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 BARISAN PRODUK PERISIAN DITAMBAHBAIK (EnSPL) UNTUK APLIKASI 

UJIAN PERINDUSTRIAN 

 

ABSTRAK 

 

Pendekatan-pendekatan barisan produk perisian masa kini menghasilkan produk perisian 

yang mempunyai ikatan kuat dengan aset-aset perisian. Oleh kerana aset-aset perisian 

mengharungi proses membina-balik, komposisi dan perubahan versi, dan perisian-

perisian product juga mengalami proses penyesuaian dan pembetulan, teknik yang 

menekankan perubahan kod-kod perisian adalah tidak efektif untuk memisahkan aktiviti-

activiti kejuruteraan domain dan kejuruteraan aplikasi. Pendekatan EnSPL dicadangkan 

dalam penyelidikan ini untuk menguruskan perubahan yang tidak dapat dielakkan dalam 

pengunaan dan perkembangan barisan produk perisian melalui dua-peringkat pengurusan 

penyusunan pembolehubah. EnSPL bersesuaian menjuruterakan perubahan dalam 

perkembangan perisian dan perubahan dalam produk-produk perisian melalui 

kejuruteraan satu-sistem, pengurusan menyusun perisian, skop produk, perkembangan 

barisan dasar perisian dan produk profail. Aplikasi pendekatan EnSPL telah terbukti 

dalam pembinaan aplikasi-aplikasi ujian perindustrian di salah sebuah syarikat 

antarabangsa di Malaysia. Peningkatan dalam pendekatan tersebut juga dibandingkan 

dengan pendekatan-pendekatan masa kini yang lain. 
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ENHANCED SOFTWARE PRODUCT LINE (EnSPL) FOR INDUSTRIAL TEST 

APPLICATIONS 

 

ABSTRACT 

 

Current software product lines (SPL) methodologies develop software products in the 

manner that is tightly coupled to the software assets. While software assets might go 

through a process of  rebuilding, composition and version upgrading, and the same go to 

a specific software product's development that might require adaptation and correction, 

the code-based derivative techniques used in those methodologies are not effective to 

separate the two corresponding domain engineering and application engineering activities. 

An enhanced SPL (EnSPL) methodology was proposed in this research to manage the 

inevitable evolution of software product line development through the two-stage 

configurable variability management. The EnSPL appropriately engineered the software 

development variability and software product variability through the single-system 

engineering, software configuration management, product scoping, product baseline 

development and product profiling. The methodology applicability has been proven in the 

development of Industrial Test Applications in one of the multinational companies in 

Malaysia. The enhancement of the methodology was also evaluated in comparison to the 

current SPL methodologies. 
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CHAPTER 1  

INTRODUCTION 

1.1  Overview 

A software product line (SPL) is a new paradigm in the software development process 

that emphasizes on the development of common architecture for a family of software 

products (Pohl et al. 2005). Conventionally, software product line (SPL) methodology 

emphasizes on a two-stage development process for a family of similar software products 

in which domain engineering activities develop common software assets and application 

engineering activities derive each specific software application. Since the first Software 

Product Line Conference (SPLC 2000) (Donohoe 2000), the SPL approach has gained 

serious attention from both the practitioners and researchers. The reason is rather simple. 

Obviously, the requirements for software applications are increasing and most of these 

software applications share commonality in software design with slight differences in 

software implementation. Thus, in the domain engineering stage of SPL, the 

commonalities of these applications are grouped together in the single effort of domain 

analysis and domain design. At the same time, variability is introduced to the design 

artifacts so that the common applications can be derived to form a specific software 

application in the application engineering stage.  

 

This chapter will discuss the research motivation, problem statement, research objectives, 

research approach and thesis outline. 
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1.2 Motivation 

The inherent complexity of managing and integrating the two isolated activities of SPL 

methodology has prompted researchers to look for an improved methodology (Atkinson 

et al. 2000, McGregor 2005 and Krueger 2007).  It has been noted that the recent 

proposed SPL methodologies by McGregor (2005) and by Krueger (2007) have proposed 

automatic generation of a software product over the manual derivation technique.  

