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SYMBOLS

Symbol Description

A Class of analytic functions of the form

f(z) = z +
∑∞

n=2 anz
n (z ∈ U)

arg Argument

C Complex plane

f ∗ g Convolution or Hadamard product of functions f and g

H(U) Class of analytic functions in U

= Imaginary part of a complex number

≺ Subordinate to

K Class of convex functions in U

K(α) Class of convex functions of order α in U

K(φ) {f ∈ A : 1 + zf ′′(z)
f ′(z)

≺ φ(z)}

k(z) Koebe function

M Class of meromorphic functions of the form

f(z) = 1
z

+
∑∞

n=0 anz
n (z ∈ U∗)

M(α) {f ∈ A : zf ′(z)
f(z)

≺ 1+(1−2α)z
1−z

( −1 ≤ B < A ≤ 1, α > 1)}

R Set of all real numbers

< Real part of a complex number

Rα Class of prestarlike functions of order α in U

S Class of all univalent functions in U

S∗ Class of starlike functions in U

S∗(α) Class of starlike functions of order α in U

S∗(φ) {f ∈ A : zf ′(z)
f(z)

≺ φ(z)}

S∗[A,B] {f ∈ A : zf ′(z)
f(z)

≺ 1+Az
1+Bz

}

SP (α,A,B) {f ∈ A : eiα zf ′(z)
f(z)

≺ cosα 1+Az
1+Bz

+ i sinα

( −1 ≤ B < A ≤ 1, 0 ≤ α < 1)}
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Sp Class of parabolic starlike functions in U

T Subclass of A consisting of functions of the form

f(z) = z −
∑∞

n=2 |an|zn (z ∈ U)

U Open unit disk {z ∈ C : |z| < 1}

U∗ Punctured unit disk U \ {0}

Z Set of all integers
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KONVOLUSI, PEKALI DAN MASALAH JEJARI UNTUK FUNGSI

UNIVALEN TERTENTU

ABSTRAK

Suatu fungsi f yang tertakrif dalam cakera unit U := {z ∈ C : |z| < 1} dalam

satah kompleks C dikatakan univalen jika fungsi tersebut memetakan titik berlainan

dalam U ke titik berlainan dalam C. Andaikan A kelas fungsi analisis ternormalkan

yang tertakrif dalam U dan mempunyai siri Taylor dalam bentuk

(0.0.1) f(z) = z +
∞∑

n=2

anz
n.

Suatu fungsi f dikatakan subordinasi kepada suatu fungsi univalen F jika f(0) = F (0)

dan f(U) ⊂ F (U). Hasil darab Hadamard atau konvolusi dua fungsi analisis, f

berbentuk yang seperti (0.0.1) dan g(z) = z +
∑∞

n=2 bnz
n, ditakrif sebagai

(f ∗ g)(z) =
∞∑

n=1

anbnz
n.

Andaikan M kelas fungsi meromorfi, h berbentuk

(0.0.2) h(z) =
1

z
+

∞∑
n=0

anz
n,

yang analisis dan univalen dalam U∗ = {z : 0 < |z| < 1}. Konvolusi dua fungsi

meromorfi h dan k, dengan h diberi dalam bentuk (0.0.2) dan k(z) = 1
z
+
∑∞

n=0 bnz
n,

ditakrif sebagai

(h ∗ k)(z) =
1

z
+

∞∑
n=0

anbnz
n.

Dengan menggunakan ciri-ciri konvolusi dan teori subordinasi, beberapa subkelas

fungsi meromorfi diperkenalkan. Dengan mensubordinasikan fungsi di dalam kelas

ini dengan suatu fungsi cembung ternormalkan yang mempunyai nilai nyata positif,

subkelas-subkelas ini merangkumi subkelas klasik meromorfi bak-bintang, cembung,

hampir-cembung dan kuasi-cembung. Hubungan kelas dan ciri-ciri konvolusi subkelas-

subkelas ini juga dikaji.

vii



Andaikan T subkelas A yang mengandungi fungsi t dalam bentuk

t(z) = z −
∞∑

n=2

|an|zn.

Silverman [44] telah menyiasat subkelas T yang mengandungi fungsi bak-bintang

peringkat α dan cembung peringkat α (0 ≤ α < 1). Dengan motivasi ini, pelbagai

subkelas T telah dikaji. Kelas T [{bk}∞m+1, β,m] yang ditakrifkan secara am akan dikaji

dan anggaran pekali, teorem pertumbuhan dan beberapa keputusan untuk kelas ini

diperoleh. Keputusan ini merangkumi beberapa keputusan awal sebagai kes khas.

Untuk pemalar kompleks A dan B, andaikan S∗[A,B] kelas yang mengandungi

fungsi analisis ternormalkan yang mematuhi zf ′(z)
f(z)

≺ 1+Az
1+Bz

. Jejari bak-bintang per-

ingkat α, jejari bak-bintang kuat dan jejari bak-bintang parabola diperoleh untuk kelas

S∗[A,B]. Keputusan ini juga merangkumi beberapa keputusan awal.
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CONVOLUTION, COEFFICIENT AND RADIUS PROBLEMS OF

CERTAIN UNIVALENT FUNCTIONS

ABSTRACT

A function f defined on the open unit disc U := {z ∈ C : |z| < 1} of the

complex plane C is univalent if it maps different points of U to different points in C.

Let A denote the class of analytic functions defined on U which is normalized and

has the Taylor series of the form

(0.0.3) f(z) = z +
∞∑

n=2

anz
n.

The function f is subordinate to a univalent function F if f(0) = F (0) and f(U) ⊂

F (U). Hadamard product or convolution of two analytic functions f , given by (0.0.3)

and g(z) = z +
∑∞

n=2 bnz
n is given by

(f ∗ g)(z) =
∞∑

n=1

anbnz
n.

