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AKTIVTI KARDIOVASKULAR EKSTRAK METANOL LORANTHUS FERRUGINEUS 

ROXB. DAN FRAKSINYA 

 

ABSTRAK 

 

Loranthus ferrugineus Roxb. ialah suatu tumbuhan renek hemiparasitik yang secara 

tradisionalnya digunakan untuk merawat hipertensi. Dalam kajian ini, fraksinasi berpandukan 

kesan kardiovaskular dilakukan sebagai percubaan untuk mengenalpasti fraksi aktif dan 

menentukan mekanisme tindakannya. Tumbuhan dikeringkan, diserbukkan dan diekstraksi 

berganti-ganti dengan eter petroleum, kloroform, etil asetat, metanol dan air. Setiap ekstrak 

dikeringkan dalam tekanan rendah dan disejukbekukan. Kesan setiap ekstrak dikaji ke atas sediaan 

terasing gelang aorta tikus dan tikus terbius. Ekstrak metanol (LFME) didapati paling poten dalam 

menyesarkan kelok log kepekatan gerakbalas noradrenalin (NA) ke kanan dengan penurunan gerak 

balas maksimum. Keputusan percubaan ini mencadangkan ekstrak bertindak sebagai perencat tak 

kompetitif kepada NA. LFME juga didapati paling poten dalam menurunkan tekanan darah tikus 

terbius. Sama seperti asetilkolina (Ach), prarawatan dengan atropina mengurangkan kesan 

penurunan tekanan darah oleh LFME dengan signifikan (P<0.05) menyarankan LFME bertindak 

sebagai agonis kolinergik. Prarawatan dengan Nω-nitro-L-arginin metil ester (L-NAME, 10 mg/kg) 

mengurangkan tekanan arteri purata (MAP) tikus yang diaruhkan LFME dengan signifikan 

(P<0.05). Sebaliknya, tidak berlaku perubahan yang signifikan (P>0.05) dalam MAP setelah 

suntikan intra-vena neostigmin (40 µg/kg), heksametonium (30 mg/kg), propranolol (2 mg/kg) dan 

prazosin (50 µg/kg). Dengan cara ekstraksi pelarut-pelarut, LFME yang aktif difraksikan secara  

berturut dengan kloroform, etil asetat dan n-butanol. Kesan fraksi yang telah disejukbekukan 

kemudian dikaji ke atas sediaan tikus terbius. Di antara keempat-empat fraksi, fraksi n-butanol dari 

LFME (NBF-LFME) didapati menyebabkan penurunan tekanan darah yang paling besar dan paling 

lama. NBF-LFME (1.00E-5–3.00 mg/mL) juga menyebabkan perencatan yang paling besar 

pengecutan gelang aorta aruhan fenilefrina dan  kepekatan tinggi K+. Pembuangan lapisan 
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endotelium dari gelang aorta menghapuskan sepenuhnya sifat mengendurkan vaskular NBF-LFME. 

Prarawatan dengan atropina (1 µM), L-NAME (10 µM), indometasin (10 µM) dan metilena biru 

(10 µM) menghalang dengan signifikan (P<0.001–0.05) pengenduran yang diperantarakan NBF-

LFME. NBF-LFME (0.05, 0.1 dan 0.3 mg/mL) tidak mengubah dengan signifikan (P>0.05) kesan 

pengecutan bergantung kepekatan yang diaruhkan oleh penambahan kumulatif kalsium (3.00E-03–

3.00E-02M) dalam kepekatan tinggi K+ (80 mM) gelang aorta terdepolarisasi yang diinkubasikan 

di dalam larutan Kreb bebas kalsium. Pengenduran bergantung endotelium dan takbergantung 

endotelium aruhan Ach dan natrium nitroprusida (SNP), masing-masing, ditingkatkan dengan 

signifikan (P<0.001–0.05) pada gelang aorta yang diprarawat dengan NBF-LFME (0.3 mg/mL). 

Sebaliknya, glibenklamida (10 µM), propranolol (1 µM) dan prazosin (0.01 µM) tidak mengubah 

(P>0.05) pengenduran yang diaruhkan NBF-LFME. Pada sediaan ileum argus, NBF-LFME 

(0.065–4 mg/mL) mengaruhkan pengecutan bergantung kepekatan. Pengecutan ini direncat dengan 

signifikan (P<0.001) oleh atropina (1 μM) tetapi dipotensiasikan oleh neostigmin (0.05 μM). 

Heksametonium (100 μM) tiada kesan ke atas pengecutan yang diaruhkan NBF-LFME. Hasil 

kajian mencadangkan L. ferrugineus mengaruhkan kesan kardiovaskularnya dengan merangsang 

reseptor muskarinik, mengaktifkan lintasan pengrehat nitrik oksida-cGMP terbitan endotelium, 

menggalakk dan pelepasan prostasiklin dan/atau mungkin melalui kemampuannya memanjangkan 

separuh-hayat nitrik oksida. Analisa kimia NBF-LFME menggunakan spektroskopi UV dan IR, 

kromatografi turus dan HPLC menunjukan terdapatnya terpenoid dalam NBF-LFME. 
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CARDIOVASCULAR ACTIVITIES OF LORANTHUS FERRUGINEUS ROXB. 

METHANOL EXTRACT AND ITS FRACTIONS 

 

ABSTRACT 

 

Loranthus ferrugineus Roxb. is a hemiparasitic shrub traditionally used for treatment of 

hypertension. In the present study, the cardiovascular effects-guided fractionation of L. ferrugineus 

was performed in an attempt to identify the active fraction and determine its mechanism of action. 

