognized since thousands of
years. Bioprocess is currently involved in producing
some chemical compound synthesized by a
microorganism; cultivate a biomass for its utilization,
extraction of its metabolites, and to degrade a pollutant
[1]. Temperature, pH and dissolved oxygen are the
most widely measured and controlled parameters. In
production, only critical parameters may be measured
to enable proper control of the process and ensure high
quality and yield; however, in practice, less of suitable
sensors and tools for online monitoring have not
allowed this idea to be widely implemented [2].
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Advanced control methods have been effectively
employed for this type of industry. However, recently
only model-based control strategies have been
implemented for  biological  processes.  The
combination of more than one type of model in a
hybrid form was shown to perform well for bioprocess
control applications [3]. There are many types of
models which can be categorized in various ways such
as deterministic, non-deterministic, logistic (linguistic),
mathematical equations base, data-driven and
knowledge driven.

In this paper, the recent applications of major
controlled schemes to industrial biological processes
are summarized, compared and discussed in term of
the system features, control purpose, input and output
variables, development and its effectiveness. The
characteristic of controller implementation systems and
the usefulness of controller for the bioprocess are
described.

Bioreactor requires advanced regulation procedures
to ensure the bioprocesses performance and efficiency.
However, the control of bioreactors is a delicate
problem since most of the time the available biological
models are only rough approximation. The dynamic
nature of bioprocesses results in varying growth rates,
oxygen uptake rate and product formation rates under
different operating conditions. Bioprocess employs
most of the same types of control as are used in other
chemical industries such as model predictive control,
neural network, adaptive control and fuzzy control
methods.

2. Model predictive control

Model predictive control (MPC) algorithms have
been widely used in industrial processes in recent
years. These algorithms are well suited for high
performance control of constrained multivariable
processes because explicit pairing of input and output
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variable is not required and constraints can be
incorporated directly into the controller design. Model-
based control of bioprocess is a difficult task due to the
challenges associated with bioprocess modeling and
lack of on-line measurements.

Costa et. al. [4] studied the design, optimization and
controls of extractive alcoholic fermentation process
using non-linear predictive control. In their works,
they applied Functional Link Network (FLN) to
identify the process using simulated data generated by
a deterministic model whose parameters were obtained
from experiments. The FLN could describe the non-
linear dynamics of the process. The predictive
controller for this work presented good performance to
lead the system to new set-points and to eliminate the
influence of disturbance i.e (feed substrate
concentration and feed temperature).

Dowd et. al. [5] manipulated and controlled
substrate concentrations in the perfusion bioprocess
using predictive modeling and control. They applied
model of glucose uptake rates to estimate the state of
the process and change manipulated variables. The
flow rates were adjusted to drive the process close to
the set point. With good model estimation of glucose
uptake rates, predictive control was able to maintain
the process at the set point with a small level of
variability.

Foss et. al [6] investigated the use of MPC on batch
fermentation processes using a non-linear model in the
controller. They operated the process with combination
of operating regimes and simple local state-space
model into a global model structure using an
interpolation method. The results showed that the
operating-regime-based modeling framework can be
used as a means for modeling processes that operate
over a wide range of operating conditions. The results
also show an improved performance by moving from a
linear to a non-linear model as the basis for MPC in
this type of process. However, the improvement is
limited by hard upper constraints during significant
parts of the batch.

Preub et. al. [7] described the necessary control and
supervision steps when temperature control was
implemented in a batch pharmaceutical reactor. They
developed several predictive controllers and minimized

objective function to make it different with
conventional MPC and it has to be demonstrated that
the controller keeps the temperature within

predetermined ranges for the operation conditions and
set-point profiles defined in the respective recipe.
Campello et. al. [8] presented and applied model-
based predictive control of a complex industrial
process for ethyl alcohol production. They proposed
control scheme that based on the used of the well-
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known generalized predictive controller algorithm
combined with a linearization of the orthonormal basis
function hierarchical fuzzy model at each sampling
instant. The MPC was able to control the ethanol
concentration even in the presence of disturbance
which strongly affects the process dynamics.