Let M denote the class of meromorphic functions h of the form

(0.0.4) h(z) =
1

z
+

∞∑
n=0

anz
n,

that are analytic and univalent in the punctured unit disk U∗ = {z : 0 < |z| < 1}.

The convolution of two meromorphic functions h and k, where h is given by (0.0.4)

and k(z) = 1
z

+
∑∞

n=0 bnz
n, is given by

(h ∗ k)(z) =
1

z
+

∞∑
n=0

anbnz
n.

By making use of the properties of convolution and theory of subordination, sev-

eral subclasses of meromorphic functions are introduced. Subjecting each convoluted-

derived function in the class to be subordinated to a given normalized convex function

with positive real part, these subclasses extend the classical subclasses of meromor-

phic starlikeness, convexity, close-to-convexity, and quasi-convexity. Class relations,

as well as inclusion and convolution properties of these subclasses are investigated.
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Let T denote the subclass of A consisting of functions t of the form

t(z) = z −
∞∑

n=2

|an|zn.

Silverman [44] investigated the subclasses of T consisting of functions which are

starlike of order α and convex of order α (0 ≤ α < 1). Motivated by his work, many

other subclasses of T were studied in the literature. The class T [{bk}∞m+1, β,m] which

is defined in a general manner is studied and the coefficient estimate, growth theorem

and other results for this class are obtained. Our results contain several earlier results

as special cases.

For complex constants A and B, let S∗[A,B] be the class consisting of nor-

malized analytic functions f satisfying zf ′(z)
f(z)

≺ 1+Az
1+Bz

. The radius of starlikeness of

order α, radius of strong-starlikeness, and radius of parabolic-starlikeness are obtained

for S∗[A,B]. Several known results are shown to be simple consequences of results

derived here.
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CHAPTER 1

INTRODUCTION

The theory of univalent functions is a remarkable area of study. This field which

is more often associated with ’geometry’ and ’analysis’ has raised the interest of many

since the beginning of 20th century to recent times. The name univalent functions or

schlicht (the German word for simple) functions is given to functions defined on the

open unit disc U := {z ∈ C : |z| < 1} of the complex plane C that are characterized

by the fact that such a function provides one-to-one mapping onto its image.

Let H(U) be the class of all analytic functions on U and A denote the class

of analytic functions defined on U which is normalized by the condition f(0) = 0,

f ′(0) = 1 and has the Taylor series of the form

f(z) = z +
∞∑

n=2

anz
n.

Geometrically, the function f is univalent if f(z1) = f(z2) implies z1 = z2 in U and is

locally univalent at z0 ∈ U if it is univalent in some neighborhood of z0. The subclass

of A consisting of univalent functions is denoted by S.

The Koebe function k(z) = z/(1 − z)2 is a univalent function and it plays a

very significant role in the study of the class S. In fact, the Koebe function and its

rotations e−iαk(eiαz), α ∈ R are the only extremal functions for various problems in

the class S. For example, the famous findings of Bieberbach. In 1916, Bieberbach

proved that if f ∈ S, then the second coefficient |a2| ≤ 2 with equality if and only if f

is a rotation of the Koebe function. He also conjectured that |an| ≤ n, (n = 2, 3, · · · )

which is generally valid and this was proved by de Branges [6] in 1985.
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Several special subclasses of analytic univalent functions play prominent role in

the study of this area. Notable among them are the classes of starlike and convex

functions.

Let w0 be an interior point of a set D in the complex plane. The set D is

starlike with respect to w0 if the line segment joining w0 to every other point in D

lies in the interior of D. If a function f ∈ A maps U onto a starlike domain, then f

is a starlike function. The class of starlike functions with respect to origin is denoted

by S∗. Analytically,

S∗ :=

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> 0

}
.

A set D in the complex plane is convex if for every pair of points w1 and w2 in

the interior of D, the line segment joining w1 and w2 lies in the interior of D. If a

function f ∈ A maps U onto a convex domain, then f is a convex function. Let K

denote the class of all convex functions in A. An analytic description of the class K

is given by

K :=

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> 0

}
.

The well known connection between these two classes was first observed by Alexander

in 1915. The Alexander theorem [2] states that for an analytic function f , f(z) ∈ K

if and only if zf ′(z) ∈ S∗.

Ma and Minda gave a unified presentation of these classes by using the method

of subordination. For two functions f and g analytic in U , the function f is subordi-

nate to g, written

f(z) ≺ g(z) (z ∈ U),

if there exists a function w, analytic in U with w(0) = 0 and |w(z)| < 1 such that

f(z) = g(w(z)). In particular, if the function g is univalent in U , then f(z) ≺ g(z)

is equivalent to f(0) = g(0) and f(U) ⊂ g(U).
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With g(z) = (1 + z)/(1 − z), a function f ∈ A is starlike if zf ′(z)/f(z) is

subordinate to g and is convex if 1+zf ′′(z)/f ′(z) is subordinate to g. Ma and Minda

[17] introduced the classes

S∗(φ) =

{
f ∈ A

∣∣∣∣ zf ′(z)f(z)
≺ φ(z)

}
and

K(φ) =

{
f ∈ A

∣∣∣∣ 1 +
zf ′′(z)

f ′(z)
≺ φ(z)

}
,

where φ is an analytic function with positive real part, φ(0) = 1 and φ maps the unit

disk U onto a region starlike with respect to 1.

The convolution or Hadamard product is another interesting exploration of these

classes. The convolution of two analytic functions f(z) = z+
∑∞

n=2 anz
n and g(z) =

z +
∑∞

n=2 bnz
n is given by

(f ∗ g)(z) =
∞∑

n=1

anbnz
n.