The plant was dried, pulverized and successively extracted with petroleum ether, chloroform, ethyl 

acetate, methanol and water. Each extract was dried under reduced pressure and freeze-dried. The 

effect of each extract was examined on isolated rat aortic ring and anesthetized rat preparations. 

The methanol extract (LFME) was found to be the most potent in shifting the log concentration 

response curve of noradrenaline (NA) to the right with reduced maximum response. It suggests that 

the extract acts as a non-competitive inhibitor to NA. The methanol extract was also found to be 

the most potent in lowering blood pressure of anesthetized rats. Similar to acetylcholine (Ach), 

pretreatment with atropine significantly (P<0.05) decreased the blood pressure lowering effect of 

LFME which suggests that LFME acts as cholinergic agonist. Similarly, pretreatment with Nω-

nitro-L-arginine methyl ester (L-NAME, 10 mg/kg) significantly (P<0.05) inhibited the reduction 

in mean arterial pressure (MAP) induced by LFME. Conversely, no significant (P>0.05) changes in 

MAP were seen following intravenous injections of neostigmine (40 µg/kg), hexamethonium (30 

mg/kg), propranolol (2 mg/kg) and prazosin (50 µg/kg). By means of solvent-solvent extraction, 

the aqueous LFME solution was successively fractionated using chloroform, ethyl acetate and       

n-butanol. The effects of the freeze-dried fractions were then investigated in anesthetized rat 

preparation. Among the four fractions, the n-butanol fraction of LFME (NBF-LFME) was found to 

cause the largest and longest lowering of blood pressure. The NBF-LFME (1.00E-5–3.00 mg/mL) 

also caused the largest inhibition of phenylephrine (PE)- and high K+-induced aortic ring 

contraction. Removal of the endothelium of the aortic ring completely abolished the vascular 
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relaxing properties of NBF-LFME. Pretreatment with atropine (1 µM), L-NAME (10 µM), 

indomethacin (10 µM) and methylene blue (10 µM) significantly (P<0.001–0.05) blocked NBF-

LFME-mediated relaxation. NBF-LFME (0.05, 0.1 and 0.3 mg/mL) did not significantly (P>0.05) 

alter the concentration-dependent contractile effect induced by cumulative additions of calcium 

(3.00E-03–3.00E-02M) in high K+ (80 mM) depolarized aortic rings incubated in calcium-free 

Kreb’s solution. Endothelium-dependent and -independent relaxations induced by Ach and sodium 

nitroprusside (SNP), respectively, were significantly (P<0.001–0.05) enhanced in aortic rings 

pretreated with NBF-LFME (0.3 mg/mL). On the contrary, glibenclamide (10 µM), propranolol (1 

µM) and prazosin (0.01 µM) did not (P>0.05) alter NBF-LFME-induced relaxation. In guinea-pig 

ileum preparation, NBF-LFME (0.065–4 mg/mL) induced concentration-dependent contraction. 

This contraction was significantly (P<0.001) inhibited by atropine (1 μM) but potentiated by 

neostigmine (0.05 μM). Hexamethonium (100 μM) had no effect on NBF-LFME-induced 

contraction. The results suggest that L. ferrugineus induced its cardiovascular effects by 

stimulating cardiovascular muscarinic receptor, activating the endothelium-derived nitric oxide-

cGMP-relaxant pathway, promoting prostacyclin release and/or possibly through its ability to 

lengthen the released nitric oxide half life. Chemical analysis of NBF-LFME using UV and IR 

spectroscopies, thin layer chromatography, column chromatography and HPLC indicated the 

presence of terpenoids in the NBF-LFME. 
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CHAPTER ONE 

INTRODUCTION 

 
 

1.1 The circulatory system  

1.1.1 The systemic and pulmonary circulation 

A British physiologist, William Harvey, reported in 1628 that the cardiovascular system forms 

a closed loop so that blood pumped out of the heart through one set of vessels returns to the heart 

by a different set. There are in fact two circuits (Figure 1.1), both originating and terminating in the 

heart. The latter is divided longitudinally into two functional halves each of which contain two 

chambers: an upper chamber, the atrium, and a lower chamber, the ventricle. The atrium on each 

side empties into the ventricle on that side; yet, no direct flow between the two atria or the two 

ventricles in the heart of the adult is found (Widmaier et al., 2006).  

 

An eminent Arab physician, Ibn Al-Nafis, was the first to define the pulmonary circulation in 

the thirteenth century. Based on his report, it is now well accepted that in the pulmonary circulation 

the blood is pumped from the right ventricle through the lungs and then to the left atrium. From the 

left ventricle, it is then pumped through the systemic circulation and subsequently through all the 

organs and tissues of the body except the lungs, and then to the right atrium. In both circuits, the 

vessels transporting blood away from the heart are called arteries, and those carrying blood from 

body organs and tissues back to the heart are called veins (Al-Ghazal, 2007).  

 

In the systemic circuit, blood leaves the left ventricle by a single huge artery, the aorta (Figure 

1.1). From the aorta, the arteries of the systemic circulation branch off, dividing into increasingly 

smaller vessels, the smallest arteries branch into arterioles, which in turn branch into a large 

number (estimated at 10 billions) of exceedingly small vessels called capillaries, which fuse to 

form larger-diameter vessels, the venules. The arterioles, capillaries, and venules are together 

termed the microcirculation. 
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Figure 1.1: The systemic and pulmonary circulation. (Adapted from McKinley and O'Loughlin, 
2007) 
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The venules in the systemic circulation then join to form larger vessels, the veins. Two large 

veins are formed when the veins from the various peripheral organs and tissues join together, the 

inferior vena cava, which accumulates blood from below the heart, and the superior vena cava, 

which collects blood from above the heart. These two main veins return the blood to the right 

atrium.  

