

ENHANCED SOFTWARE PRODUCT LINE (EnSPL)

FOR INDUSTRIAL TEST APPLICATIONS

NGO YU CHENG

UNIVERSITI SAINS MALAYSIA

2009

ENHANCED SOFTWARE PRODUCT LINE (EnSPL) FOR

INDUSTRIAL TEST APPLICATIONS

by

NGO YU CHENG

Thesis submitted in fulfillment of the requirements for the

Degree of Master of Science

July 2009

 ii

ACKNOWLEDGEMENTS

First of all I would like to express my utmost gratitude and appreciation to my supervisor,

Dr. Vincent Khoo Kay Teong, for devoting his precious time to guide me to complete my

thesis writing.

Next, I would like to convey my greatest gratitude to my dearest wife, Leh Cheu Peng,

for her constant support and encouragements, without which I would not be able to

complete this thesis.

I would also like to extend my sincere thanks to Tse Yi and Tin Tin for giving some

constructive ideas during research and thesis writing.

My endless appreciation is also extended to Dr Azman for his encouragement during the

most critical time, and in the hour of need and frustration.

Last but not the least, a special thanks is extended to Dr Shahida for her guidance during

the thesis correction.

 iii

TABLE OF CONTENT

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENT ... iii

LIST OF FIGURE .. vii

LIST OF TABLE ... ix

LIST OF ABBREVIATIONS .. x

ABSTRAK .. xi

ABSTRACT ... xii

CHAPTER 1 .. 1

INTRODUCTION... 1

1.1 Overview .. 1

1.2 Motivation .. 2

1.3 Problem Statement.. 2

1.4 Research Objectives .. 3

1.5 Research Approach ... 4

1.6 Thesis Outline .. 6

CHAPTER 2 .. 8

LITERATURE REVIEW .. 8

 iv

2.1 Software Product Lines .. 8

2.1.1 Managing Commonality 11

2.1.2 Managing Variability 13

2.1.3 Reusable Architecture 16

2.2 Software Product Line Activities ... 19

2.2.1 Domain Engineering 20

2.2.2 Reusable Software Assets – Enabling Technology 24

2.2.3 Application Engineering 28

2.3 SPL Methodologies ... 32

2.3.1 KorbrA 32

2.3.2 FORM 34

2.3.3 Three-Tiered Methodology 35

2.3.4 Technical Report - Preparing for Automatic Derivation 36

2.3.5 Comparison of SPL Methodologies 37

2.4 Summary .. 38

CHAPTER 3 .. 39

ENHANCED SPL METHODOLOGY ... 39

3.1 EnSPL Methodology .. 39

3.2 Terminology... 40

3.3 Architectural View of the EnSPL Methodology .. 41

3.3.1 Logical View 42

3.3.2 Process View 43

 v

3.3.3 Development View 45

3.3.4 Physical View 47

3.4 Variability Management .. 47

3.4.1 Internal Variability 47

3.4.2 External Variability 49

3.5 Product Line Development... 50

3.5.1 From Domain Analysis to Product Baseline Software 51

3.5.2 From Product Baseline Software to Specific Software Product 56

3.6 Algorithm in Realizing EnSPL-based Product Line.................................... 58

3.6.1 Realization of Application Framework 59

3.6.2 Realization of Feature-based Software Component 61

3.6.3 Realization of Specific Software Product 65

3.7 Summary .. 70

CHAPTER 4 .. 73

EVALUATION ... 73

4.1 Enhancement in EnSPL Methodology .. 73

4.1 EnSPL and the KorbrA .. 75

4.2 EnSPL and the 3-Tiered Methodology ... 77

4.3 Feasibility Study: Industrial Test Applications Development by EnSPL . 80

4.3.1 Single Test Application Development 80

4.3.2 Product Line Design for Family of Test Application Development 82

 vi

4.3.3 Prototyping the Product Line Software 83

4.4 Qualitative attribute of EnSPL-based development 101

4.4.1 Reusability 102

4.4.2 Configurability 103

4.4.3 Adaptability 104

4.4.4 Software Maintainability 104

4.5 Summary .. 105

CHAPTER 5 .. 106

CONCLUSION AND FUTURE WORK .. 106

5.1 Conclusion ... 106

5.2 Future Work .. 107

REFERENCES .. 109

 vii

LIST OF FIGURE

Figure 1-1 Proposed EnSPL and its comparison with other methodologies 5

Figure 2-1 Essential product line activities (Northrop 2002, Northrop, 2007)........... 9