Polya-Schoenberg [24] conjectured that the class of convex functions is preserved

under convolution with convex functions. In 1973, Ruscheweyh and Sheil-Small [36]

proved the Polya-Schoenberg conjecture. In fact, they proved that the classes of

starlike functions and convex functions are closed under convolution with convex

functions.

Detailed treatment of univalent functions are available in books by Pommerenke

[25], Duren [7] and Goodman [12].

3



CHAPTER 2

CERTAIN SUBCLASSES OF MEROMORPHIC FUNCTIONS

ASSOCIATED WITH CONVOLUTION AND DIFFERENTIAL

SUBORDINATION

2.1. MOTIVATION AND PRELIMINARIES

The convolution or the Hadamard product of two analytic functions f(z) =∑∞
n=1 anz

n and g(z) =
∑∞

n=1 bnz
n is given by

(f ∗ g)(z) =
∞∑

n=1

anbnz
n.

The geometric series
∑∞

n=1 z
n = z/(1 − z) acts as the identity element under con-

volution. The convolution of f with the geometric series
∑∞

n=1 nz
n = z/(1 − z)2

is given by
∑∞

n=1 nanz
n which is equivalent to zf ′(z). In terms of convolution,

f = f ∗ (z/(1 − z)) and zf ′ = f ∗ (z/(1 − z)2). The well known Alexander’s

theorem states that a function f is convex if and only if zf ′ is starlike. Since

zf ′ = f ∗ (z/(1 − z)2), it follows that f is convex if and only if f ∗ (z/(1 − z)2)

is starlike. Also, a function f is starlike if f ∗ (z/(1 − z)) is starlike. These ideas

led to the study of the class of all functions f such that f ∗ g is starlike for some

fixed function g in A. In this direction, Shanmugam [41] introduced and investigated

various subclasses of analytic functions by using the convex hull method [5, 23, 36]

and the method of differential subordination. Ravichandran [26] introduced certain

classes of analytic functions with respect to n-ply symmetric points, conjugate points

and symmetric conjugate points and also discussed their convolution properties. Some

other related studies were also made in [3, 22], and more recently by Shamani et al.

[40].
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Let M denote the class of meromorphic functions f of the form

(2.1.1) f(z) =
1

z
+

∞∑
n=0

anz
n,

that are analytic and univalent in the punctured unit disk U∗ = {z : 0 < |z| < 1}.

The convolution of two meromorphic functions f and g, where f is given by (2.1.1)

and

(2.1.2) g(z) =
1

z
+

∞∑
n=0

bnz
n,

is given by

(f ∗ g)(z) =
1

z
+

∞∑
n=0

anbnz
n.

For 0 ≤ α < 1, we recall that the classes of meromorphic starlike, meromorphic

convex, meromorphic close-to-convex, meromorphic γ−convex (Mocanu sense) and

meromorphic quasi-convex functions of order α, denoted by Ms, Mk, Mc, Mk
γ and

Mq respectively, are defined by

Ms =

{
f ∈M

∣∣∣∣ −<zf ′(z)f(z)
> α

}
,

Mk =

{
f ∈M

∣∣∣∣ −<(1 +
zf ′′(z)

f ′(z)

)
> α

}
,

Mc =

{
f ∈M

∣∣∣∣ −<zf ′(z)g(z)
> α, g(z) ∈Ms

}
,(2.1.3)

Mk
γ =

{
f ∈M

∣∣∣∣ −< [(1− γ)
zf ′(z)

f(z)
+ γ

(
1 +

zf ′′(z)

f ′(z)

)]
> α

}
,

Mq =

{
f ∈M

∣∣∣∣ −< [zf ′(z)]′

g′(z)
> α, g(z) ∈Mk

}
.

Motivated by the investigation of Shanmugam [41], Ravichandran [26], and Ali

et al. [3], several subclasses of meromorphic functions defined by means of convo-

lution with a given fixed meromorphic function are introduced in Section 2.2. These

new subclasses extend the classical classes of meromorphic starlike, convex, close-to-

convex, γ-convex, and quasi-convex functions given in (2.1.3). Section 2.3 is devoted

5



to the investigation of the class relations as well as inclusion and convolution properties

of these newly defined classes.

We shall need the following definition and results to prove our main results.

Let S∗(α) denote the class of starlike functions of order α. The class Rα of

prestarlike functions of order α is defined by

Rα =

{
f ∈ A

∣∣∣∣ f(z) ∗ z

(1− z)2−2α
∈ S∗(α)

}

for α < 1, and

R1 =

{
f ∈ A

∣∣∣∣ <f(z)

z
>

1

2

}
.

Theorem 2.1.1. [35, Theorem 2.4] Let α ≤ 1, f ∈ Rα and g ∈ S∗(α).

Then, for any analytic function H ∈ H(U),

f ∗Hg
f ∗ g

(U) ⊂ co(H(U))

where co(H(U)) denotes the closed convex hull of H(U).

Theorem 2.1.2. [8] Let h be convex in U and β, γ ∈ C with <(βh(z)+γ) > 0.

If p is analytic in U with p(0) = h(0), then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z) implies p(z) ≺ h(z).

We will also be using the following convolution properties.

(i) For two meromorphic functions f and g of the forms f(z) = 1
z
+
∑∞

n=0 anz
n and

g(z) = 1
z

+
∑∞

n=0 bnz
n, we have

(f ∗ g)(z) = (g ∗ f)(z)

6



Proof. For f and g of the form f(z) = 1
z

+
∑∞

n=0 anz
n and g(z) = 1

z
+∑∞

n=0 bnz
n, we have

(f ∗ g)(z) =
1

z
+

∞∑
n=0

anbnz
n

=
1

z
+

∞∑
n=0

bnanz
n

= (g ∗ f)(z). �

(ii) For two meromorphic functions f and g of the forms f(z) = 1
z

+
∑∞

n=0 anz
n

and g(z) = 1
z

+
∑∞

n=0 bnz
n, we have

−z(g ∗ f)′(z) = (g ∗ −zf ′)(z).