 

The pulmonary circulation is comprised of a comparable circuit. Through a single large artery 

known as the pulmonary trunk, blood leaves the right ventricle. This large artery further divides 

into the two pulmonary arteries, one supplying the right lung and the other the left. In the lungs, the 

arteries continue to divide, eventually forming capillaries that join into venules and then veins. The 

blood leaves the lungs via four pulmonary veins, which ultimately empty into the left atrium.  

 

While blood flows through the lung capillaries, it picks up oxygen supplied to the lungs 

through breathing process. Therefore, high oxygen contents are found in the blood in the 

pulmonary veins, left side of the heart, and systemic arteries. As this blood flows through 

peripheral tissues and organs capillaries, some of this oxygen leaves the blood to be consumed by 

cells, resulting in the lower oxygen content of blood in the venous side of the systemic circulation.  

 

Lastly, there are a number of exceptions, particularly the liver, kidneys, and pituitary, to the 

typical anatomical pattern described in this section for the systemic circulation. In those organs, 

blood is known to pass through two major capillary beds, arranged in series, before returning to the 

heart. This prototype is recognized as a portal system (Widmaier et al., 2006). 
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1.1.2 The heart 

1.1.2.1 Anatomy 

The heart is a unique muscular organ enclosed in a fibrous sac, the pericardium, and located 

inside the chest (Figure 1.2). Another fibrous membrane is closely attached to the heart and is 

known as the epicardium. The very narrow space between the pericardium and epicardium is filled 

with a watery fluid that acts as a lubricant while the heart moves within the sac.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Diagrammatic section of the heart. (Adapted from McKinley and O'Loughlin, 2007) 
 

 

The walls of the heart, the myocardium, are composed principally of cardiac muscle cells. The 

internal surface of the cardiac chamber, as well as the inner wall of all blood vessels, is lined by a 

thin layer of cells known as endothelial cells, or endothelium.  
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The heart is divided into right and left halves, each half consisting of an atrium and a ventricle. 

The two ventricles are separated by a muscular wall, the interventricular septum. Located between 

the atrium and ventricle in each half of the heart are the atrioventricluar (AV) valves, which allow 

blood to flow from atrium to ventricle but not in the opposite direction. The right AV valve is 

called the tricuspid valve since it has three fibrous flaps, or cusps. The left AV valve has two flaps 

and is therefore called the bicuspid valve (its resemblance to a bishop’s headgear has earned the 

left AV valve the frequently used name mitral valve).  

 

The openings of the right ventricle into the pulmonary trunk and of the left ventricle into the 

aorta encompass valves as well and these are the pulmonary and aortic valves respectively. These 

valves are also referred to as the semilunar valves, owing to the half-moon shape of the cusps. 

These valves permit blood to flow into the arteries during ventricular contraction but prevent blood 

from moving in the opposite direction during relaxation of the ventricle.  

 

At the entrances at the superior and inferior venae cavae into the right atrium, and of the 

pulmonary veins into the left atrium no valves are normally present. However, atrial contraction 

pumps very little blood back into the veins as atrial contraction constricts their sides of entry into 

the atria, significantly increasing the resistance to backflow (Widmaier et al., 2006).    

 

1.1.2.2 Cardiac muscle 

Cardiac muscle possesses properties of both skeletal and smooth muscle. The cardiac cells are 

notably striated as a result of the arrangement of thick myosin and thin actin filaments in such a 

way similar to that of skeletal muscle. Cardiac muscle cells are significantly shorter than skeletal 

muscle fibers and have several branching processes. Adjacent cells are joined end to end at 

structures known as intercalated disks, within which the desmosomes are located. The latter hold 

the muscle cells together and to which the myofibrils are attached. Adjacent to the intercalated 

disks, there are gap junctions, like those in many smooth muscles (Widmaier et al., 2006).  
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1.1.2.3  Cardiac innervation 

The heart is provided with a rich supply of both sympathetic and parasympathetic nerve fibers, 

the latter contained in the vagus nerve. The neurotransmitter noradrenaline (NA) is released from 

the sympathetic postganglionic fibers which innervate the whole heart, while the parasympathetics 

terminate mainly on cells found in the atria and acetylcholine (Ach) is the primary neurotransmitter 

released from these nerve terminals. The receptors for NA on cardiac muscle are principally          

β-adrenergic receptors. The hormone adrenaline, which is released from the medullary part of the 

adrenal gland, interacts with the same receptor as NA and exerts almost the same action in the heart. 

On the other hand, the receptors for Ach are of the muscarinic type (Widmaier et al., 2006).  

 

1.1.2.4  Cardiac blood supply 

There is no exchange of nutrients and metabolic end products between the blood being 

pumped through the heart chambers and the myocardial cells. These myocardial cells, like the cells 

of all other organs, obtain their blood supply from arteries that branch from the aorta. The arteries 

providing the myocardium with blood are called the coronary arteries, and the blood flowing 

through these arteries is termed the coronary blood flow. From the very first part of the aorta, 

coronary arteries extend and lead to a branching network of small arteries, arterioles, capillaries, 

venules and veins similar to those in many other organs. Most of the cardiac veins drain into a 

single large vein called the coronary sinus, which in turn empties into the right atrium (Widmaier et 

al., 2006).  