 

McGregor (2005) reported that the generation technology, claimed as the more feasible 

approach, could be used to transform some form of specification into the executable 

software product, but the expressiveness of specification language, which might 

complicate the transformation infrastructure still required further investigation for 

simplification. On the other hand, Krueger (2007) proposed that product configurator was 

used to generate the software product automatically from the product feature profile and 

core assets. Even though the conceptual model of the methodology has been described 

(Krueger 2007), the practical implementation technique has still yet to be practically 

demonstrated.  

 

1.3 Problem Statement 

The advancement of SPL in enhancing the efficiency of software development is widely 

recognized and appreciated by organizations and research communities (McGregor et al. 

2002, Sugumaran et al. 2006). Many SPL methodologies have been proposed in the 

literature, some of them use the two-stage engineering (domain engineering and 

application engineering) approach (Atkinson et al. 2000, van Ommering et al. 2000), 
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while others use a single-stage or single-system engineering (domain engineering only) 

approach (Krueger 2002, Krueger 2006a, Krueger 2006b). However, all these 

methodologies have issues arise from the management of increasing variability, tightly 

coupled relationship of a specific software product and software assets, and least 

effectiveness in software evolution and maintainability. The single stage approach such 

as 3-Tiered Methodology (Krueger 2007) has reduced variability through consolidation 

of domain engineering and application engineering. Nevertheless, it has only been 

presented conceptually without much detailing in system design and implementation. 

Although there are several success stories in the software product line development 

(Product Line Hall of Fame 2008, Linden et al. 2007), they are not being linked to any of 

the methodological steps. Therefore, the question remains if current two-stage and single 

stage methodology can be further enhanced?  Or if the single-stage methodology as 

proposed by Krueger (2007) is effective to improve the two-stage methodology, can it be 

described in more concise methodological steps?  

 

1.4 Research Objectives 

This research was conducted to achieve the following objectives: 

a. To enhance the current software product line (SPL) methodology by appropriately 

re-engineering the software development variability and product variability 

through the two stages of configuration management. 

b. To describe the SPL development with more concise methodological steps 

through the feasibility study in the domain of industrial test applications. 
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1.5 Research Approach 

The research work has started with studies of the fundamental technologies of SPL such 

as the management of commonality and variability in SPL and its derivation techniques, 

and factors that have brought software product line development into the limelight as new 

software development paradigm of software engineering. It has also been recognized that 

SPL is software-family-based development, reuse-driven, economically driven, and 

architecture-based, which is very much different from the traditional software 

development. The SPL success factors are mainly contributed by the architectures, 

domain-specific software management, configuration management and business models 

(Mili et al. 2002).  

 

The literature study for understanding the approach or chronological order used in 

various methodologies to manage SPL gave an insight of the specific SPL 

methodological design. For example,  KorbrA (Atkinson et al. 2000, Atkinson and 

Muthig 2006) denotes itself as a component-based incremental product line development 

and methodology for modeling architectures, and the 3-Tiered Methodology (Krueger 

2007, Krueger 2006a, Krueger 2006b) focuses on the automated application engineering 

to consolidate the engineering management of software assets and specific software 

products creation. The EnSPL has drawn ideas from many of these SPL methodologies 

but builds its own way towards more effective software product line management, 

especially in the variability management aspect. Below is the illustration of the variability 

management in EnSPL as in comparison to other methodologies. KorbrA and 3-Tiered 
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Methodology are selected for comparison because each represents its kind in the 

advancement of SPL methodologies or SPL generation.  
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Figure 1-1  Proposed EnSPL and its comparison with other methodologies 

 

As it shall be discussed later in Chapter 3 and Chapter 4, EnSPL separated variability 

management into two stages of configurable management. The first configuration stage 

of EnSPL focuses on the programming in the large (version, rebuilding, composition), 

while the second configuration stage emphasizes on the programming in the many 

(multiple software product development, process supports, concurrency). 