Figure 2-2 Product-line and product-specific architectures (Mili et al. 2002) 17

Figure 2-3 The SPL lifecycle (Mili et al. 2002) .. 19

Figure 2-4 Phases of FODA process (Kang el al. 1990) .. 21

Figure 2-5 Feature diagram: mandatory, optional, alternative (Butler et al. 2002) 22

Figure 2-6 FORM’s concept of application development (Kang et al. 1998) 34

Figure 2-7 Product Configurator of 3-Tiered Methodology 36

Figure 3-1 Main activities in the proposed EnSPL-based development 39

Figure 3-2 The modified 4+1 view of EnSPL-based product line development 42

Figure 3-3 Process view: task scheduling and resource allocation 44

Figure 3-4 Development view of EnSPL .. 46

Figure 3-5 Two-stage configurable variability management 49

Figure 3-6 Product baseline software activities ... 52

Figure 3-7 Specific software product development activities 57

Figure 3-8 The UML diagram of EnSPL-based development 59

Figure 3-9 Feature class design and definition .. 63

Figure 3-10 State diagram of a feature instance ... 64

Figure 3-11 Relationship of application framework and feature-based components

... 65

Figure 3-12 Variants definition... 67

 viii

Figure 3-13 Structure of product profile ... 68

Figure 3-14 Hierarchical order of command ... 69

Figure 4-1 Comparison of EnSPL with other methodologies 74

Figure 4-2 EnSPL versus KorbrA .. 75

Figure 4-3 EnSPL versus 3-Tiered Methodology .. 78

Figure 4-4 Amount of variability .. 80

Figure 4-5 Test and measurement system construction ... 81

Figure 4-6 Building blocks of Industrial Test Applications 83

Figure 4-7 Feature diagram of Industrial Test Applications 85

Figure 4-8 The structural design of application framework 87

Figure 4-9 Implementation of MDIForm_Load() event .. 87

Figure 4-10 Implementaion of drive class module .. 88

Figure 4-11 Design of AUTO class .. 90

Figure 4-12 Activation of auto routine .. 91

Figure 4-13 EQUIP class module ... 93

Figure 4-14 Product scoping ... 95

Figure 4-15 Chronological order of execution for AUTO instance and EQUIP

instance... 96

Figure 4-16 Product profile structure design .. 98

Figure 4-17 Product profile interpretation and implementation 99

Figure 4-18 Specific Test Applications ... 100

Figure 4-19 Software product line evolution with new feature 101

 ix

LIST OF TABLE

Table 2-1 Summary of KorbrA activities 33

Table 2-2 Comparison of SPL methodologies. 37

Table 4-1 Summary of the properties in EnSPL, KorbrA and 3-Tiered

Methodology 102

 x

LIST OF ABBREVIATIONS

CM Configuration Management

DUT Device Under Test

EnSPL Enhanced Software Product Line

FODA Feature-Oriented Domain Analysis

FORM Feature-Oriented Reuse MehtodologyMethodology

MDIForm Multiple Document Interface Form

MDA Model Driven Architecture

MES Manufacturing Execution System

MIL Module Interconnection Language

PLE Product Line Engineering

RDBMS Relational Database Management System

SEI Software Engineering Institute, Carnegie Mellon University

SCM Software Configuration Management

SPL Software Product Line

UML Unified Modeling Language

 xi

 BARISAN PRODUK PERISIAN DITAMBAHBAIK (EnSPL) UNTUK APLIKASI

UJIAN PERINDUSTRIAN

ABSTRAK

Pendekatan-pendekatan barisan produk perisian masa kini menghasilkan produk perisian

yang mempunyai ikatan kuat dengan aset-aset perisian. Oleh kerana aset-aset perisian

mengharungi proses membina-balik, komposisi dan perubahan versi, dan perisian-

perisian product juga mengalami proses penyesuaian dan pembetulan, teknik yang

menekankan perubahan kod-kod perisian adalah tidak efektif untuk memisahkan aktiviti-

activiti kejuruteraan domain dan kejuruteraan aplikasi. Pendekatan EnSPL dicadangkan

dalam penyelidikan ini untuk menguruskan perubahan yang tidak dapat dielakkan dalam

pengunaan dan perkembangan barisan produk perisian melalui dua-peringkat pengurusan

penyusunan pembolehubah. EnSPL bersesuaian menjuruterakan perubahan dalam

perkembangan perisian dan perubahan dalam produk-produk perisian melalui

kejuruteraan satu-sistem, pengurusan menyusun perisian, skop produk, perkembangan

barisan dasar perisian dan produk profail. Aplikasi pendekatan EnSPL telah terbukti

dalam pembinaan aplikasi-aplikasi ujian perindustrian di salah sebuah syarikat

antarabangsa di Malaysia. Peningkatan dalam pendekatan tersebut juga dibandingkan

dengan pendekatan-pendekatan masa kini yang lain.