 

1.1.2.5  Physiology of cardiac muscle contraction 

Similar to smooth and skeletal muscle, the myocardium responds to stimulation by membrane 

depolarization; which leads to shortening of the contractile proteins followed by relaxation when 

the membrane potential returns to the resting state. Unlike skeletal muscle which demonstrates 

graded pattern of contraction depending on the number of muscle cells stimulated, the cells of the 

cardiac muscle are interconnected in groups that act in response to stimuli as a unit, contracting as 

one whenever a single cell is stimulated (Howland and Mycek, 2006).  
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1.1.2.5.a Action potential 

Cardiac muscle cells are electrically excitable. However, they differ from the cells of other 

muscles and nerves in the fact that the cells of cardiac muscle show a spontaneous intrinsic rhythm 

generated by specialized “pace maker cells” located in the sinoatrial (SA), and AV nodes. The 

cardiac cells also encompass an uncommonly long action potential which can be divided into five 

distinct phases (0-4) as shown in Figure 1.3. Phase (0): represents the fast upstroke (depolarization) 

during which fast inward sodium (Na+) current to the cells occurs. Phase (1): is characterized by 

partial repolarization as result of outward potassium (K+) current. Phase (2): is called the plateau 

phase in which calcium (Ca2+) is exchanged to K+ to aid in cardiac contraction process. Phase (3): 

this represents the repolarization phase of the cardiac action potential during which an outward 

current of K+ occurs. Phase (4): is the last phase of the action potential. It is known as forward 

current or spontaneous depolarization and is characterized by gradual increase in cellular 

permeability to Na+ (Howland and Mycek, 2006).  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 1.3: The cardiac action potential waveforms in adult human. (Adapted from Nerbonne and 
Kass, 2005) 
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1.1.2.5.b Cardiac contraction 

The contractile machinery of the myocardial cell is fundamentally similar to that of striated 

muscle. The contraction force of the cardiac muscle is directly proportional to the concentration of 

free cytosolic Ca2+. Hence, agents that increase Ca2+ levels (or increase the sensitivity of the 

contractile machinery) bring about an increase in the force of contraction (inotropic effect) 

(Howland and Mycek, 2006). 

 

1. Sources of free intracellular calcium 

Ca2+ principally comes from two main sources. The first source is from outside the cells, 

where opening of voltage-sensitive Ca2+ channels causes an instant rise in free cytosolic Ca2+. The 

second source is the release of Ca2+ from the sarcoplasmic reticulum and mitochondria, which 

further increases the cytosolic level of Ca2+ (Howland and Mycek, 2006). 

 

2. Removal of free cytosolic calcium 

If free cytosolic Ca2+ level remained high, the cardiac muscle would be in a steady state of 

contraction. Ca2+ has to be removed to induce relaxation. Mechanisms of Ca2+ removal include: 

 

a. Sodium-calcium exchange: Ca2+ is removed by a sodium-calcium exchange reaction that 

reversibly exchanges Ca2+ ions for Na+ ions across the cell membrane. This interaction 

between the movement of Ca2+ and Na+ ions is considerable, since changes in intracellular 

Na+ can affect cellular levels of Ca2+. 

 

b. Uptake of calcium by the sarcoplasmic reticulum and mitochondria: Ca2+ is also 

recaptured by the sarcoplasmic reticulum and the mitochondria. Approximately more than 

99% of the intracellular Ca2+ is situated in these organelles and even a small shift between 

these stores and free Ca2+ can lead to huge changes in the concentration of free cytosolic 

Ca2+ (Howland and Mycek, 2006).  
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1.1.3  Arteries and arterioles 

The walls of all arteries are made up of an outer layer of connective tissue, the adventitia; a 

middle layer of smooth muscle, the media; and an inner layer, the intima; which is made up of the 

endothelium and underlying connective tissue (Ganong, 1999) (Figure 1.4). The aorta and other 

systemic arteries have distinctively thick walls containing large amounts of elastic tissues and 

therefore they provide low-resistance tubes conducting blood to the various organs and moreover 

act as a “pressure reservoir” for maintaining blood flow through the tissues during diastole 

(Widmaier et al., 2006). They are stretched during systole and recoil on the blood during diastole. 

The walls of the arterioles have less elastic tissue but much more smooth muscle. The muscle is 

innervated by noradrenergic nerve fibers, which are constrictor in their function and in some cases 

by cholinergic fibers, which act by dilating the vessels. The arterioles are the main site of the 

resistance to blood flow, and little changes in their diameter result in large changes in the total 

peripheral resistance (TPR) (Ganong, 1999). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Diagrammatic section of the blood vessel. (Adapted from McKinley and O'Loughlin, 
2007) 

 media

 intima
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1.1.3.1  Arterial blood pressure 

Ventricular contraction ejects blood into the pulmonary and systemic arteries during systole. If 

the amount of blood entering the artery was equal to the amount of blood flowing concurrently out 

of them, the total volume of blood in the arteries would remain constant and the arterial pressure 

would not change. However, that is not the case. The volume of blood leaving the arteries during 

systole is only equal to about one-third of the stroke volume and hence plays a major role in 

distending the arteries and elevating the arterial pressure. The overstretched arterial walls recoil 

reflexively and blood continues to be driven into the arterioles during diastole. As blood leaves the 

arteries, the arterial volume and consequently the arterial pressure fall slowly, nevertheless the 

subsequent ventricular contraction takes place while there is still sufficient blood in the arteries to 

stretch them partially. Therefore, the arterial pressure does not drop to zero.   

 

The maximum arterial pressure reached during peak ventricular ejection is defined as systolic 

blood pressure (SBP), while the minimum arterial pressure occurs just before ventricular ejection 

commences and is termed diastolic blood pressure (DBP). In general, arterial pressure is recorded 

as systolic over diastolic. The difference between the values of SBP and DBP is commonly called 

the pulse pressure. The latter can be felt as a pulsation or throb in the arteries of the wrest or neck 

with each heart beat. During diastole nothing is felt over the artery, but the rapid increase in 

pressure at the next systole distends the artery wall and it is this expansion of the vessel that 

accounts for the detectable throb.  