Proof. For f of the form f(z) = 1
z

+
∑∞

n=0 anz
n, we have

−zf ′(z) =
1

z
−

∞∑
n=0

nanz
n

and hence

(g ∗ −zf ′)(z) =
1

z
−

∞∑
n=0

nanbnz
n

= −z

(
− 1

z2
+

∞∑
n=0

nanbnz
n−1

)

= −z(g ∗ f)′(z). �

(iii) For two meromorphic functions f and g of the forms f(z) = 1
z

+
∑∞

n=0 anz
n

and g(z) = 1
z

+
∑∞

n=0 bnz
n, we have

z2(g ∗ f)(z) = (z2g ∗ z2f)(z).

Proof. For

(g ∗ f)(z) =
1

z
+

∞∑
n=0

anbnz
n,

7



we observe that

z2(g ∗ f)(z) = z2

(
1

z
+

∞∑
n=0

anbnz
n

)

= z + z2

∞∑
n=0

anbnz
n

= z2g(z) ∗ z2f(z). �

2.2. DEFINITIONS

In this section, various subclasses of M are defined by means of convolution

and subordination. Let g be a fixed function in M, and h be a convex univalent

function with positive real part in U and h(0) = 1.

Definition 2.2.1. The class Ms
g(h) consists of functions f ∈ M satisfying

(g ∗ f)(z) 6= 0 in U∗ and the subordination

−z(g ∗ f)′(z)

(g ∗ f)(z)
≺ h(z).

Remark 2.2.1. If g(z) = 1
z
+ 1

1−z
= 1

z
+
∑∞

n=0 z
n, then Ms

g(h) coincides with

Ms(h), where

Ms(h) =

{
f ∈M

∣∣∣∣ −zf ′(z)f(z)
≺ h(z)

}
.

Definition 2.2.2. The class Mk
g(h) consists of functions f ∈ M satisfying

(g ∗ f)′(z) 6= 0 in U∗ and the subordination

−
{

1 +
z(g ∗ f)′′(z)

(g ∗ f)′(z)

}
≺ h(z).

Definition 2.2.3. The class Mc
g(h) consists of functions f ∈ M such that

(g ∗ ψ)(z) 6= 0 in U∗ for some ψ ∈Ms
g(h) and satisfying the subordination

−z(g ∗ f)′(z)

(g ∗ ψ)(z)
≺ h(z).

8



Definition 2.2.4. For γ real, the class Mk
g,γ(h) consists of functions f ∈M

satisfying (g ∗ f)(z) 6= 0, (g ∗ f)′(z) 6= 0 in U∗ and the subordination

−
{
γ

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
+ (1− γ)

(
z(g ∗ f)′(z)

(g ∗ f)(z)

)}
≺ h(z).

Remark 2.2.2. For γ = 0, the class Mk
g,γ(h) coincides with the class Ms

g(h)

and for γ = 1, it reduces to the class Mk
g(h).

Definition 2.2.5. The class Mq
g(h) consists of functions f ∈ M such that

(g ∗ ϕ)′(z) 6= 0 in U∗ for some ϕ ∈Mk
g(h) and satisfying the subordination

[−z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z)
≺ h(z).

2.3. INCLUSION AND CONVOLUTION THEOREM

This section is devoted to the investigation of class relations as well as inclusion

and convolution properties of the new subclasses given in Section 2.2.

We will begin with the theorem which is analogue to the well known Alexander’s

theorem.

Theorem 2.3.1. The function f is in Mk
g(h) if and only if −zf ′ is in Ms

g(h).

Proof. Since

−
(

1 +
z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
= −(g ∗ f)′(z) + z(g ∗ f)′′(z)

(g ∗ f)′(z)

= −(z(g ∗ f)′(z))′

(g ∗ f)′(z)

=
−z
−z

· ((g ∗ −zf ′)(z))′

(g ∗ f)′(z)

= −z(g ∗ −zf
′)′(z)

(g ∗ −zf ′)(z)
,

it follows that f ∈Mk
g(h) if and only if −zf ′ ∈Ms

g(h). �

Theorem 2.3.2. Let h be a convex univalent function satisfying <h(z) < 2−α,

0 ≤ α < 1, and φ ∈M with z2φ ∈ Rα. If f ∈Ms
g(h), then φ ∗ f ∈Ms

g(h).
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Proof. Since f ∈Ms
g(h), it follows that

−<
{
z(g ∗ f)′(z)

(g ∗ f)(z)

}
< 2− α

or

(2.3.1) <
{
z(g ∗ f)′(z) + 2(g ∗ f)(z)

(g ∗ f)(z)

}
> α.

The inequality (2.3.1) yields

<
{
z2z(g ∗ f)′(z) + 2z2(g ∗ f)(z)

z2(g ∗ f)(z)

}
> α

and thus

(2.3.2) <
{
z(z2(g ∗ f))′(z)

z2(g ∗ f)(z)

}
> α.

Let

P (z) = −z(g ∗ f)′(z)

(g ∗ f)(z)
.

We have

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ f)(z)
=
φ(z) ∗ −z(g ∗ f)′(z)

φ(z) ∗ (g ∗ f)(z)

=
φ(z) ∗ (g ∗ f)(z)P (z)

φ(z) ∗ (g ∗ f)(z)
· z

2

z2

=
z2φ(z) ∗ z2(g ∗ f)(z)P (z)

z2φ(z) ∗ z2(g ∗ f)(z)
.

