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Abstract: - This paper compares the performance of Hybrid Multilayered Perceptron (HMLP) network, 
Multilayered Perceptron (MLP) network and Recurrent network. These networks are used to model and 
forecast carbon monoxide (CO) concentration. Two data sets are used for the comparison, one data set from 
simulated environment and one real data set obtained from Malaysian Environmental Department (ASMA). 
The forecasting performances of these models are evaluated using index of coefficient (R2), one step ahead 
prediction (OSA) and multi step ahead prediction (MSA). The results obtained from both data sets indicate that 
HMLP network gives the best performance compared to MLP and Recurrent networks.  
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1 Introduction 
The impact of urban air pollution is broad 
especially towards human beings (WHO, 1987), 
since it can cause irritation, odour annoyance, acute 
and long term toxic effects [1]. Carbon Monoxide 
(CO) is a primary pollutant in urban area, due to 
the major emission from motor vehicles. CO is 
produced from incomplete burning of carbon 
contained fuels. According to the Journal of 
American Medical Association (JAMA), 1500 
people die annually due to accidental CO poisoning 
and 10000 people seek medical attention [2]. 
Forecasting of CO or other gas pollutants 
concentration are very important since preventive 
action can be taken if the forecasted CO level 
exceeds certain value.  

A lot of researches have been carried out using 
different methodology on CO concentrations 
forecasting.  One of the methods was by using 
univariate linear stochastic models based on Box-
Jenkins modelling technique [3]. This model 
sufficiently needs long historical data set for model 
formulation. Another approach was by using Box-
Jenkins transfer function noise model (TFN) [4]. 
The forecasting performance was better compared 
to the first approach presented in [3]. Besides that, 
Gaussian and regression models were implemented 
for CO forecasting [5] [6]. In another study, 
performance comparison between the use of 

dispersion and stochastic models were carried out. 
It was reported that stochastic model performed 
better than dispersion model to predict the hourly 
mean value of CO concentrations [7]. 

Lately, the application of neural networks (NN) 
becoming very popular for forecasting air 
pollutants concentration. NN have been proved 
mathematically to be capable of representing 
nonlinear systems. A NN known as “Brainmaker” 
using back propagation algorithm was used to 
predict CO concentrations with an accuracy of 
R2=0.69 [8]. Forecasting on other gases using NN 
were reviewed since not much of studies have been 
done specifically on implementation of NN on CO 
concentrations forecasting. The prediction of 
hourly time series of NO2 was carried out using 
MLP network, the R2 obtained was 0.96 [9]. In 
another study, AR model was used for prediction of 
NO2 and NOX concentrations with an accuracy of 
R2=0.69 and 0.42, respectively [10]. The results 
obtained from [10] were compared with the 
implementation of MLP network by using the same 
data set. MLP network was found to perform better 
than AR model with an accuracy of R2=0.86 and 
0.88 [11]. In another study, prediction of PM2.5 
concentrations was carried out by using multilayer 
neural network, linear regression and persistence 
models. The predictions produced by these 
methods were compared and NN was found to give 
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the best result [12].  In another study, recurrent 
network with feedback in the hidden layer was used 
to predict SO2 concentration[13]. The network was 
trained using Levernberg-Marquadt algorithm. The 
results obtained from recurrent network were 
compared with those obtained from multivariate 
regression model. The results indicated that neural 
network gave better prediction with less residual 
mean square error than those given by multivariate 
regression models. 

 In the present study, CO concentrations 
forecasting performance will be compared between 
HMLP, MLP and Recurrent networks. The HMLP 
network is trained using Modified Recursive 
Prediction Error (MRPE) algorithm. The MLP and 
Recurrents networks are trained using Levernberg-
Marquadt algorithm. Their performances are 
evaluated using R2 test, OSA and MSA test, 
respectively.  
 