 

The most important factors influencing the magnitude of pulse pressure are: (1) stroke volume, 

(2) speed of ejection of the stroke volume, and lastly (3) arterial compliance. 

 

Mean arterial pressure (MAP) is a meaningful measure that is sometimes used to represent 

blood pressure (BP). It collectively reflects both SBP and DBP. MAP is not simply the value 

halfway between SBP and DBP, owing to the fact that diastole lasts for a longer period than systole. 

The MAP is approximately equivalent to the DBP plus one-third of the pulse pressure (SBP _ DBP): 
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MAP = DBP + 1/3 (SBP _ DBP) 

The MAP is the most important among the pressures described since it is the pressure driving 

blood into the tissues averaged over the entire cardiac cycle. We can say “mean arterial pressure” 

without stating which artery we are referring to because the aorta and other large arteries have such 

large diameters that they offer only negligible resistance to flow, and the mean pressures are for 

that reason identical everywhere in the large arteries (Widmaier et al., 2006). 

  

1.1.3.2  Flow, pressure and resistance 

Blood at all times flows from areas of high pressure to areas of low pressure. The relationship 

between mean flow, mean pressure, and resistance in blood vessel can be given as: 

Flow (F) = Pressure (P) / Resistance (R) 

Flow in any part of the vascular system is equivalent to the effective perfusion pressure in that 

part divided by the resistance. The effective perfusion pressure is the mean intraluminal pressure at 

the arterial end minus the mean pressure at the venous end. The resistance to blood flow is 

quantified not only by the radius of the blood vessels (vascular hindrance) but also by the viscosity 

of the blood.  

 

Systemic vascular resistance (SVR) denotes the resistance to blood flow offered by all of the 

systemic vasculature, excluding the pulmonary vasculature. It is occasionally referred as total 

peripheral resistance (TPR). Those factors that influence vascular resistance in individual vascular 

beds are therefore the major contributing determinants of SVR. Mechanisms that result in 

vasoconstriction will increase SVR, while, on the other hand, those that cause vasodilatation will 

decrease SVR. The actual change in SVR in reaction to neurohumoral activation for example, 

depends upon the degree of activation and vasoconstriction, the number of vascular beds involved 

and the parallel arrangement of these vascular beds to each other. Even though SVR is primarily 

determined by changes in blood vessel diameters, changes in blood viscosity also influence SVR.  

 



CHAPTER ONE                                                                                                    INTRODUCTION  

 12

SVR can be calculated if cardiac output (CO), MAP, and central venous pressure (CVP) are 

known.  

SVR = (MAP – CVP)/ CO 

Since CVP is usually near zero mmHg the calculation is often simplified to: 

SVR = MAP/ CO 

It is very essential to note that SVR can be calculated from MAP and CO, but it is not 

determined by either of these variables.  

 

A more precise way to view this relationship is that at a given CO, if the MAP is very high, it 

is actually because SVR is high. Mathematically, SVR is the dependent variable in the above 

equation; however, physiologically SVR and CO are normally the independent variables and MAP 

is the dependent variable (Klabunde, 2004).   

 

1.1.4 Regulation of blood pressure 

Several factors contribute to MAP regulation and these are: 

 

1.1.4.1 Sympathetic nervous system (SNS) 

Baroreceptors (pressure receptors) in both the carotids and aortic arch respond to BP changes 

and affect arteriolar dilation and arteriolar constriction. When baroreceptors stimulated, the 

contractile forces strengthen, increasing the heart rate and augmenting peripheral vascular 

resistance (PVR), hence increasing CO. If BP remains elevated, the baroreceptors reset at higher 

levels and as a result maintain the hypertension. There is little proof to suggest that adrenaline and 

NA have an apparent role in the etiology of hypertension. Though, many of the drugs used to treat 

hypertension lower BP by blocking the activity of SNS (Shargel et al., 2004).   

 

1.1.4.2 Renin-angiotensin-aldosterone system (RAAS) 

Decreased renal perfusion pressure in afferent arterioles enhances renin release from 

juxtaglomerular cells of the kidney. The renin subsequently reacts with circulating angiotensinogen 
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to produce angiotensin (Ang) I (a weak vasoconstrictor). This, in turn, is hydrolyzed by angiotensin 

converting enzyme (ACE) to produce Ang II (a very potent natural vasoconstrictor). This 

vasopressor stimulates the release of aldosterone from zona glomerulosa cells of the adrenal gland, 

which results in augmented Na+ reabsorption, fluid volume and thus BP (Shargel et al., 2004). 

 

1.1.4.3 Mosaic theory 

Mosaic theory centers around the fact that numerous factors, other than one factor alone, are 

responsible for sustaining hypertension. The interaction between the SNS, renin-angiotensin 

system (RAS), and potential defects in Na+ transport within and outside the cell may all play a 

contributory role in long-standing hypertension. Additional factors contributing to the development 

include genetics, endothelial dysfunction, and neurovascular anomalies. Other vasoactive 

substances that are involved in the maintenance and control of normal BP have also been 

recognized; these include nitric oxide (NO, vasodilating factor), endothelin (ET, vasoconstrictor 

peptide), bradykinin [potent vasodilator inactivated by ACE, and arterial natriuretic peptide (ANP)] 

(Shargel et al., 2004).   