Inequality (2.3.2) shows that z2(g ∗ f) ∈ S∗(α). Therefore Theorem 2.1.1 yields

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ f)(z)
=
z2φ(z) ∗ z2(g ∗ f)(z)P (z)

z2φ(z) ∗ z2(g ∗ f)(z)
∈ co(P (U)),

and since P (z) ≺ h(z), it follows that

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ f)(z)
≺ h(z).

Hence φ ∗ f ∈Ms
g(h). �

Corollary 2.3.1. Ms
g(h) ⊂Ms

φ∗g(h) under the conditions of Theorem 2.3.2.
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Proof. Let f ∈Ms
g(h), then by Theorem 2.3.2 we have φ ∗ f ∈Ms

g(h) or

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ f)(z)
≺ h(z),

which equivalently yields f ∈Ms
φ∗g(h). �

In particular, when g(z) = 1
z

+ 1
1−z

, the following corollary is obtained.

Corollary 2.3.2. Let h and φ satisfy the conditions of Theorem 2.3.2. If

f ∈Ms(h), then f ∈Ms
φ(h).

Theorem 2.3.3. Let h and φ satisfy the conditions of Theorem 2.3.2. If

f ∈Mk
g(h), then φ ∗ f ∈Mk

g(h). Equivalently Mk
g(h) ⊂Mk

φ∗g(h).

Proof. If f ∈Mk
g(h), then it follows from Theorem 2.3.1 that −zf ′ ∈Ms

g(h).

Theorem 2.3.2 shows that−z(φ∗f)′ = φ∗−zf ′ ∈Ms
g(h). Hence φ∗f ∈Mk

g(h). �

Theorem 2.3.4. Let h and φ satisfy the conditions of Theorem 2.3.2. If

f ∈ Mc
g(h) with respect to ψ ∈ Ms

g(h), then φ ∗ f ∈ Mc
g(h) with respect to

φ ∗ ψ ∈Ms
g(h).

Proof. Since ψ ∈ Ms
g(h), Theorem 2.3.2 shows that φ ∗ ψ ∈ Ms

g(h) and

inequality (2.3.2) yields z2(g ∗ ψ) ∈ S∗(α).

Let the function G be defined by

G(z) = −z(g ∗ f)′(z)

(g ∗ ψ)(z)
.

Observe that

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ ψ)(z)
=
φ(z) ∗ −z(g ∗ f)′(z)

φ(z) ∗ (g ∗ ψ)(z)

=
φ(z) ∗ (g ∗ ψ)(z)G(z)

φ(z) ∗ (g ∗ ψ)(z)
· z

2

z2

=
z2φ(z) ∗ z2(g ∗ ψ)(z)G(z)

z2φ(z) ∗ z2(g ∗ ψ)(z)
.
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Since z2φ ∈ Rα and z2(g ∗ ψ) ∈ S∗(α), it follows from Theorem 2.1.1 that

(2.3.3) −z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ ψ)(z)
=
z2φ(z) ∗ z2(g ∗ ψ)(z)G(z)

z2φ(z) ∗ z2(g ∗ ψ)(z)
≺ h(z).

Thus φ ∗ f ∈Mc
g(h) with respect to φ ∗ ψ ∈Ms

g(h). �

Corollary 2.3.3. Mc
g(h) ⊂Mc

φ∗g(h) under the conditions of Theorem 2.3.2.

Proof. If f ∈ Mc
g(h) with respect to ψ ∈ Ms

g(h), then Theorem 2.3.4 shows

that φ ∗ f ∈Mc
g(h) with respect to φ ∗ ψ ∈Ms

g(h) which is equivalent to

−z(φ ∗ g ∗ f)′(z)

(φ ∗ g ∗ ψ)(z)
≺ h(z)

or f ∈Mc
φ∗g(h). Hence Mc

g(h) ⊂Mc
φ∗g(h). �

Theorem 2.3.5. Let <(γh(z)) < 0. Then

(i) Mk
g,γ(h) ⊂Ms

g(h),

(ii) Mk
g,γ(h) ⊂Mk

g,β(h) for γ < β ≤ 0.

Proof. Define the function Jg(γ; f) by

Jg(γ; f)(z) = −
{
γ

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
+ (1− γ)

(
z(g ∗ f)′(z)

(g ∗ f)(z)

)}
.

For f ∈ Mk
g,γ(h), it follows that Jg(γ; f)(z) ≺ h(z). Let the function P be defined

by

(2.3.4) P (z) = −z(g ∗ f)′(z)

(g ∗ f)(z)
.

The logarithmic derivative of P (z) yields

(2.3.5)
P ′(z)

P (z)
=

1

z
+

(g ∗ f)′′(z)

(g ∗ f)′(z)
− (g ∗ f)′(z)

(g ∗ f)(z)
,

and multiplication with −γz to (2.3.5) gives

(2.3.6) −γ zP
′(z)

P (z)
= −γ − γ

z(g ∗ f)′′(z)

(g ∗ f)′(z)
+ γ

z(g ∗ f)′(z)

(g ∗ f)(z)
.
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Adding P (z) to (2.3.6) yields

P (z)− γ
zP ′(z)

P (z)
= −γ − γ

z(g ∗ f)′′(z)

(g ∗ f)′(z)
+ γ

z(g ∗ f)′(z)

(g ∗ f)(z)
− z(g ∗ f)′(z)

(g ∗ f)(z)

= −
{
γ

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
+ (1− γ)

(
z(g ∗ f)′(z)

(g ∗ f)(z)

)}
= Jg(γ; f)(z)(2.3.7)

and hence

P (z)− γ
zP ′(z)

P (z)
≺ h(z).

(i) Since <(γh(z)) < 0 and

P (z)− γ
zP ′(z)

P (z)
≺ h(z),

Theorem 2.1.2 yields P (z) ≺ h(z). Hence f ∈ Ms
g(h) and this concludes that

Mk
g,γ(h) ⊂Ms

g(h).