3. Neural Network Based Controllers

Neural network methods can provide adequate
precision in estimating variables from incomplete
information. Neural networks have drawn much
attention because it does not require any prior
knowledge about the relationship that exists between
the states of the systems. When processes are complex
and poorly understood in a mechanistic sense, hybrid
modeling through knowledge integration can be
employed with advantage because the model accuracy
can be increased by the incorporation of alternative
and complementary sources of knowledge. Many
extensive reviews about neural network have been
done by several researchers; Hussain [9] reviewed the
various applications utilizing neural networks for
chemical process control. The review involved three
major categories of control i.e. inverse-model based,
predictive and adaptive control techniques.

Glassey et. al. [10] used artificial intelligence
methodologies, including artificial neural network
(ANN) and knowledge based system to monitor and
control batch bioprocess reactor. The missing value
that’s come from sensor failure can be replaced using
either statistical methods or by more sophisticated
methods such as auto associative ANNs. Validated
data is then passed to the fault detection module where
deviations from nominal process behavior such as
lower productivity or expression vector instability can
be detected. This system is generic in that the modules
can relatively easily be modified for a particular
process as has been demonstrated on industrial
processes.

Oliveira [11] also come out with general framework
in combining first principles modeling and artificial
neural networks to improve bioprocess operation. The
bioreactor system is described by a set of mass balance
equations, and the cell population system is
represented by an adjustable mixture of neural network
and mechanistic representations. He applied a
cooperative work between all factors producing
knowledge which can contribute to design the accurate
process model and efficient new model-based
operating strategies.

Dirion et. al. [12] applied a neural controller for
temperature control of a batch reactor. The system is
general bioprocess and the work focused on the design
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and development of the neural network. They also
developed a control structure based on two neural
networks. First is a neural controller which computes
the control variable to be applied to the reactor and
second is a neural model of the process. This neural
model is used to transform the error between the
reactor and the set point temperatures into a signal.
The results showed the good performances of the
neural controller. They observed a very good tracking
of the set-point and a smooth evolution of the control
variable.

There are several difficulties with neural network
on-line implementation. It must be trained off-line
because of the long computation time needed for
training. Gadkar et. al. [13] developed neural network
with intra-connections within the output layer to track
the dynamics of fed-batch yeast fermentation. This
network architecture was capable of providing online
state estimates within a reasonable domain outside its
training space. The results showed that it can be
implemented for online control and able to track the
changing dynamics of the process due to the external
disturbances.

4. Adaptive Control

The most common task considered in the design of
bioreactor control system is the regulation of known
set-points or the tracking of specified reference
trajectories. In some applications, however the control
objective could be to optimize an objective function
such as the biomass production rate or the growth rate
which is generally a function of the substrate
concentration and the unknown parameters. Guay et.
al. [14] proposed adaptive extremum seeking
techniques to solve this class of control problems.
They assume limited knowledge of the growth kinetics
and introduced adaptive learning techniques to
construct a seeking algorithm that drives the system
states to the desired set-points that maximize the value
of an objective function.

Arauzo-Bravo et. al. [15] implemented adaptive
internal model control (IMC) strategies for penicillin
production. Adaptive IMC strategies were tested in
the simulated plant. They showed that adaptation can
correct on the unexpected variations occurring along
the fermentation. They used neural networks and fuzzy
logic to build knowledge based controller. Results in
adaptive cases showed better tracking of reference than
the respective non-adaptive controllers. The used of
fuzzy logic within neural networks allows for the
expression of acquired knowledge with rules that
resemble those handed by humans.
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Vallentinotti et. al [16] used novel adaptive control
methodology based on the internal model principle in a
fed-batch fermentation of S. Cerevisiae to maintain the
desired ethanol setpoint and reject the perturbation. In
their work, the optimization, modeling, and control
methodology also can be used for the regulation of
other quantities related to the exponential cell growth
in  fed-batch  fermentation.  This  controller
demonstrated the effectiveness for rejection in closed-
loop of unstable disturbance.

Smets et. al [17] designed model-independent
adaptive control by developed heuristic control
strategies with nearly optimal performance under all
conditions. They applied this control strategy to
fermentation reactor and showed the interesting
perspectives to obtain robust and practically realizable,
nearly optimal control solutions for biochemical
conversion process.