 

1.1.4.4 Fluid volume regulation 

Increased fluid volume raises venous system distension and venous return, affecting CO and 

tissue perfusion. These changes modify vascular resistance and increase BP (Shargel et al., 2004) . 

 

1.1.5  Endothelial cells  

The vascular endothelial cells serve a variety of functions: 

1. Serve as a physical lining which prevents blood cells to adhere to heart and blood vessels. 

2. Serve as a permeability barrier through which exchange of nutrients, metabolic end 

products, and fluid between plasma and interstitial fluid takes place; and by which 

regulation of transport of macromolecules and other substances occurs. 
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3. Secrete several paracrine agents that act on adjacent vascular smooth muscle cells; 

including vasodilators, prostacyclin (PGI2) and NO (endothelium-derived relaxing factor, 

EDRF), and vasoconstrictors, notably ET-1.   

4. Mediate angiogenesis (new capillary growth). 

5. Play a pivotal role in vascular remodeling by detecting signals and releasing paracrine 

agents that act on adjacent cells in the blood vessel wall. 

6. Contribute significantly to the formation and maintenance of extracellular matrix. 

7. Produce growth factors in reaction to tissue damage. 

8. Secrete various substances that contribute to regulation of platelet clumping, clotting, and 

anticlotting. 

9. Synthesize active hormones from inactive precursors. 

10. Extract or degrade hormones and other mediators. 

11. Secrete cytokines when there are new immune responses like chemokines which is 

primarily secreted from damaged endothelial cells to promote the accumulation of 

leukocytes at the site of injury and inflammation. 

12. Influence vascular smooth-muscle proliferation in the disease atherosclerosis (Widmaier et 

al., 2006). 

 

1.1.5.1  Endothelial vasodilating factors 

1.1.5.1.a  Endothelium-derived relaxation factor (EDRF) 

It is a short-lived paracrine vasodilator released by the endothelial cells and is now known to 

be NO (Hardman et al., 2006; Widmaier et al., 2006). NO is the only known endogenously formed 

radical acting as a signaling messenger (Gewaltig and Kojda, 2002). It is formed by nitric oxide 

synthase (NOS), which converts L-arginine to citrulline and NO (Figure 1.5). There are three 

known forms of NOS (Moncada et al., 1997). One form is termed constitutive, residing at the 

endothelial cells and releasing NO over short periods in response to receptor-mediated increases in 

cellular Ca2+ (eNOS) (Michel and Feron, 1997). The second form is responsible for the Ca2+-

dependent release from neurons (nNOS). The third form of NOS is induced after activation of cells 
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by cytokines and bacterial endotoxins and, once expressed, synthesizes NO for long periods of time 

(iNOS). This Ca2+-independent, high-output form is responsible for the inflammatory toxic 

manifestations of NO (Hardman et al., 2006). Three analogues of L-arginine have been 

characterized as non selective inhibitors of eNOS: NG-monomethyl-L-arginine (L-NMMA), N-

iminoethyl-L-ornithine (L-NIO) and Nω-nitro-L-arginine methyl ester (L-NAME) which produce 

concentration-dependent inhibition of the Ca2+-dependent eNOS (Rees et al., 1990). NO is released 

continuously in considerable amounts by endothelial cells in the arterioles, contributes to arteriolar 

vasodilation in the basal state, and has various important physiologic functions (Gewaltig and 

Kojda, 2002; Widmaier et al., 2006). Among these functions include: 

 

1. Regulation of BP. 

2. Local vasomotion and sexual functions (penile erection and ejaculation). 

3. Processing of long-term potentiation in the central nervous system (CNS). 

4. Contribution to immune defense (Gewaltig and Kojda, 2002). 

 

It has been shown that NO secretion rapidly and markedly increases in response to a large 

number of chemical mediators involved in both reflex and local control of arteriolar diameters. For 

example, NO release is stimulated by bradykinin, serotonin, purines, thrombin and histamine, 

substances produced locally during inflammation (Hardman et al., 2006; Widmaier et al., 2006). 

Endothelial cell-dependent mechanisms of relaxation are important in variety of vascular beds, 

including the coronary circulation (Hobbs et al., 1999). Activation of specific G protein-linked 

receptors on endothelial cells promotes release of NO. Subsequently, NO defuses readily to the 

underlying smooth muscle and induces relaxation of vascular smooth muscle by activating 

guanylyl cyclase, which increases cyclic guanosine monophosphate (cGMP) concentration. NO 

also has been shown to be released from certain nerves (nitrergic) innervating blood vessels and 

has been found to possess a negative inotropic action on the heart (Hardman et al., 2006). 
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Figure 1.5: Current scheme for endothelium-dependent relaxation. Agent A, acting on receptor (R) 
of endothelial cell activates Ca2+ influx, with the increase in intracellular Ca2+ activating through 
calmodulin the eNOS, an oxygenase using L-arginine and nicotinamide adenine dinucleotide 
phosphate (NADPH) as co-substrates. NO diffuses to the smooth muscle cells where it activates 
guanylyl cyclase, with a resulting increase in cGMP, which initiates processes leading to relaxation. 
L-NMMA and L-NAME are arginine derivatives which inhibit NOS, and O2

- and oxyhemoglobin 
(HbO2) are potent scavengers of NO. Methylene blue acts by inhibiting soluble guanylyl cyclase. 
(Adapted from Furchgott, 1999) 
 

 

1.1.5..1.a.i  Vasodilator effects of NO 

Vasodilation is the best recognized activity of NO in the cardiovascular system. This action 

paved the way to the discovery of EDRF almost 3 decades ago (Furchgott and Zawadzki, 1980). 