(ii) The logarithmic derivative of P (z) and multiplication of z yields

(2.3.8)
zP ′(z)

P (z)
= 1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)
+ P (z).

From (2.3.7), it follows that

(2.3.9)
zP ′(z)

P (z)
=
P (z)− Jg(γ; f)

γ
.

Let

(2.3.10) Jg(β; f)(z) = −
{
β

(
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

)
+ (1− β)

(
z(g ∗ f)′(z)

(g ∗ f)(z)

)}
.

Substituting (2.3.8) and (2.3.9) in (2.3.10) yield

(2.3.11) Jg(β; f)(z) =

(
1− β

γ

)
P (z) +

β

γ
Jg(γ; f)(z).

We know that Jg(γ; f)(z) ≺ h(z) and P (z) ≺ h(z) from (i) and since 0 < β
γ
< 1 and

h(U) is convex, we deduce that Jg(β; f)(z) ∈ h(U). Therefore, Jg(β; f)(z) ≺ h(z)

and hence Mk
g,γ(h) ⊂Mk

g,β(h) for γ < β ≤ 0 �

Corollary 2.3.4. The class Mk
g(h) is a subset of the class Mq

g(h).
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Proof. Let f ∈ Mk
g(h) and by taking f = ϕ, it follows from the definition of

the class Mq
g(h) that Mk

g(h) ⊂Mq
g(h) . �

Theorem 2.3.6. The function f is in Mq
g(h) if and only if −zf ′ is in Mc

g(h).

Proof. If f ∈Mq
g(h), then there exists ϕ ∈Mk

g(h) such that

[−z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z)
≺ h(z).

Note that

[−z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z)
=

[(g ∗ −zf ′)(z)]′

(g ∗ ϕ)′(z)
· −z
−z

=
−z(g ∗ −zf ′)′(z)

(g ∗ −zϕ′)(z)
.

Hence

−z(g ∗ −zf ′)′(z)
(g ∗ −zϕ′)(z)

≺ h(z).

Since ϕ ∈ Mk
g(h), by Theorem 2.3.1, −zϕ′ ∈ Ms

g(h). Thus by definition 2.2.3, we

have −zf ′ ∈Mc
g(h).

Conversely, if −zf ′ ∈Mc
g(h), then

−z(g ∗ −zf
′)′(z)

(g ∗ ϕ1)(z)
≺ h(z)

for some ϕ1 ∈ Ms
g(h). Let ϕ ∈ Mk

g(h) be such that −zϕ′ = ϕ1 ∈ Ms
g(h). The

proof is completed by observing that

[−z(g ∗ f)′(z)]′

(g ∗ ϕ)′(z)
= −z(g ∗ −zf

′)′(z)

(g ∗ −zϕ′)(z)
≺ h(z). �

Corollary 2.3.5. Let h and φ satisfy the conditions of Theorem 2.3.2. If

f ∈Mq
g(h), then φ ∗ f ∈Mq

g(h).

Proof. If f ∈Mq
g(h), Theorem 2.3.6 gives −zf ′ ∈Mc

g(h). Theorem 2.3.4 next

gives φ∗−zf ′ = −z(φ∗f)′ ∈Mc
g(h). Thus, Theorem 2.3.6 yields φ∗f ∈Mq

g(h). �

Corollary 2.3.6. Mq
g(h) ⊂Mq

φ∗g(h) under the conditions of Theorem 2.3.2.
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Proof. If f ∈Mq
g(h), it follows from Corollary 2.3.5 that φ ∗ f ∈Mq

g(h). The

subordination
[−z(φ ∗ g ∗ f)′(z)]′

(φ ∗ g ∗ ϕ)′(z)
≺ h(z)

gives f ∈Mq
φ∗g(h). Therefore Mq

g(h) ⊂Mq
φ∗g(h). �
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CHAPTER 3

A GENERALIZED CLASS OF UNIVALENT FUNCTIONS

WITH NEGATIVE COEFFICIENTS

3.1. MOTIVATION AND PRELIMINARIES

Let T denote the subclass of A consisting of functions f of the form

f(z) = z −
∞∑

n=2

|an|zn.

A function f ∈ T is called a function with negative coefficients. In [44],

Silverman investigated the subclasses of T which were denoted by TS∗(α) and TK(α)

respectively consisting of functions which are starlike of order α and convex of order

α (0 ≤ α < 1). He proved the following:

Theorem 3.1.1. [44] Let f(z) = z −
∑∞

n=2 |an|zn. Then f ∈ TS∗(α) if and

only if
∑∞

n=2(n− α)|ak| ≤ 1− α.

Corollary 3.1.1. [44] Let f(z) = z −
∑∞

n=2 |an|zn. Then f ∈ TK(α) if

and only if
∑∞

n=2 n(n− α)|ak| ≤ 1− α.

The work of Silverman has brought special interest in the exploration of the

functions with negative coefficients. Motivated by his work, many other subclasses

of T were studied in the literature. For example, the class U(k, τ, α) defined below,

was studied by Shanmugam [43].

Definition 3.1.1. [43] For 0 ≤ τ ≤ 1, 0 ≤ α < 1 and k ≥ 0, let U(k, τ, α),

consist of functions f ∈ T satisfying the condition

<
{
τz3f ′′′(z) + (1 + 2τ)z2f ′′(z) + zf ′(z)

τz2f ′′(z) + zf ′(z)

}
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> k

∣∣∣∣ τz3f ′′′(z) + (1 + 2τ)z2f ′′(z) + zf ′(z)

τz2f ′′(z) + zf ′(z)
− 1

∣∣∣∣+ α.