 

The essence of the EnSPL variability management approach is that both software assets 

development and specific software products developments are loosely coupled from each 

others through the intermediary of product baseline software development. The impacts 

are tremendous because the product baseline software has reduced the combinatory 

complexity among the composition of software assets themselves, and among the 
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software assets and the specific software products. Besides, the approach also facilitates 

the generative programming (Czarnecki and Eisenecker 1999, Jarzabek and Knauber 

1999) for the automatic derivation of a software product. 

 

The design of the EnSPL was based on the literature review of software product line, and 

the practical experience of actual industrial test applications development in one of the 

multinational companies in Malaysia. The proposed EnSPL is evaluated qualitatively 

through the comparison with two other typical SPL methodologies in literature namely 

KorbrA and 3-Tiered Methodology. A prototype is developed as proof of concept to the 

proposed EnSPL, and finally the summary of enhancement in the proposed EnSPL is 

elaborated with comparison to the KorbrA and the 3-Tiered Methodology in terms of 

reusability, configurability, adaptability and software maintainability.  

  

1.6 Thesis Outline 

This research is first conducted through the literature study of a software product line in 

Chapter 2. The development of software product line requires the paradigm shift from the 

development of a traditional individual software product to the development of common 

product line architecture and variability management for a family of software products. 

The software product line activities are discussed as consisting of domain engineering 

activities, enabling technology of reusable software assets development and application 

engineering activities. Several SPL methodologies in the literature have been reviewed 

for the understanding of the various approaches, and compared from the view point of the 

product line engineering approach and the product derivation technique. 
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In Chapter 3, the EnSPL methodology is presented on software product line development 

from the domain analysis to specific software product development through various 

stages of feature modeling, product scoping, product baseline software development, and 

product profiling. The methodology has also been described by several architectural view 

models such as logical view, process view, development view and physical view. The 

variability management concept and approach taken in EnSPL is also elaborated in this 

chapter. The chapter ends with more concise elaboration of the development view on the 

software design and realization aspect.  

 

This is followed by Chapter 4, which discusses the contribution of EnSPL in comparison 

to other SPL methodologies such as KorbrA and 3-Tiered Methodology. Chapter 4 ends 

with the demonstration of seven concise methodological steps of EnSPL in the domain of 

industrial test systems. Chapter 5 concludes the outcome of this research. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Software Product Lines 

A software development process has evolved along the path of single-system 

development. However, due to the increasing demand for software systems and their 

customization, the conventional single system approach is no longer cost effective and 

also rather time consuming to meet with each system requirement. Building a common 

platform to accommodate for the common development practice and design becomes a 

necessity. Systems are built by using the common platform and adding with the specific 

code for customization. The process is analogous to building a manufacturing production 

line that assembles parts to build a complete product. The production line is designed to 

accommodate most of the common parts with some variation to fix in the customization 

parts that produce customized products. The idea has been introduced into the software 

engineering mainstream as a new software development paradigm known as a software 

product line (SPL) engineering. 

 

Northrop (2007) gives the definition of SPL as  

“A software product line is a set of software-intensive systems that share a common, 

managed feature set satisfying a particular market segment’s specific need or 

mission and that are developed from a common set of core assets in a prescribed 

way” 
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The interest in software product lines emerged from the field of software reuse when 

developers realized that they could obtain much greater reuse benefits by reusing 

software architectures instead of reusing individual software components. The software 

industry is increasingly recognizing the strategic importance of software product lines 

(Clements and Northrop 2001). 

 

Unlike other software engineering practices, SPL proposes a more systematic approach 

and has an integrated development life cycle where application engineering and domain 

engineering processes and their interaction are guided by a set of products in a specific 

domain. The Software Engineering Institute (SEI) of Carnegie Mellon University views 

SPL as consisting of three essential activities: core asset development, product 

development and management as shown in Figure 2-1. (Northrop 2002, Northrop 2007). 