Subsequent research has shown that endogenous NO production plays an important role in the 

regulation of local vasomotion and BP (Duan et al., 2003). 

 

The mechanism underlying the NO-induced vasodilation has been extensively studied. 

Existing knowledge proposes an essential role for cGMP-dependent activation of protein kinase 
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blue  
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(PKG I) which possesses the ability to phosphorylate various membrane proteins in the 

sarcoplasmic reticulum (Figure 1.6). The latter pathway of cGMP is antagonized by the action of 

the soluble guanylate cyclase inhibitor methylene blue [phenothiazin-5-ium,3,7-bis 

(dimethylamino)-, chloride, trihydrate], (Figure 1.5) (Duan et al., 2003). 

 

It has been stated that PKG I is capable of phosphorylating phospholamban (Cornwell et al., 

1991). In its dephosphorylated form, phospholamban monomers inhibit the sarcoplasmic reticulum 

ATPase (SERCA) by interacting with its cytoplasmic and membrane domains resulting in Ca2+ 

pump aggregation. Phosphorylation of phospholamban (example by PKG I) causes the union of 

phospholamban monomers into pentamers and reverses the inhibition of SERCA (Simmerman and 

Jones, 1998). This triggers a fast sequestration of intracellular Ca2+, which in turn also decreases 

the influx of extracellular Ca2+ into the sarcoplasmatic reticulum (Cohen et al., 1999). 

 

Another latest report reveals that activation of PKG I phosphorylates a newly-discovered 

protein, the 1,4,5-inositoltriphosphate (IP3) receptor associated cGMP kinase substrate (IRAG) 

(Schlossmann et al., 2000). A strong inhibition of IP3-evoked Ca2+ release from the sarcoplasmic 

reticulum is produced by phosphorylation of IRAG. Recently, it is still unknown how IRAG 

phosphorylated by PKG I binds to IP3 receptor. NO has also the ability to activate Ca2+-dependent 

K+ channels and therefore augments the outward K+ current (Bolotina et al., 1994). The 

consequential hyperpolarization of the cell membrane reduces the effect of the depolarizing signals 

and induces vasodilation (Figure 1.6). Reports have shown that this effect of NO can be both 

independent and dependent on activation of PKG I (Bolotina et al., 1994; Sausbier et al., 2000). 

Finally, the mechanism of vasodilation induced by NO might also involve the cGMP-dependent 

inhibition of voltage-gated Ca2+ channels (Ishikawa et al., 1993). Remains to be determined, is the 

relative contribution of each of these PKG I- and K+ channel-dependent vasodilating mechanisms 

of NO. The subsequent decline of the intracellular Ca2+ concentration reduces the formation of the 

Ca2+-calmodulin-myosin light chain (MLC) kinase complex. This decreases phophorylation of 
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Ser19 in the myosin regulatory light chains and ultimately inhibits vasoconstriction (Horowitz et 

al., 1996). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: Mechanisms of vasorelaxation induced by NO. After the activation of soluble guanylyl 
cyclase, cGMP is formed which in turn stimulates cGMP-dependent protein kinases (PKGs). 
Subsequently, three important proteins are phosphorylated resulting in a decrease of the 
intracellular Ca2+ concentration. The direct effect of NO on K+ channels and the cGMP-dependent 
inhibition of voltage-gated Ca2+ channels is not shown; KCa channels = Ca2+ dependent K+ channels; 
IP3 = 1,4,5-inositol trisphosphate; IRAG = IP3 receptor associated cGMP kinase substrate; SERCA 
= sarcoendoplasmic reticulum ATPase. (Adapted from Gewaltig and Kojda, 2002) 
 

 

1.1.5..1.a.ii  Modulation of sympathetic activity 

NO acts as a neuromodulator not only within the CNS but also within peripheral autonomic 

pathways controlling cardiac function to provide a net enhancement of parasympathetic and 

inhibition of sympathetic control (Chowdhary and Townend, 1999). Up to 40% of intrinsic cardiac 

neurons contain nNOS (Armour et al., 1995), including those innervating the nodal regions 
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(Klimaschewski et al., 1992). eNOS has been identified within SA node, myocytes, and their 

adjacent capillaries (Han et al., 1998). The NO generated at these peripheral cardiac autonomic 

sites appears to enhance not only the heart rate response to vagus parasympathetic nerve 

stimulation (Elvan et al., 1997; Conlon and Kidd, 1999; Choate et al., 2001; Herring and Paterson, 

2001) but also parasympathetic antagonism of cardiac sympathetic responses, which is an indirect 

activity (Elvan et al., 1997; Sears et al., 1998). Endogenous NO acts at a postsynaptic level to 

facilitate cardiac responses to muscarinic stimulation when background levels of adrenergic 

activity are high. 

 

Furthermore, NO has also been shown to directly inhibit cardiac responses to sympathetic 

stimulation in animals (Balligand, 1999) by presynaptic rather than postsynaptic mechanisms. This 

presynaptic action of NO has recently been confirmed by evidence that both NO donors and more 

specifically adenoviral nNOS gene transfer to the guinea pig right atrium increases Ach release 

from vagal nerve terminals in response to electrical stimulation (Herring and Paterson, 2001; La 

Rovere et al., 2001). 

 

NO has been shown to cause a cGMP-dependent inhibition of the adrenergically isoprenaline 

(ISP)-stimulated inward Ca2+ current, a mechanism believed to mediate, at least in part, the indirect 

muscarinic response. No effect of NO on the stimulation of the Ach-gated outward K+ current 

(direct muscarinic pathway) was evident (Han et al., 1998). 