 xii

ENHANCED SOFTWARE PRODUCT LINE (EnSPL) FOR INDUSTRIAL TEST

APPLICATIONS

ABSTRACT

Current software product lines (SPL) methodologies develop software products in the

manner that is tightly coupled to the software assets. While software assets might go

through a process of rebuilding, composition and version upgrading, and the same go to

a specific software product's development that might require adaptation and correction,

the code-based derivative techniques used in those methodologies are not effective to

separate the two corresponding domain engineering and application engineering activities.

An enhanced SPL (EnSPL) methodology was proposed in this research to manage the

inevitable evolution of software product line development through the two-stage

configurable variability management. The EnSPL appropriately engineered the software

development variability and software product variability through the single-system

engineering, software configuration management, product scoping, product baseline

development and product profiling. The methodology applicability has been proven in the

development of Industrial Test Applications in one of the multinational companies in

Malaysia. The enhancement of the methodology was also evaluated in comparison to the

current SPL methodologies.

 1

CHAPTER 1

INTRODUCTION

1.1 Overview

A software product line (SPL) is a new paradigm in the software development process

that emphasizes on the development of common architecture for a family of software

products (Pohl et al. 2005). Conventionally, software product line (SPL) methodology

emphasizes on a two-stage development process for a family of similar software products

in which domain engineering activities develop common software assets and application

engineering activities derive each specific software application. Since the first Software

Product Line Conference (SPLC 2000) (Donohoe 2000), the SPL approach has gained

serious attention from both the practitioners and researchers. The reason is rather simple.

Obviously, the requirements for software applications are increasing and most of these

software applications share commonality in software design with slight differences in

software implementation. Thus, in the domain engineering stage of SPL, the

commonalities of these applications are grouped together in the single effort of domain

analysis and domain design. At the same time, variability is introduced to the design

artifacts so that the common applications can be derived to form a specific software

application in the application engineering stage.

This chapter will discuss the research motivation, problem statement, research objectives,

research approach and thesis outline.

 2

1.2 Motivation

The inherent complexity of managing and integrating the two isolated activities of SPL

methodology has prompted researchers to look for an improved methodology (Atkinson

et al. 2000, McGregor 2005 and Krueger 2007). It has been noted that the recent

proposed SPL methodologies by McGregor (2005) and by Krueger (2007) have proposed

automatic generation of a software product over the manual derivation technique.

McGregor (2005) reported that the generation technology, claimed as the more feasible

approach, could be used to transform some form of specification into the executable

software product, but the expressiveness of specification language, which might

complicate the transformation infrastructure still required further investigation for

simplification. On the other hand, Krueger (2007) proposed that product configurator was

used to generate the software product automatically from the product feature profile and

core assets. Even though the conceptual model of the methodology has been described

(Krueger 2007), the practical implementation technique has still yet to be practically

demonstrated.

1.3 Problem Statement

The advancement of SPL in enhancing the efficiency of software development is widely

recognized and appreciated by organizations and research communities (McGregor et al.

2002, Sugumaran et al. 2006). Many SPL methodologies have been proposed in the

literature, some of them use the two-stage engineering (domain engineering and

application engineering) approach (Atkinson et al. 2000, van Ommering et al. 2000),

 3

while others use a single-stage or single-system engineering (domain engineering only)

approach (Krueger 2002, Krueger 2006a, Krueger 2006b). However, all these

methodologies have issues arise from the management of increasing variability, tightly

coupled relationship of a specific software product and software assets, and least

effectiveness in software evolution and maintainability. The single stage approach such

as 3-Tiered Methodology (Krueger 2007) has reduced variability through consolidation

of domain engineering and application engineering. Nevertheless, it has only been

presented conceptually without much detailing in system design and implementation.

Although there are several success stories in the software product line development

(Product Line Hall of Fame 2008, Linden et al. 2007), they are not being linked to any of

the methodological steps. Therefore, the question remains if current two-stage and single

stage methodology can be further enhanced? Or if the single-stage methodology as

proposed by Krueger (2007) is effective to improve the two-stage methodology, can it be

described in more concise methodological steps?