Renard et. al. [18] wused minimal process
knowledge and minimal measurement information to
develop robust adaptive controller and applied to
ethanol regulation in cultures of Saccharomyces
cerevisiae. The design procedure can be extended to
other important control problems in fed-batch
fermentations, such as the regulation of a limiting
substrate concentration, the acetate regulation in E. coli
fed-batch cultures and the regulation of a limiting
substrate concentration. The controller showed the
asymptotic rejection of unstable disturbance, good
robustness to model uncertainties and noise attenuation
on the control signal.

5. Fuzzy Control

Fuzzy control has been introduced in the
biotechnology field for several years and recently,
several applications of fuzzy control, including large-
scale fermentor control, have been reported. The
applications of fuzzy set theory for modeling and
control of bioprocess from 1990 to 2000 has been
already reviewed by Shioya et. al., [19]; Honda &
Kobayashi,[20]; Horiuchi, [21]. They summarized the
characteristics of fuzzy control applications in
industrial biological processes as shown in Table 1.
Fuzzy control was applied to various fermentation
processes, but type of cultivation was fed-batch culture
except for the Japanese sake brewing which requires
specific fermentation techniques. They all reported that
there was no difficulty in applying the fuzzy control
system developed at pilot scale level to a commercial
scale process without major modification of production
rules and membership functions.

Nakano et. al. [28] used fuzzy logic control (FLC)
to maintain the microaerobic condition in the xylitol



International Conference on Control, Instrumentation and Mechatronics Engineering (CIM’'07),

Johor Bahru, Johor, Malaysia, May 28-29,2007

production phase by regulating the proportion of air
flow rate supplied to the fermentor. The advantage of
FLC, i.e.,, a knowledge based control system, is its
flexibility in being able to handle bioprocess
information, in both mathematical and linguistic forms,
within a computer-implementable system.

Karakuzu et. al [29] designed fuzzy controller based
on the proposed structure using simulation model of
fed-batch baker’s yeast fermentation system. They
used actual measurements as a basis for feedback
control to estimate the biomass concentration and
specific growth rate. The controller determined
substrate and air flow rate, relating to status of
estimated specific growth rate, elapsed time, ethanol
concentration and dissolved oxygen concentration.
This method was able to improve estimation even with
varying initial condition. The controller has generated
substrate and air flow rates as an output acceptable in
large scale.

There are also others control strategies method that
have been applied to bioprocess technology such as
Model-based geometric control algorithm (MGA)
proposed by Gomes & Menawat, [30]. They developed
MGA for controlling the dissolved oxygen
concentration in fermentation processes. The algorithm
is developed on a generic system description witch
encompasses a wide range of models commonly used
to describe bioprocesses. They compared the
performance of algorithm with performance of an IMC
and classical PI controller and the results showed that
MGA performed better than the IMC and PI
controllers. The MGA is adaptive, robust, incorporates
an integral component and converges within a finite
number of steps.

All the controller models applied to the bioprocess
reactor from 1995 to 2006 are summarized in table 2.
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6. Conclusions

The bioprocess suffers from a lack of good
mathematical models, because of its complexity, since
it is highly non-linear, has time varying parameters. It
is also has many important variables that cannot be
measured on-line, along with others that can present
high levels noise. A few advanced control strategies
implemented in bioprocess have been reviewed. It was
found that the designed and application of advanced
control  strategies in  bioprocesses have been
successfully achieved over past two decades. The
common control strategies applied were model
predictive control (MPC), neural networks based
control, fuzzy control and adaptive control. All the
controller strategies showed good performance in
maintaining the set point and give better disturbance
rejection for controlling bioprocess system. The
purpose of this work is to spell out some of the
prospects for advanced control in the current and
future bioprocess technological environment, it is
because the field will play important part in food,
pharmaceutical, and scientific industrial over the next
decade. The knowledge discovery on this research can
be ported to industrial scale processes and helps
professionals define, develop and apply a model
control scheme in a virtual plant.
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TABLE 1: Applications of fuzzy control to industrial biological processes (Horichi J.I (2002))