 

 

Figure 2-1  Essential product line activities (Northrop 2002, Northrop, 2007) 
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Each rotating circle represents one of the essential activities. All three are linked together 

and in perpetual motion, showing that all three are essential, are inextricably linked, can 

occur in any order, and are highly iterative. Core assets might be evolved from activities 

such as mining from existing products for generic assets, revision of existing core assets 

or new development. There is a strong feedback loop between the core assets and the 

products. Core assets are refreshed as organizations develop new products. Management 

will ensure that both core assets development and product development are managed 

carefully at all levels. 

 

The product line engineering starts with development of core assets, which often included 

but are not limited to the architecture, reusable software components, domain models, 

requirements statements, documentation and specifications (Sugumaran et al. 2006, 

Northrop 2002). The architecture is the key asset among the collection of core assets. 

Each system in software product line is developed by taking applicable components from 

a pool of common asset base and tailoring them through preplanned variation 

mechanisms and predefined assembly guide or plan. The process of core assets 

development and product development is an incremental and iterative activity. It must be 

guided by operational management to ensure that the development engage in a standard 

process and follow the same rules with proper documentation.  

 

The SPL analyzes requirements of all candidate applications in the domain by 

commonality and variability. The commonality denotes the common requirements shared 
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by all applications while the variability denotes the specific requirements of those 

applications (Coplien et al. 1998). Each individual software product is constructed by 

utilizing the common artifacts known as core assets and adding in with the specific parts.  

The SPL enhances the efficiency of the activity of software development by reducing the 

repeating software design and development as undergone by conventional software 

development since most of the software developed within the same domain share more 

commonality than variability. For example, applications in automotive industry (Thiel 

and Hein 2002a, 2002b) exhibit almost the same characteristic to assemble parts and do 

test and measurement. Therefore, applications are not necessary to be developed from 

scratch.  

 

2.1.1 Managing Commonality 

Production lines in manufacturing plants have long been designed in such a way to use 

common parts for as many products as possible. Many products are designed to use 

common parts as many as possible to the significant economies of production and 

maintenance. Although software product lines are different, they share the same 

objectives as the manufacturing production lines. 

 

Managing commonalities in SPL is not simply a sharing of the common codes of various 

applications, but it also includes design reuse. It is the architectural blocks that are in 

great value to the organizations adopting the concept of SPL. Commonality in the 

architectural design greatly reduces the amount of time required to develop an application. 

Software engineers are able to focus on the problems on hand and develop codes to solve 
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them rather than being forced to attend the design issues as well. This greatly enhances 

the efficiency of their solution skill while maintaining the same standard of design that 

facilitates the maintenance in the long run of a product life cycle.  

 

Companies recognize that building systems from common assets can yield amazing 

improvements in productivity, time to market, product quality, and customer satisfaction. 

In any circumstances, they strive to manage the system from various perspectives ranging 

from the conventional practice that emphasize the  commonalities of low level 

components such as operating systems, programming languages, service components and 

code reuse, to the more appealing SPL commonality approach such as reference 

architecture, application framework, and design reuse. Managing commonalities in large 

scale development such as the SPL require a careful consideration from many aspects. 

Sugumaran et al. (2006) outlines the three important aspects which are an organizational 

aspect (centralized or distributed asset development), a technical aspect (core asset 

development, product development, and runtime dynamism) and process aspect 

(proactive, reactive, and extractive models). The organizational aspect and technical 

aspect are in correspondence to the three essential activities described by Northrop (2007) 

(refer to Figure 2-1). 

 

The core asset development activities are the software commonality development, which 

is initiated from the context analysis of product family and the exploration for reuse. The 

engineering process starts by identifying the product functional features and also the 

quality attributes of the system. Product functional features consist of feature lists, feature 



 13

description, and services. Quality attributes are the desirable non-functional features such 

as usability and scalability. Early identification of the required features will help to 

incorporate such a feature into the core asset development during the design stage; 

otherwise it can still be incorporated into the final system through the refinement process 

but this is less efficient due to the increased overheads. 