1.4 Research Objectives

This research was conducted to achieve the following objectives:

a. To enhance the current software product line (SPL) methodology by appropriately

re-engineering the software development variability and product variability

through the two stages of configuration management.

b. To describe the SPL development with more concise methodological steps

through the feasibility study in the domain of industrial test applications.

 4

1.5 Research Approach

The research work has started with studies of the fundamental technologies of SPL such

as the management of commonality and variability in SPL and its derivation techniques,

and factors that have brought software product line development into the limelight as new

software development paradigm of software engineering. It has also been recognized that

SPL is software-family-based development, reuse-driven, economically driven, and

architecture-based, which is very much different from the traditional software

development. The SPL success factors are mainly contributed by the architectures,

domain-specific software management, configuration management and business models

(Mili et al. 2002).

The literature study for understanding the approach or chronological order used in

various methodologies to manage SPL gave an insight of the specific SPL

methodological design. For example, KorbrA (Atkinson et al. 2000, Atkinson and

Muthig 2006) denotes itself as a component-based incremental product line development

and methodology for modeling architectures, and the 3-Tiered Methodology (Krueger

2007, Krueger 2006a, Krueger 2006b) focuses on the automated application engineering

to consolidate the engineering management of software assets and specific software

products creation. The EnSPL has drawn ideas from many of these SPL methodologies

but builds its own way towards more effective software product line management,

especially in the variability management aspect. Below is the illustration of the variability

management in EnSPL as in comparison to other methodologies. KorbrA and 3-Tiered

 5

Methodology are selected for comparison because each represents its kind in the

advancement of SPL methodologies or SPL generation.

Software Core
Assets

V
ar

ia
bi

lit
y

Specific Software
Product

Inheritance, Extension

Software Core
Assets

V
ar

ia
bi

lit
y

Product Baseline
Software

Configuration

V
ar

ia
bi

lit
y

Specific Software
Product

Configuration,
Automatic Derivation

KorbrA
(Atkinson et al. 2000,
Atkinson and Muthig, 2006)

EnSPL

Figure 1-1 Proposed EnSPL and its comparison with other methodologies

As it shall be discussed later in Chapter 3 and Chapter 4, EnSPL separated variability

management into two stages of configurable management. The first configuration stage

of EnSPL focuses on the programming in the large (version, rebuilding, composition),

while the second configuration stage emphasizes on the programming in the many

(multiple software product development, process supports, concurrency).

The essence of the EnSPL variability management approach is that both software assets

development and specific software products developments are loosely coupled from each

others through the intermediary of product baseline software development. The impacts

are tremendous because the product baseline software has reduced the combinatory

complexity among the composition of software assets themselves, and among the

 6

software assets and the specific software products. Besides, the approach also facilitates

the generative programming (Czarnecki and Eisenecker 1999, Jarzabek and Knauber

1999) for the automatic derivation of a software product.

The design of the EnSPL was based on the literature review of software product line, and

the practical experience of actual industrial test applications development in one of the

multinational companies in Malaysia. The proposed EnSPL is evaluated qualitatively

through the comparison with two other typical SPL methodologies in literature namely

KorbrA and 3-Tiered Methodology. A prototype is developed as proof of concept to the

proposed EnSPL, and finally the summary of enhancement in the proposed EnSPL is

elaborated with comparison to the KorbrA and the 3-Tiered Methodology in terms of

reusability, configurability, adaptability and software maintainability.

1.6 Thesis Outline

This research is first conducted through the literature study of a software product line in

Chapter 2. The development of software product line requires the paradigm shift from the

development of a traditional individual software product to the development of common

product line architecture and variability management for a family of software products.

The software product line activities are discussed as consisting of domain engineering

activities, enabling technology of reusable software assets development and application

engineering activities. Several SPL methodologies in the literature have been reviewed

for the understanding of the various approaches, and compared from the view point of the

product line engineering approach and the product derivation technique.

 7

In Chapter 3, the EnSPL methodology is presented on software product line development

from the domain analysis to specific software product development through various

stages of feature modeling, product scoping, product baseline software development, and

product profiling. The methodology has also been described by several architectural view

models such as logical view, process view, development view and physical view. The

variability management concept and approach taken in EnSPL is also elaborated in this

chapter. The chapter ends with more concise elaboration of the development view on the

software design and realization aspect.

This is followed by Chapter 4, which discusses the contribution of EnSPL in comparison

to other SPL methodologies such as KorbrA and 3-Tiered Methodology. Chapter 4 ends

with the demonstration of seven concise methodological steps of EnSPL in the domain of

industrial test systems. Chapter 5 concludes the outcome of this research.