The class U(k, τ, α) contains well known classes as special cases. In particular,

U(k, 0, 0) is the class of k−uniformly convex function introduced and studied by

Kanas and Wisniowska [15] and U(0, 0, α) coincides with the class TK(α) studied in

[44]. In [43], Shanmugam proved the coefficients bounds, extreme points as well as

radius of starlikeness and convexity theorem for functions in U(k, τ, α).

Kadioǧlu in [13] extended the results by Silverman by defining the class Ts(α)

with the use of Sălăgean derivative operator and proved some properties of the func-

tions in this class. The Sălăgean derivatives operator was introduced in [38], where

for f(z) ∈ A,

D0f(z) = f(z), D1f(z) = zf ′(z)

and

Dsf(z) = D(Ds−1f(z)) (s = 1, 2, 3, . . .).

Observe that

D0f(z) = f(z) = z −
∞∑

n=2

|an|zn,

D1f(z) = zf ′(z) = z

(
1−

∞∑
n=2

n|an|zn−1

)
= z −

∞∑
n=2

n|an|zn

and

D2f(z) = D(D1f(z)) = z(zf ′(z))′ = z −
∞∑

n=2

n2|an|zn

...

Hence

Dsf(z) = D(Ds−1f(z)) = z −
∞∑

n=2

ns|an|zn.

Kadioǧlu defined the class Ts(α) as the following:

Definition 3.1.2. [13]

Ts(α) =

{
f ∈ T : <

{
Ds+1f(z)

Dsf(z)

}
> α

}
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Note that T0(α) = TS∗(α) and T1(α) = TK(α). He proved the following:

Theorem 3.1.2. [13] A function f(z) = z −
∑∞

n=2 |an|zn is in Ts(α) if and

only if
∞∑

n=2

(ns+1 − nsα)|an| ≤ 1− α.

Ahuja [1] defined the class Tλ(α) with the use of Ruscheweyh derivative opera-

tor. The Ruscheweyh derivative operator Dλ is defined using the Hadamard product

or convolution by

Dλf =
z

(1− z)λ+1
∗ f for λ ≥ −1.

Definition 3.1.3. [1] A function f ∈ T is said to be in the class Tλ(α) if it

satisfies

<
{
z
(Dλf(z))′

Dλf(z)

}
> α

for λ > −1 and α < 1.

By letting λ = 0 and λ = 1, the class Tλ(α) will reduce to the class TS∗(α) and

TK(α) respectively. The following theorem was proved in [1].

Theorem 3.1.3. A function f(z) = z −
∑∞

n=2 anz
n is in Tλ(α) if and only if

∞∑
n=2

(n− α)Bn(λ)an ≤ 1− α

where

Bn(λ) =
(λ+ 1)n−1

(n− 1)!
=

(λ+ 1)(λ+ 2) . . . (λ+ n− 1)

(n− 1)!
.

The above defined classes as well as numerous other classes of functions can

be investigated in a unified manner. For this purpose, we study the following class of

T [{bk}∞m+1, β,m].
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Definition 3.1.4. Let bm+1 > 0, bm+1 ≤ bk for k ≥ m + 1. Also let β ≥ 0

and m ≥ 1 be an integer. The class T [{bk}∞m+1, β,m] is defined by

T [{bk}∞m+1, β,m] =

{
f = z −

∞∑
k=m+1

akz
k

∣∣∣∣∣ ak ≥ 0 for k ≥ m+ 1,
∞∑

k=m+1

bkak ≤ β

}
.

For convenience, we will denote T [{bk}∞m+1, β,m] as T [bk, β,m] and adopt this no-

tation hereafter.

For m = 1, the class T [bk, β,m] coincides with the class introduced by Frasin

[9]. In his paper, Frasin investigated the partial sums of functions belonging to this

class. There are many subclasses of T studied by various authors of which several

can be represented as T [bk, β,m] with suitable choices of bk, β and m (see example

below) (also see [4, 14, 18, 19, 20, 34, 37, 39]).

Example 3.1.1.

(1) T [k−α
1−α

(λ+1)k−1

(k−1)!
(λ), 1, 1] = Tλ(α), [1]

(2) T [ns+1 − αns, 1− α, 1] = Ts(α), [13]

(3) T [n((n− α)(τn− τ + 1) + k(τ + n− 1)), 1− α, 1] = U(k, τ, α), [43]

(4) T [n− α, 1− α, 1] = TS∗(α), [44]

(5) T [n(n− α), 1− α, 1] = TK(α). [44]

We will be using Example 3.1.1 later to prove the corollaries in this chapter.

In this chapter we obtain the coefficient estimates, growth theorem, distortion

theorem, covering theorem and closure theorem for the class T [bk, β,m]. We also

consider the extreme points and investigate radius problem for this class.

3.2. COEFFICIENT ESTIMATE

We begin with the theorem which gives us the estimate for the coefficient of

functions in the class T [bk, β,m].
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Theorem 3.2.1. If f ∈ T [bk, β,m], then

aj ≤
β

bj
, (j = m+ 1,m+ 2, . . .)

with the equality only for functions of the form fj(z) = z − β
bj
zj.

Proof. Let f ∈ T [bk, β,m], then by definition, we have

∞∑
k=m+1

bkak ≤ β.

Hence, it follows that

bjaj ≤
∞∑

k=m+1

bkak ≤ β (j = m+ 1,m+ 2, . . .)

or

aj ≤
β

bj
.

It is clear that for the function of the form

fj(z) = z − β

bj
zj ∈ T [bk, β,m]

we have

aj =
β

bj
. �

Corollary 3.2.1. [44] If f ∈ TS∗(α), then

an ≤
1− α

n− α
,

with equality for function of the form

fn(z) = z − 1− α

n− α
zn.