 

One of the examples in managing the commonalities in software engineering practice is 

the implementation of common interface. A set of standardized interfaces is abstracted 

away from the actual implementation detail which is encapsulated into a separate object 

module. Here, the commonality is the interface, and the variability is the implementation 

code. Nevertheless, the most noted commonality in SPL is the reference architecture that 

it defines. During the domain analysis of the proposed EnSPL, features identified in the 

domain are captured in the hierarchical feature diagram. Commonality in features has 

been implemented as feature-based software modules, which implement the same 

interface.  In this regard, the commonality in requirement in terms of features is 

implemented as common and individual software assets, which can be incorporated into 

the main stream development through the standard interface. However, the 

implementation of each software asset varies according to the feature that they 

characterize. 

 

2.1.2 Managing Variability 

Variability is the inherent part of the product line design. It provides options to describe 

different products. For simple variability, a property file or wizard is sufficient to express 
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the variability that is needed to describe a product. For greater freedom to describe a 

product, a tabular or tree-based configuration is being used. A Software Configuration 

Management technique (White 2000, Pavel et al. 2004) is also being used to manage 

variability in product line. The technique provides better guidance because variability is 

defined from a set of available options. In a more advanced approach, domain specific 

language (DSL) may be used to structure and manage the variability elements through 

powerful graphical or textual languages (Mernik et al. 2005). The DSL approach can 

express variability more efficiently where, for example, the type A can be connected to 

type B and later can be linked to type C in a creative way.  

 

Variability defines how each application differs from one another within the same 

domain in terms of services and functionality. These variabilities are incorporated into 

the common design framework of SPL to form a complete application (Krueger 2002, 

Pohl et al. 2005). The merging of variabilities and commonalities forms what is called the 

product line's application.  

 

In SPL, variabilities are sometimes used interchangeably with “features”. The use of 

features is motivated by the fact that end users and engineers often speak of product 

characteristics in terms of “features the product has and/or delivers”. They communicate 

requirements or functions in terms of features and, to them, features are distinctively 

identifiable functional abstractions that must be implemented, tested, delivered, and 

maintained (Kang et al. 1990,  Lee et al. 2000). 
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The usability of software product line increases with the support of more features.  

Features are normally incorporated to the common asset framework through variation 

points or hotspots (Schmid, 1997). With the increase in the number of features supported, 

the variation points are increasing as well. This may possess greater challenges in 

managing variations throughout the product line life cycle because of the increasing 

complexity in implementation. Variability, however, is important in the design of product 

line because it facilitates the incorporation of new software products in a product family, 

thus adding value to the product line.  

 

Pohl (2005) differentiates variability of a software product line from the viewpoint of the 

end users. The external variability denotes the variability of domain artifacts that are 

visible and configurable by the end users, who participate in the product development and 

decide on the unbound variability of product line artifacts. The internal variability, on the 

other hand, denotes the variability of domain artifacts that are hidden from the end users. 

The definition and resolution of internal variability are only within the responsibility of 

product line provider. In the proposed EnSPL development, internal variability is used to 

define the structural aspect of product line development through aggregation or 

generalization for the development of product baseline software while external variability 

is used to define the behavioral aspect of specific software product development by 

configuration management. 
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2.1.3 Reusable Architecture 

The objective of SPL is to facilitate the development of similar software products in the 

same domain through construction of common software architecture and derivation of it 

into a customized application. Software architecture is often regarded as the key factor 

for product line success because it embodies the earliest design decision and provides a 

framework within which reusable components can be developed and integrated (Kaisler 

2005). Good and manageable architecture is always necessary to produce high quality 

products that belong to the family. Baldwin et al. (2006) emphasized that generally the 

“manageable” software architectures (such as Windows and Office) give rise to product 

lines and product families, while “unmanageable” architectures (such as Apache and 

Linux) give rise to modular clusters and open source communities. 