 8

CHAPTER 2

LITERATURE REVIEW

2.1 Software Product Lines

A software development process has evolved along the path of single-system

development. However, due to the increasing demand for software systems and their

customization, the conventional single system approach is no longer cost effective and

also rather time consuming to meet with each system requirement. Building a common

platform to accommodate for the common development practice and design becomes a

necessity. Systems are built by using the common platform and adding with the specific

code for customization. The process is analogous to building a manufacturing production

line that assembles parts to build a complete product. The production line is designed to

accommodate most of the common parts with some variation to fix in the customization

parts that produce customized products. The idea has been introduced into the software

engineering mainstream as a new software development paradigm known as a software

product line (SPL) engineering.

Northrop (2007) gives the definition of SPL as

“A software product line is a set of software-intensive systems that share a common,

managed feature set satisfying a particular market segment’s specific need or

mission and that are developed from a common set of core assets in a prescribed

way”

 9

The interest in software product lines emerged from the field of software reuse when

developers realized that they could obtain much greater reuse benefits by reusing

software architectures instead of reusing individual software components. The software

industry is increasingly recognizing the strategic importance of software product lines

(Clements and Northrop 2001).

Unlike other software engineering practices, SPL proposes a more systematic approach

and has an integrated development life cycle where application engineering and domain

engineering processes and their interaction are guided by a set of products in a specific

domain. The Software Engineering Institute (SEI) of Carnegie Mellon University views

SPL as consisting of three essential activities: core asset development, product

development and management as shown in Figure 2-1. (Northrop 2002, Northrop 2007).

Figure 2-1 Essential product line activities (Northrop 2002, Northrop, 2007)

 10

Each rotating circle represents one of the essential activities. All three are linked together

and in perpetual motion, showing that all three are essential, are inextricably linked, can

occur in any order, and are highly iterative. Core assets might be evolved from activities

such as mining from existing products for generic assets, revision of existing core assets

or new development. There is a strong feedback loop between the core assets and the

products. Core assets are refreshed as organizations develop new products. Management

will ensure that both core assets development and product development are managed

carefully at all levels.

The product line engineering starts with development of core assets, which often included

but are not limited to the architecture, reusable software components, domain models,

requirements statements, documentation and specifications (Sugumaran et al. 2006,

Northrop 2002). The architecture is the key asset among the collection of core assets.

Each system in software product line is developed by taking applicable components from

a pool of common asset base and tailoring them through preplanned variation

mechanisms and predefined assembly guide or plan. The process of core assets

development and product development is an incremental and iterative activity. It must be

guided by operational management to ensure that the development engage in a standard

process and follow the same rules with proper documentation.

The SPL analyzes requirements of all candidate applications in the domain by

commonality and variability. The commonality denotes the common requirements shared

 11

by all applications while the variability denotes the specific requirements of those

applications (Coplien et al. 1998). Each individual software product is constructed by

utilizing the common artifacts known as core assets and adding in with the specific parts.

The SPL enhances the efficiency of the activity of software development by reducing the

repeating software design and development as undergone by conventional software

development since most of the software developed within the same domain share more

commonality than variability. For example, applications in automotive industry (Thiel

and Hein 2002a, 2002b) exhibit almost the same characteristic to assemble parts and do

test and measurement. Therefore, applications are not necessary to be developed from

scratch.

2.1.1 Managing Commonality

Production lines in manufacturing plants have long been designed in such a way to use

common parts for as many products as possible. Many products are designed to use

common parts as many as possible to the significant economies of production and

maintenance. Although software product lines are different, they share the same

objectives as the manufacturing production lines.

Managing commonalities in SPL is not simply a sharing of the common codes of various

applications, but it also includes design reuse. It is the architectural blocks that are in

great value to the organizations adopting the concept of SPL. Commonality in the

architectural design greatly reduces the amount of time required to develop an application.

Software engineers are able to focus on the problems on hand and develop codes to solve

 12

them rather than being forced to attend the design issues as well. This greatly enhances

the efficiency of their solution skill while maintaining the same standard of design that

facilitates the maintenance in the long run of a product life cycle.

Companies recognize that building systems from common assets can yield amazing

improvements in productivity, time to market, product quality, and customer satisfaction.

In any circumstances, they strive to manage the system from various perspectives ranging

from the conventional practice that emphasize the commonalities of low level

components such as operating systems, programming languages, service components and

code reuse, to the more appealing SPL commonality approach such as reference

architecture, application framework, and design reuse. Managing commonalities in large

scale development such as the SPL require a careful consideration from many aspects.