Corollary 3.2.2. [43] If f ∈ U(k, τ, α), then

an ≤
1− α

n[(n− α)(τn− τ + 1) + k(τ + n− 1)]
,

with equality for the function of the form

f(z) = z − 1− α

n[(n− α)(τn− τ + 1) + k(τ + n− 1)]
zn.
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Corollary 3.2.3. [1] If f ∈ Tλ(α), then

ak ≤
1− α

(k − α)Bk(λ)
,

with equality for function of the form

f(z) = z − 1− α

(k − α)Bk(λ)
zk.

3.3. GROWTH THEOREM

We now prove the growth theorem for the functions in the class T [bk, β,m].

Theorem 3.3.1. If f ∈ T [bk, β,m], then

r − β

bm+1

rm+1 ≤ |f(z)| ≤ r +
β

bm+1

rm+1, |z| = r < 1.

with equality for

(3.3.1) f(z) = z − β

bm+1

zm+1

at z = r for the lower bound and z = re
iπ(2p+1)

m , (p ∈ Z+) for the upper bound.

Proof. For f ∈ T [bk, β,m], we have

∞∑
k=m+1

bkak ≤ β

and since bm+1 ≤ bk for k ≥ m+ 1, we have

bm+1

∞∑
k=m+1

ak ≤
∞∑

k=m+1

bkak ≤ β

or

(3.3.2)
∞∑

k=m+1

ak ≤
β

bm+1

.
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Let |z| = r. Since f = z −
∑∞

k=m+1 akz
k ∈ T [bk, β,m], we have

|f(z)| ≤ r +
∞∑

k=m+1

akr
k

≤ r + rm+1

∞∑
k=m+1

ak.

By using (3.3.2), we obtain

|f(z)| ≤ r +
β

bm+1

rm+1

and similarly

|f(z)| ≥ r − β

bm+1

rm+1. �

Corollary 3.3.1. [43] If f ∈ U(k, τ, α), then

r − 1− α

2(1 + τ)(2 + k − α)
r2 ≤ |f(z)| ≤ r +

1− α

2(1 + τ)(2 + k − α)
r2 (|z| = r)

with equality for

f(z) = z − 1− α

2(1 + τ)(2 + k − α)
z2.

Corollary 3.3.2. [13] If f ∈ Ts(α), then

r − 1− α

2s+1 − 2sα
r2 ≤ |f(z)| ≤ r +

1− α

2s+1 − 2sα
r2 (|z| = r)

with equality for

f(z) = z − 1− α

2s+1 − 2sα
z2.

Corollary 3.3.3. [1] If f ∈ Tλ(α), then

r − 1− α

(2− α)(λ+ 1)
r2 ≤ |f(z)| ≤ r +

1− α

(2− α)(λ+ 1)
r2 (|z| = r)

with equality for

f(z) = z − 1− α

(2− α)(λ+ 1)
z2.
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3.4. COVERING THEOREM

Theorem 3.4.1. The disk |z| < 1 is mapped onto a domain that contains the

disk

|w| < 1− β

bm+1

by any f ∈ T [bk, β,m]. The result is sharp for the function f given in (3.3.1).

Proof. The proof follows by letting r → 1 in Theorem 3.3.1. �

Corollary 3.4.1. [44] The disk |z| < 1 is mapped onto a domain that

contains the disk

|w| < 1− 1

2− α

by any f ∈ TS∗(α). The theorem is sharp with extremal function f(z) = z− 1−α
2−α

z2.

Corollary 3.4.2. [44] The disk |z| < 1 is mapped onto a domain that

contains the disk

|w| < 1− 3− α

2(2− α)

by any f ∈ TK(α). The theorem is sharp with extremal function f(z) = z− 1−α
2(2−α)

z2.

Corollary 3.4.3. [13] The disk |z| < 1 is mapped onto a domain that

contains the disk

|w| < 1− 1− α

2s+1 − 2sα

by any f ∈ Ts(α). The theorem is sharp with extremal function f(z) = z− 1−α
2s+1−2sα

z2.

Corollary 3.4.4. [1] The disk |z| < 1 is mapped onto a domain that contains

the disk

|w| < 1− 1− α

(2− α)(λ+ 1)

by any f ∈ Tλ(α). The theorem is sharp with extremal function f(z) = z −
1−α

(2−α)(λ+1)
z2.
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3.5. DISTORTION THEOREM

The distortion theorem for the functions in the class T [bk, β,m] is given in the

following theorem.

Theorem 3.5.1. If f ∈ T [bk, β,m], then

1− β(m+ 1)

bm+1

rm ≤ |f ′(z)| ≤ 1 +
β(m+ 1)

bm+1

rm, |z| = r < 1

where bm+1

m+1
≤ bk

k
. The result is sharp for the function f given in (3.3.1).

Proof. For f ∈ T [bk, β,m], we have

∞∑
k=m+1

bk
k
kak =

∞∑
k=m+1

bkak ≤ β.

Since bm+1

m+1
≤ bk

k
for k ≥ m+ 1, we obtain

(3.5.1)
∞∑

k=m+1

bm+1

m+ 1
kak ≤

∞∑
k=m+1

bk
k
kak ≤ β

or equivalently

bm+1

m+ 1

∞∑
k=m+1

kak ≤
∞∑

k=m+1

bkak ≤ β.

Thus we have

(3.5.1)
∞∑

k=m+1

kak ≤
β(m+ 1)

bm+1

.

Since f(z) = z −
∑∞

k=m+1 akz
k, we have

f ′(z) = 1−
∞∑

k=m+1

kakz
k−1.

Let |z| = r, then

|f ′(z)| ≤ 1 +
∞∑

k=m+1

kakr
k−1

≤ 1 + rm

∞∑
k=m+1

kak

≤ 1 +
β(m+ 1)

bm+1

rm
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