2 Neural Network Models  
A hybrid multilayered perceptron with one hidden 
layer is shown in Figure 1. HMLP network with 
one hidden layer can be expressed by the following 
equation: 
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Fig.1 Hybrid Multilayered Perceptron 

 
A multilayered perceptron with one hidden layer 
can be defined as shown in Equation (2). 
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where  denotes the weights that connect the 
input and the hidden layers; and represents 
the threshold in hidden nodes and input supplied to 
the network; denotes the weights that connect 
the hidden and output layer; are the weights 
connection between input and output layer; and 
are the number of input nodes and hidden nodes; m 
represents the number of output nodes while 
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is an activation function which is normally selected 
as sigmoidal function.  
 The weights ,  ,   and   are 
unknown, and should be selected carefully in order 
to achieve minimum prediction error, defined as 
below:  
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where  and  are the actual and 
predicted output.  
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 In this study, recurrent network called as Elman 
network is applied for the comparison studies. 
Elman networks are commonly structured as two 
layer back propagation networks, with the 
additional feedback connection from the output of 
hidden layer to its input. The feedback connection 
allows the network to both recognize and generate 
time-varying patterns. An Elman network with one 
hidden layer is shown in Figure 2.  
 
 
 

 
 
 
 
 
 
 

Fig.2 Elman network 
 
The descriptive equations of Elman network can be 
written as shown below: 
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where is the weight that connects i-th hidden 

layer neuron and j-th context layer neuron;  is 
the weight linking the input neuron  and 

the i-th hidden layer neuron;  is the weight that 
connects output neuron  and the i-th hidden 
layer neuron;  represents activation function 
in the hidden layer node and N is the number of 
hidden layer nodes. Usually, sigmoidal activation 
function is used for application to modelling non- 
linear systems. 
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In the literature, MLP and Recurrent networks 
were used to perform gasses forecasting. Besides 
that, both networks were trained using Levernberg-
Marquadt algorithm. That is the main reason both 
networks were chosen for this comparison studies.  
 
3 CO Concentrations Forecasting 
using HMLP network  
 
In this section, the performance of HMLP network 
together with MRPE algorithm has been evaluated 
using one simulated environment data set and one 
real data set. The simulated environment data set 
contain 500 data samples which were sampled 
every 10 seconds. The real data set contain 1000 
data samples consisting of hourly CO concentration 
measurements. In this study, the number of steps 
ahead to be forecasted has been limited to eight. 
Network input series are formed by lagged inputs 
of CO concentrations level.  
 
3.1 Simulated Environment Data Set 
The simulated environment data set plot is shown 
in Figure 3. The first 250 data are used to train the 
network, while the remaining 250 data are used to 
test the fitted model and to calculate index of 
coefficient (R2). The network is trained by the 
following input configuration: 
 

v(t)=[ y(t-1) y(t-2) y(t-3) y(t-4) y(t-5) ]; 
 

For simulated environment data set, HMLP 
network only requires 5 past CO concentration 
values to achieve its best results. Number of hidden 
nodes used are 2, since it gave better results 
compared to others. The R2 values achieved by 
HMLP network are shown in Table 1. From the 
results, it can be seen that HMLP network gives 
good results over the testing data set. The network 
gives good results even for higher number of steps 
ahead forecasting.   
 MSE calculated for the whole data set is shown 
in Figure 4, which indicates that the network 

parameters converge rapidly. The MSE converges 
to an acceptable value after 200 data samples, 
suggesting that HMLP network only requires about 
200 data to be trained properly.  
 

Number of  
Steps

R2 Value 

1 0.9807 
2 0.9272 
3 0.8521 
4 0.7635 
5 0.6702 
6 0.5748 
7 0.4832 
8 0.3961 

Table 1. R2 Values Achieved for Simulated  
Environment Data Set 
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Fig.4 MSE for Simulated Environment Data Set 
 
3.2 Real Data Set 
The industrial data plot is shown in Figure 5. The 
first 600 data samples are used to train the HMLP 
network, while the remaining 400 data are used to 
test the network. The HMLP network is trained 
using the following input configuration: 
 

v(t)=[ y(t-1) y(t-2)……..y(t-47) ]; 
 

From the configuration shown, it can be noted that 
HMLP network requires 47 past CO concentrations 
value to perform the task. For this data set, 2 
hidden nodes are used since it gave the best results 
compared to others. The R2 values achieved by 
HMLP network are shown in Table 2.  
 