Sugumaran et al. (2006) outlines the three important aspects which are an organizational

aspect (centralized or distributed asset development), a technical aspect (core asset

development, product development, and runtime dynamism) and process aspect

(proactive, reactive, and extractive models). The organizational aspect and technical

aspect are in correspondence to the three essential activities described by Northrop (2007)

(refer to Figure 2-1).

The core asset development activities are the software commonality development, which

is initiated from the context analysis of product family and the exploration for reuse. The

engineering process starts by identifying the product functional features and also the

quality attributes of the system. Product functional features consist of feature lists, feature

 13

description, and services. Quality attributes are the desirable non-functional features such

as usability and scalability. Early identification of the required features will help to

incorporate such a feature into the core asset development during the design stage;

otherwise it can still be incorporated into the final system through the refinement process

but this is less efficient due to the increased overheads.

One of the examples in managing the commonalities in software engineering practice is

the implementation of common interface. A set of standardized interfaces is abstracted

away from the actual implementation detail which is encapsulated into a separate object

module. Here, the commonality is the interface, and the variability is the implementation

code. Nevertheless, the most noted commonality in SPL is the reference architecture that

it defines. During the domain analysis of the proposed EnSPL, features identified in the

domain are captured in the hierarchical feature diagram. Commonality in features has

been implemented as feature-based software modules, which implement the same

interface. In this regard, the commonality in requirement in terms of features is

implemented as common and individual software assets, which can be incorporated into

the main stream development through the standard interface. However, the

implementation of each software asset varies according to the feature that they

characterize.

2.1.2 Managing Variability

Variability is the inherent part of the product line design. It provides options to describe

different products. For simple variability, a property file or wizard is sufficient to express

 14

the variability that is needed to describe a product. For greater freedom to describe a

product, a tabular or tree-based configuration is being used. A Software Configuration

Management technique (White 2000, Pavel et al. 2004) is also being used to manage

variability in product line. The technique provides better guidance because variability is

defined from a set of available options. In a more advanced approach, domain specific

language (DSL) may be used to structure and manage the variability elements through

powerful graphical or textual languages (Mernik et al. 2005). The DSL approach can

express variability more efficiently where, for example, the type A can be connected to

type B and later can be linked to type C in a creative way.

Variability defines how each application differs from one another within the same

domain in terms of services and functionality. These variabilities are incorporated into

the common design framework of SPL to form a complete application (Krueger 2002,

Pohl et al. 2005). The merging of variabilities and commonalities forms what is called the

product line's application.

In SPL, variabilities are sometimes used interchangeably with “features”. The use of

features is motivated by the fact that end users and engineers often speak of product

characteristics in terms of “features the product has and/or delivers”. They communicate

requirements or functions in terms of features and, to them, features are distinctively

identifiable functional abstractions that must be implemented, tested, delivered, and

maintained (Kang et al. 1990, Lee et al. 2000).

 15

The usability of software product line increases with the support of more features.

Features are normally incorporated to the common asset framework through variation

points or hotspots (Schmid, 1997). With the increase in the number of features supported,

the variation points are increasing as well. This may possess greater challenges in

managing variations throughout the product line life cycle because of the increasing

complexity in implementation. Variability, however, is important in the design of product

line because it facilitates the incorporation of new software products in a product family,

thus adding value to the product line.

Pohl (2005) differentiates variability of a software product line from the viewpoint of the

end users. The external variability denotes the variability of domain artifacts that are

visible and configurable by the end users, who participate in the product development and

decide on the unbound variability of product line artifacts. The internal variability, on the

other hand, denotes the variability of domain artifacts that are hidden from the end users.

The definition and resolution of internal variability are only within the responsibility of

product line provider. In the proposed EnSPL development, internal variability is used to

define the structural aspect of product line development through aggregation or

generalization for the development of product baseline software while external variability

is used to define the behavioral aspect of specific software product development by

configuration management.

 16

2.1.3 Reusable Architecture

The objective of SPL is to facilitate the development of similar software products in the

same domain through construction of common software architecture and derivation of it

into a customized application. Software architecture is often regarded as the key factor

for product line success because it embodies the earliest design decision and provides a

framework within which reusable components can be developed and integrated (Kaisler

2005). Good and manageable architecture is always necessary to produce high quality

products that belong to the family. Baldwin et al. (2006) emphasized that generally the

“manageable” software architectures (such as Windows and Office) give rise to product

lines and product families, while “unmanageable” architectures (such as Apache and

Linux) give rise to modular clusters and open source communities.