  

The difference between software architecture in general and product-line architecture is 

that most software architectures are application architectures that focus on a single, 

monolithic application. The SPL emphasizes on developing a product-line domain 

(reference) architecture that is used by all products in the family. Such architecture will 

go through the maturing process until it is robust, flexible, and highly customizable to 

facilitate the instantiation of the core architecture for multiple products. However, it is 

often harder to develop the reference architecture in comparison to the development of 

single application architecture. This is due to the need to incorporate variation point plug-

in to the design of reference architecture (Mili et al. 2002).  
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Developing the reference architecture for SPL is always a difficult task because it means 

developing an overall application framework that can be instantiated into various 

customized applications (Mili et al. 2002, Woods and Rozanski 2005). Issues that could 

arise from this activity are that: 1) Measuring the conformance of the instantiated 

architecture to the reference architecture, or more specifically, how to determine if 

products are verified with respect to the product line architecture. 2) Synchronizing, 

modifying, and maintenance of the product line architecture so that it can evolve with 

new product requirements in terms of technological change, fixing existing problems, or 

adding new functionalities.  

 

Figure 2-2  Product-line and product-specific architectures (Mili et al. 2002) 

 

Figure 2-2 illustrates the activities concerning software architectures in a SPL context: 

creation, synchronization, conformance, analysis and evaluation.  The outcome of the 

domain engineering process is reference architecture while the outcome of the application 

engineering process is application architecture.  In a software product line, the software 



 18

architecture is used by all products in the family. It is known as domain architecture or 

reference architecture. Such architectures are generally robust, flexible, and highly 

customizable to facilitate the instantiation of the core architecture in multiple products 

(Pohl 2005). Normally, reference architecture is developed as framework such as KorbrA 

(Atkinson et al. 2000), and application architecture is instantiated from the domain 

architecture when specific application requirements are known. EnSPL proposes 

development of application framework where multiple feature-based software modules 

can be plugged in by configuration to form the product baseline software.  

 

Besides, software architecture is also defined in terms of identified system components, 

how they are connected, and the nature of the connections (protocols for communication, 

synchronization and data access) (Kruchten 1995). The software architecture 

development has diversified further from a code reuse to design reuse, by emphasizing on 

the patterns of relationships among the elements of the architecture. A number of general-

purposed architectures frequently occur, such as pipes/filters, client/server, three-tier, and 

layered (Buschmann et al. 1996).   

 

In contrast to the class library approach, the structure of interconnections between 

components is reused, rather than just the components themselves. Software architecture 

reuse is based on the definition of ‘architectural styles’, which are a description of 

families of architectural designs that share a set of common assumptions (Hong 2005, 

Bushmann et al. 1996, Mary 1995). Architectural styles improve communication between 

designers, who can refer to a shared terminology for reusing design solutions. However, 
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depending on the domain requirements, normally different architectural style is selected. 

For example, for real-time systems such as industrial process control, an architectural 

style called event-based approach for the independent component systems (Bushmann et 

al. 1996) is used. 

 

2.2 Software Product Line Activities 

A software product line covers processes for building and managing of typically 

separated two key areas: domain engineering and application engineering as illustrated in 

Figure 2-3. Domain engineering covers activities on analyzing and identifying 

commonality and variability of domain applications. It is started with the domain analysis 

which produces domain models that are normally served as reference to the subsequent 

software core asset development such as architecture and software components (Figure 2-

3). On the other hand, the application engineering is activities on specific software 

product development. It instantiates the domain models and specializes on them to cater 

for specific application requirements. 
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Figure 2-3  The SPL lifecycle (Mili et al. 2002) 
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2.2.1 Domain Engineering 

In domain engineering, the variability and commonalities of the product line’s reusable 

core assets such as requirements, architectural elements, or solution components are 

captured in the domain models. Domain analysis is performed to analyze features of the 

software family that are common, optional, or alternatives.  Domain analysis technique 

such as Feature-Oriented Domain Analysis (FODA) (Kang et al. 1990) had been used 

extensively (Kang et al. 1998, Kang et al. 2002, Krueger 2007) to model domain 

capabilities in terms of features. 

 

2.2.1(a) Feature-Oriented Domain Analysis (FODA).  