Number of  
steps

R2 Value 

1 0.7223 
2 0.5303 
3 0.4857 
4 0.4581 
5 0.4389 
6 0.4265 
7 0.4166 
8 0.4107 

Table 2. R2 Values Achieved for Real Data Set 
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Fig.3 Simulated Environment Data Set 
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Fig.5 Industrial Data Set 

From the results shown in Table 2, it can be noted 
that HMLP network produces good result for one 
step ahead only but manages to produce average 
results for higher number steps ahead of 
forecasting. The R2 value drops drastically for two 
steps ahead, and decrease slowly for 3 steps ahead 
onward. The MSE calculated for the whole data set 
is shown in Figure 6. The plot shows that HMLP 
network parameters converge rapidly after 600 data 
samples. This means that HMLP requires about 600 
data samples in order to be trained properly. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.6 MSE for Real Data Set 

 
 For real data set, large numbers of input lags 
are required since the CO concentrations level 
fluctuates heavily. The number of input lags 
required to perform CO forecasting depends on the 
dynamic of data set. The network will not be able 
to represent nonlinear relationship between the 

input series if small numbers of input lags are used. 
Thus, more input lags are used to reach higher 
learning capability in order to achieve minimum 
prediction error.  
 
4 Performance Comparisons 
 
In this section, the effectiveness of the HMLP 
network is compared with MLP and Recurrent 
networks. The performance comparison will be 
divided into two sections, consisting of HMLP 
network versus MLP network and HMLP network 
versus Recurrent network. It is divided into two 
sections since the architecture of both the neural 
network are different. OSA, MSA and R2 tests are 
used to evaluate the performance of these networks. 
In this comparison studies, OSA and MSA tests are 
described in terms of R2 values. By using R2 test, 
the comparison can be shown more accurately in 
form of quantitative analysis. The performance 
comparison for CO concentrations forecasting are 
carried out by using the same conditions mentioned 
in the previous section, such as number of training 
set and testing set, respectively. For fair 
comparison, analysis were carried out in order to 
choose the best input lags and hidden nodes in 
order to obtain the best forecasting performance 
produced by MLP and Recurrent network.    
 
4.1 HMLP Network versus Standard MLP 
Network 
In this section, performance of HMLP and MLP 
networks trained using MRPE and Levernberg-



Marquadt algorithm, respectively, are compared. 
For simulated environment data set, MLP network 
requires 5 past CO concentration values and 11 
hidden nodes to achieve the results shown above. 
The R2 values achieved by the standard MLP 
network are shown in Table 3. From the results, it 
can be noted that MLP network produces good 
overall results. The results indicated that HMLP 
network performs better compared to MLP 
network. The difference between both networks 
becomes noticeable with the R2 values achieved for 
higher number of steps ahead. The maximum 
differences achieved by R2 values between both 
networks are around 0.15. 
 

Number 
of  Steps 

R2 Values 
HMLP MLP 

1 0.9807 0.9195 
2 0.9272 0.8698 
3 0.8521 0.7412 
4 0.7635 0.6749 
5 0.6702 0.5538 
6 0.5748 0.4427 
7 0.4832 0.3432 
8 0.3961 0.2509 

Table 3. R2 values Achieved for Simulated 
 Environment Data Set 

 
 For real data set, the R2 values achieved by 
MLP network are shown in Table 4. MLP network 
requires 45 past CO concentration values to 
achieve the best results. For this data set, 5 hidden 
nodes need to be considered in order to obtain the 
best results from MLP network. 
  