The difference between software architecture in general and product-line architecture is

that most software architectures are application architectures that focus on a single,

monolithic application. The SPL emphasizes on developing a product-line domain

(reference) architecture that is used by all products in the family. Such architecture will

go through the maturing process until it is robust, flexible, and highly customizable to

facilitate the instantiation of the core architecture for multiple products. However, it is

often harder to develop the reference architecture in comparison to the development of

single application architecture. This is due to the need to incorporate variation point plug-

in to the design of reference architecture (Mili et al. 2002).

 17

Developing the reference architecture for SPL is always a difficult task because it means

developing an overall application framework that can be instantiated into various

customized applications (Mili et al. 2002, Woods and Rozanski 2005). Issues that could

arise from this activity are that: 1) Measuring the conformance of the instantiated

architecture to the reference architecture, or more specifically, how to determine if

products are verified with respect to the product line architecture. 2) Synchronizing,

modifying, and maintenance of the product line architecture so that it can evolve with

new product requirements in terms of technological change, fixing existing problems, or

adding new functionalities.

Figure 2-2 Product-line and product-specific architectures (Mili et al. 2002)

Figure 2-2 illustrates the activities concerning software architectures in a SPL context:

creation, synchronization, conformance, analysis and evaluation. The outcome of the

domain engineering process is reference architecture while the outcome of the application

engineering process is application architecture. In a software product line, the software

 18

architecture is used by all products in the family. It is known as domain architecture or

reference architecture. Such architectures are generally robust, flexible, and highly

customizable to facilitate the instantiation of the core architecture in multiple products

(Pohl 2005). Normally, reference architecture is developed as framework such as KorbrA

(Atkinson et al. 2000), and application architecture is instantiated from the domain

architecture when specific application requirements are known. EnSPL proposes

development of application framework where multiple feature-based software modules

can be plugged in by configuration to form the product baseline software.

Besides, software architecture is also defined in terms of identified system components,

how they are connected, and the nature of the connections (protocols for communication,

synchronization and data access) (Kruchten 1995). The software architecture

development has diversified further from a code reuse to design reuse, by emphasizing on

the patterns of relationships among the elements of the architecture. A number of general-

purposed architectures frequently occur, such as pipes/filters, client/server, three-tier, and

layered (Buschmann et al. 1996).

In contrast to the class library approach, the structure of interconnections between

components is reused, rather than just the components themselves. Software architecture

reuse is based on the definition of ‘architectural styles’, which are a description of

families of architectural designs that share a set of common assumptions (Hong 2005,

Bushmann et al. 1996, Mary 1995). Architectural styles improve communication between

designers, who can refer to a shared terminology for reusing design solutions. However,

 19

depending on the domain requirements, normally different architectural style is selected.

For example, for real-time systems such as industrial process control, an architectural

style called event-based approach for the independent component systems (Bushmann et

al. 1996) is used.

2.2 Software Product Line Activities

A software product line covers processes for building and managing of typically

separated two key areas: domain engineering and application engineering as illustrated in

Figure 2-3. Domain engineering covers activities on analyzing and identifying

commonality and variability of domain applications. It is started with the domain analysis

which produces domain models that are normally served as reference to the subsequent

software core asset development such as architecture and software components (Figure 2-

3). On the other hand, the application engineering is activities on specific software

product development. It instantiates the domain models and specializes on them to cater

for specific application requirements.

Domain
Analysis

Domain
Models

Architecture
Development

Domain
Architecture

Building
Reusable

Components

Reusable
Components

Domain Engineering

Product Analysis Product
Specs.

Product
Design

Product
Specific

Architecture

Product
Development Product

Product C

Product B

Product A

Figure 2-3 The SPL lifecycle (Mili et al. 2002)

 20

2.2.1 Domain Engineering

In domain engineering, the variability and commonalities of the product line’s reusable

core assets such as requirements, architectural elements, or solution components are

captured in the domain models. Domain analysis is performed to analyze features of the

software family that are common, optional, or alternatives. Domain analysis technique

such as Feature-Oriented Domain Analysis (FODA) (Kang et al. 1990) had been used

extensively (Kang et al. 1998, Kang et al. 2002, Krueger 2007) to model domain

capabilities in terms of features.

2.2.1(a) Feature-Oriented Domain Analysis (FODA).