FODA method is one of the domain analysis techniques emphasizing on those features 

that a user commonly expects in application in a domain (Kang et al. 1990). This method 

identifies feature as a prominent or distinctive user-visible aspect, quality, or 

characteristic of a software system. Therefore, features are said to be used to 

parameterize domain products from the user’s perspective. However, features are still far 

abstracted from implementation and realization of effective measure on feature 

componentization and feature dependencies are still an active research area (Lee and 

Kang 2004, Cho et al. 2008) 
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Figure 2-4  Phases of FODA process (Kang el al. 1990) 

 

Figure 2-4 shows the FODA analysis process that focuses on the three sets of 

representation of the domain: context analysis, domain modeling and architecture 

modeling.  Context analysis determines the boundary of a domain to analyze, with the 

objective to identify the relationship between applications in the domain. Domain 

modeling activities will use the information sources and other products of context 

analysis to support the creation of a domain model. In architecture modeling, the 

structure of implementations of software in the domain is established by using 

information from a domain model. The representations of domain models in feature 

model provide a mapping to the architectural models for constructing applications (Kang 

et al. 1990). 

 

The next few sections will focus on the Feature Model as the single important domain 

model from FODA to the proposed EnSPL methodology of this thesis. Feature model 
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contributes to the variability management of EnSPL methodology as the conceptual level 

variability management which will be mapped to the class model at the implementation 

level, as discussed in section 4.3.3. Other domain model such as entity relationship model 

is captured as feature diagram as shown in Figure 2-5. The architecture modeling 

activities such as process interaction model and module structure chart are discussed as 

4+1 View Model of Software Architecture (Krutchten 1995) in section 3.3. 

 

2.2.1(b) Feature Model 

A feature model captures domain features and their relationship. It is usually illustrated in 

the form of a feature diagram as shown in Figure 2-5. 
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Figure 2-5  Feature diagram: mandatory, optional, alternative (Butler et al. 2002) 
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For a product line or framework, a feature model classifies each feature as mandatory, 

optional or alternative in order to express the commonality and variability across 

applications in the product line. Common features among different products are modeled 

as mandatory features, while different features among them may be optional or 

alternative (Kang et al. 1990). Optional features represent selectable features for products 

of a given product line and alternative features indicate that no more than one feature can 

be selected for a product.  

 

There are several views of structure for a feature model.  The basic concept is a finite set 

F of the features. The usual relationship of interest is the sub-feature relationship that 

defines a hierarchy of features. There is also a dependency relationship between features, 

and the actual dependency may be specified using a constraint. The classification of 

feature model can be considered from the view point of variability (Butler et al. 2002) 

and kind-of (Kang et al. 1998). The variability viewpoint map F to the set of {mandatory, 

optional, alternative}, and the kind-of viewpoint map F to the set of {capability, 

technology, environment, implementation}. The set of {mandatory, optional, alternative} 

helps to segregate the aspect of commonality and variability in the SPL analysis, while 

the set of {capability, technology, environment, implementation} give a broader view of 

the domain feature space that must be ultimately mapped to the domain design models. 

 

2.2.1(c) Issues related to feature model 

Large software systems are increasingly expressed in terms of the features they 

implement. Consequently, there is a need to express the commonality and variability 
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between products of a product family in terms of features (Kang et al. 2002, Lee and 

Muthig 2006). Unfortunately, technology supported (SPL methodology, domain 

modeling, feature modeling, etc.) for the early aspect of a feature is currently limited to 

the requirements level. There is a need to extend this support to the design as well as 

implementation so that domain models such as a feature model can be directly mapped to 

the implementation level. 

 

Features are used in requirements engineering to define optional or incremental units of 

change. They have many-to-many relationships to the individual requirements. Thus, 

tracing features to the implementation of feature-based software components is complex. 

In ideal cases, a particular feature implementation is localized to a single module; but in 

many cases, features will cross-cut multiple components (Cho et al. 2008).  

 

2.2.2 Reusable Software Assets – Enabling Technology 

Software product line development is about the systematic reusability of software assets. 

These software assets can be created by a variety of techniques found in literature such as 

architectural patterns, design patterns, framework development and component-based 

development depends on the domain-specific design and implementation. Therefore, 

understanding and selecting the right reusable techniques and relating them to the 

domain-specific problems are crucial for the success of software product line 

development. 
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