Company Ajinomoto Sankyo Japan Beet Sugar | Gekkeikan Sake Nippon Roche
Mfg

Product Glutamic acid ML-236B Yeast Sake Vitamin B,

Type of Fed-batch Fed-batch Fed-batch Sake brewing Fed-batch

culture

Culture time About 35 (h) About 350 (h) 12(h) 18(d) 48(h)

Control Control of pH control by Optimal control Dtermination of Optimal control of

purpose residual sugar sugar feeding of sugar feeding optimal sugar feeding and
conc. temperature pH

State variables | Culture time, Total CO, Ethanol conc. Baume, difference | Culture time,

(inputs to DO, dDO/dt evolution, pH, (E), dE/dt, DO in Baume, ethanol CER, total CO,

fuzzy control) dpH/dt and pyruvate conc. | evolution, DO

Control
variables
(outputs from
fuzzy control)

Molasses feed
rate

Sugar feed rate

Culture
temperature

Sugar feed rate

Sugar feed rate,
pH

Inference Min-max Indirect Min-max Min-max operation | Indirect
method operation inferencing using operation inferencing using
culture phases culture phases
Rule number 18 5 15 196 4
Source of Experienced Experienced Analysis of Experienced Knowledge
control rules operator operator fermentation operator accumulated
characteristics during
commercialization
Result Stable operation | Increased Increased High quality sake Increased
by automatic productivity and productivity and brewing by productivity and
control stable operation automatic automatic control yield by automatic
operation operation
Current status | Pilot Commercial Pilot Commercial Commercial
Reference Nakamura et. al | Hosobuchi et. al Ishiguri (1994) Oishi et. al. (1991) | Horiuchi et. al.
(1985) [22] (1993) [23] [24] [25] (1998;1999)
[26,27]
TABLE 2: Summary- models controller applied in bioprocesses
N | Model Batch Process Note Ref.
0
1 Non-linear Alcoholic The internal model for predictive controller was | [4]
predictive control | fermentation presented using FLN
2 Predictive control | Perfusion The MPC controller gave smooth transition | [5]

between batch and perfusion culture.

3 Non-li

predictive control

near

Fermentation

Used operating-regime-based
framework for
performance was
constraints

modeling | [6]
modeling process and the
limited by hard upper

4 Predictive control

Pharmaceutical

Application of MPC controller in industrial [7]

5 Predictive control

Ethanol

The control scheme is based on the GPC | [8]

production algorithm combined with a linearization of the
fuzzy model.
6 Neural network - Applications of neural networks both in | [9]
simulation and online implementation
7 Neural network Cultivation The system can easily be modified for a
particular process. [10]

8 Neural network

The process is in semi-batch pilot-plant reactor
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[11]
9 Neural network Ethanol Only dissolved oxygen conc. measured online,
fermentation the neural network was used to predict the state | [12]
variables.
10 | Adaptive - For unknown growth kinetic model. [13]
extremum seeking
control
11 | Adaptive control Penicillin Based on neuro-fuzzy models. [14]
production
12 | Adaptive control Fermentation The adaptive controller allowed rejection of | [15]
unknown unstable time-varying disturbance
13 | Adaptive control Aerobic The controller can be applied to both define and | [16]
fermentation complex media cultivation processes with
unknown composition.
14 | Adaptive control - The concepts are applied to a non-perfectly | [17]
mixed chemical conversion process
15 | Adaptive control Fed-batch The robust controller using minimal process | [18]
fermentation knowledge and  minimal  measurement
information.
16 | Fuzzy control - Knowledge-Based design [19]
17 | Fuzzy control - Industrial practices of fuzzy control are | [20]
introduced.
18 | Fuzzy control - Applications of fuzzy control to industrial | [21]
biological processes.
19 | Fuzzy control Microbial The flexibility of FLC in being able to handle | [28]
production bioprocess information.
20 | Fuzzy control Baker’s yeast | Fuzzy control was design based on simulation | [29]
fermentation model of fed-batch fermentation system.
21 | Model-based Fermentation Comparing the performance of IMC, PI and | [30]
geometric control MGA
algorithm (MGA)
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