FODA method is one of the domain analysis techniques emphasizing on those features

that a user commonly expects in application in a domain (Kang et al. 1990). This method

identifies feature as a prominent or distinctive user-visible aspect, quality, or

characteristic of a software system. Therefore, features are said to be used to

parameterize domain products from the user’s perspective. However, features are still far

abstracted from implementation and realization of effective measure on feature

componentization and feature dependencies are still an active research area (Lee and

Kang 2004, Cho et al. 2008)

 21

Figure 2-4 Phases of FODA process (Kang el al. 1990)

Figure 2-4 shows the FODA analysis process that focuses on the three sets of

representation of the domain: context analysis, domain modeling and architecture

modeling. Context analysis determines the boundary of a domain to analyze, with the

objective to identify the relationship between applications in the domain. Domain

modeling activities will use the information sources and other products of context

analysis to support the creation of a domain model. In architecture modeling, the

structure of implementations of software in the domain is established by using

information from a domain model. The representations of domain models in feature

model provide a mapping to the architectural models for constructing applications (Kang

et al. 1990).

The next few sections will focus on the Feature Model as the single important domain

model from FODA to the proposed EnSPL methodology of this thesis. Feature model

 22

contributes to the variability management of EnSPL methodology as the conceptual level

variability management which will be mapped to the class model at the implementation

level, as discussed in section 4.3.3. Other domain model such as entity relationship model

is captured as feature diagram as shown in Figure 2-5. The architecture modeling

activities such as process interaction model and module structure chart are discussed as

4+1 View Model of Software Architecture (Krutchten 1995) in section 3.3.

2.2.1(b) Feature Model

A feature model captures domain features and their relationship. It is usually illustrated in

the form of a feature diagram as shown in Figure 2-5.

database

data model

storage

type

languages

o theory

medium

index data structure

dimensionality

relational
other: object, object relational, etc

scheme definition: SQL
query: SQL, Datalog, Graphlog

o transaction: SQL
Answer: tuple, table, form

algebra: relational

o calculus

memory
flat file
file
distributed

Inverted file
hashing
B-tree: B+tree, hB-tree
other

single
multiple

Mandatory

o Optional

Alternative

Figure 2-5 Feature diagram: mandatory, optional, alternative (Butler et al. 2002)

 23

For a product line or framework, a feature model classifies each feature as mandatory,

optional or alternative in order to express the commonality and variability across

applications in the product line. Common features among different products are modeled

as mandatory features, while different features among them may be optional or

alternative (Kang et al. 1990). Optional features represent selectable features for products

of a given product line and alternative features indicate that no more than one feature can

be selected for a product.

There are several views of structure for a feature model. The basic concept is a finite set

F of the features. The usual relationship of interest is the sub-feature relationship that

defines a hierarchy of features. There is also a dependency relationship between features,

and the actual dependency may be specified using a constraint. The classification of

feature model can be considered from the view point of variability (Butler et al. 2002)

and kind-of (Kang et al. 1998). The variability viewpoint map F to the set of {mandatory,

optional, alternative}, and the kind-of viewpoint map F to the set of {capability,

technology, environment, implementation}. The set of {mandatory, optional, alternative}

helps to segregate the aspect of commonality and variability in the SPL analysis, while

the set of {capability, technology, environment, implementation} give a broader view of

the domain feature space that must be ultimately mapped to the domain design models.

2.2.1(c) Issues related to feature model

Large software systems are increasingly expressed in terms of the features they

implement. Consequently, there is a need to express the commonality and variability

 24

between products of a product family in terms of features (Kang et al. 2002, Lee and

Muthig 2006). Unfortunately, technology supported (SPL methodology, domain

modeling, feature modeling, etc.) for the early aspect of a feature is currently limited to

the requirements level. There is a need to extend this support to the design as well as

implementation so that domain models such as a feature model can be directly mapped to

the implementation level.

Features are used in requirements engineering to define optional or incremental units of

change. They have many-to-many relationships to the individual requirements. Thus,

tracing features to the implementation of feature-based software components is complex.

In ideal cases, a particular feature implementation is localized to a single module; but in

many cases, features will cross-cut multiple components (Cho et al. 2008).

2.2.2 Reusable Software Assets – Enabling Technology

Software product line development is about the systematic reusability of software assets.

These software assets can be created by a variety of techniques found in literature such as

architectural patterns, design patterns, framework development and component-based

development depends on the domain-specific design and implementation. Therefore,

understanding and selecting the right reusable techniques and relating them to the

domain-specific problems are crucial for the success of software product line

development.

	Ngo(SCOM0441)_MasterThesis2009_v5