Number 
of  Steps 

R2 Values 
HMLP MLP 

1 0.7223 0.7070 
2 0.5303 0.5610 
3 0.4857 0.4622 
4 0.4581 0.4368 
5 0.4389 0.3991 
6 0.4265 0.3595 
7 0.4166 0.3226 
8 0.4107 0.3106 

Table 4. R2 values Achieved for Real Data Set 
 

From the results, it can be noted that MLP network 
only produces good result over 1 step ahead 
forecasting. The R2 values decrease drastically 
from 2 steps ahead onward, and the values decrease 
slowly from 3 steps ahead onwards. It can be noted 
that MLP network gives higher R2 value for 2 steps 
ahead forecasting compared to HMLP network, but 
it gives lower R2 values for higher number of steps 
ahead. For real data set, HMLP network gave better 
results compared to MLP network. The maximum 

differences achieved by R2 values between both 
networks are around 0.10. This means HMLP 
network performs 10% better compared to MLP 
network. Overall, HMLP network performs better 
compared to standard MLP network by using real 
and simulated environment data sets.    

 
4.2 HMLP network versus Recurrent 
network 
In this section, performance of HMLP network 
together with MRPE algorithm is compared to 
Recurrent network trained using Levernberg-
Marquadt algorithm. The R2 values achieved for 
simulated environment data set are shown in Table 
5. For this data set, Recurrent network requires 24 
past CO concentrations values and 15 hidden nodes 
to give the best results. From the results shown, it 
can be noted that Recurrent network does not 
produce good results over simulated environment 
data set. The R2 values are very low from 1 step 
ahead and decrease slowly for higher number of 
steps ahead. Basically, the network fails to produce 
good results over simulated environment data set. 
 

Number 
of  Steps 

R2 Value 
HMLP Recurrent

1 0.9807 0.4315
2 0.9272 0.3809
3 0.8521 0.3301
4 0.7635 0.2716
5 0.6702 0.2612
6 0.5748 0.2543
7 0.4832 0.2400
8 0.3961 0.2211

Table 5. R2 Values Achieved for Simulated    
Environment Data Set 

 
In that case, HMLP network is found to perform 
better compared to Recurrent network. For 1 step 
ahead, the differences in R2 values achieved by 
both the networks are around 0.5492.   
 For real data set, the R2 values achieved by  
Recurrent network are shown in Table 6. Recurrent 
network requires 36 past CO concentrations value 
to achieve its best performance. For this data set, 5 
hidden nodes need to be considered in order to 
obtain the best results from Recurrent network. 
From the results, it can be noted that Recurrent 
network gave good result for 1 and 2 step ahead 
forecasting. The R2 values drop drastically after 2 
steps ahead onwards. Generally, Recurrent network 
fails to provide multiple steps ahead forecasting for 
CO concentrations. From the Table 6, it can be 
seen that recurrent network provides higher R2 
values for 2 steps ahead forecasting compared to 
HMLP network. The network gives lower R2 
values for higher number of steps ahead 



forecasting, where the maximum difference 
obtained are around 0.2. Overall, HMLP network is 
found to perform better than Recurrent network for 
both data sets. The comparison studies have proved 
that HMLP network achieved higher R2 values 
compared to Recurrent network.  
 

Number 
of  Steps 

R2 Value 
HMLP Recurrent 

1 0.7223 0.7157 
2 0.5303 0.6993 
3 0.4857 0.4947 
4 0.4581 0.4001 
5 0.4389 0.3375 
6 0.4265 0.2893 
7 0.4166 0.2575 
8 0.4107 0.1809 

Table 6. R2 Values Achieved for Real Data Set 
 
5 Conclusions 
 
This study proves that HMLP network gives the 
best results compared to MLP and Recurrent 
networks for CO concentrations forecasting. The 
comparison between these networks becomes more 
noticeable with the number of steps ahead 
forecasting. In this study, dynamic of the data set 
and sampling time have significant contributions 
towards the performance of these networks. The 
forecasting performance of these networks can be 
improved if the data sets are sampled appropriately 
for the models to learn the trend of CO 
concentrations measurement properly.    
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