 

1.1.5..1.a.iii  Antiplatelet effects of NO 

Platelets play a central role in vascular hemostasis. Their ability to aggregate and produce a 

hemostatic plug must be carefully balanced against the need to maintain the fluid state of the blood 

and to avoid thrombosis (Radomski and Moncada, 1993). Platelet hyperactivity is one of the 

leading causes of atherosclerotic changes associated with thrombosis, myocardial infarction (MI) 

and stroke. NO and NO donors excite cGMP production in human platelets resulting in activation 

of PKG and inhibition of platelet aggregation induced by agonists (for example thrombin which 



CHAPTER ONE                                                                                                    INTRODUCTION  

 20

increase the intracellular Ca2+ concentration) (Benjamin et al., 1991; Moro et al., 1996). It is clear 

how NO-induced inhibition of platelet aggregation results in reduction in the intraplatelet Ca2+ 

concentration (Rao et al., 1990). Comparable to the mechanism of NO-induced vasorelaxation, 

NO-induced inhibition of platelet aggregation involves phospholamban- and SERCA-dependent 

refilling of intracellular Ca2+ stores (Nguyen et al., 1991; Trepakova et al., 1999). Additionally, 

cGMP has been shown to indirectly activate cyclic adenosine monophosphate (cAMP) protein 

kinase PKA, since cGMP inhibits the breakdown of cAMP by phosphodiesterase, PDE III (Bowen 

and Haslam, 1991). Both nucelotides are known to possess the ability to phosphorylate 

phospholamban, which then activates SERCA to promote the sequestration of Ca2+ (Fischer and 

White, 1987; Geiger et al., 1994). NO and cGMP analogues perform their actions synergistically 

with cAMP-elevating agents such as PGI2 to inhibit platelet aggregation (Bowen and Haslam, 

1991). To sum up, both cAMP and cGMP-elevating agents inhibit platelet aggregation by a 

reduction of the intracellular Ca2+ concentration. 

 

1.1.5..1.a.iv  Antiadhesive effects of NO 

NO is an essential endogenous mediator which inhibits leukocyte adhesion (Kubes et al., 

1991). NO released by NO donors has been discovered to potently inhibit the expression of 

vascular cell adhesion molecule (VCAM-1) (Khan et al., 1996), while an opposite effect is seen 

when  endogenous NO synthesis is inhibited (Niu et al., 1994). Khan et al. (1996) presented that 

this action of NO is mediated by inhibition of nuclear factor κB (NFκB), a redox sensitive 

transcription factor, expression and involves the antioxidative properties of NO. Oxidation of 

polyunsaturated fatty acids such as linoleic acid to peroxidized metabolites seems to be a central 

intermediate step in cytokine-induced activation of NFκB and this oxidation can be significantly 

reduced by exogenous NO. Similarly, increased leukocyte adhesion induced by the inhibition of 

NO synthases is at least partially reversed by various intracellular oxygen radical scavengers (Niu 

et al., 1994). Therefore, the mechanism of the antiadhesive action of NO most probably involves 

antioxidative effects.  

 



CHAPTER ONE                                                                                                    INTRODUCTION  

 21

1.1.5..1.a.v   Antiproliferative effects of NO 

NO has been reported to inhibit smooth muscle proliferation. This applies for both NO 

generated by the vascular endothelium (Scott-Burden and Vanhoutte, 1993) and NO produced by 

NO donors (Nakaki et al., 1990). 

 

The mechanism underlying the antiproliferative activity of NO is yet to be fully explained. It 

has been suggested that cGMP-dependent activation of PKA, partially mediated by the inhibition 

of the cGMP-inhibited-cAMP PDE III may play a role (Cornwell et al., 1994; Osinski et al., 2001). 

Another key mechanism underlying the antiproliferative effects of NO, which takes place 

independent of cGMP generation, is the inhibition of arginase ornithine decarboxylase (Ignarro et 

al., 2001). Experiments on rat aortic smooth muscle cells have confirmed that antiproliferative 

concentrations of NO donors strongly diminish the cellular content of polyamines such as 

putrescine, spermidine, and spermine and inhibit the activity of purified ornithine decarboxylase 

(Gewaltig and Kojda, 2002). 

 

1.1.5..1.a.vi  Antioxidant effects of NO 

Vascular oxidative stress has been shown to contribute to the pathophysiology of 

cardiovascular diseases. Among the various reactive oxygen species (ROS) formed under these 

circumstances, superoxide is apparently the main one (Kojda and Harrison, 1999). The complex 

interactions of oxygen species with vascular signaling systems have been recently reviewed (Wolin, 

2000). The best known antioxidative effect of NO is the impairment of lipid oxidation. NO can 

potently inhibit the oxidation of free fatty acids, phosphatidylcholine and low density lipoprotein 

particles. In view of the proatherogenic effects of oxidized lipids, this antioxidative activity of NO 

is likely to be relevant (O’Donnell and Freeman, 2001). 

 

NO reacts very rapidly with superoxide to form peroxynitrite (ONOO–) which is a much 

stronger oxidant than superoxide itself. In vivo, ONOO– rapidly forms a carbonate adduct 

(ONOOCO2
¯) or oxidizes free undissociated thiols (Koppenol, 1998). The carbonate adduct can 
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rapidly form carbonate and nitrogen dioxide radicals (Bonini et al., 1999). Recently, these radicals 

have been shown to oxidize thiols to thiyl, sulfinyl and disulfide radicals (Bonini and Augusto, 

2001). The oxidizing potential of ONOO– and the subsequently formed radicals facilitate lipid 

peroxidation, induce protein damage by tyrosine nitration, dityrosine formation and thiol oxidation 

and reduce the antioxidative capacity of vascular cells by the rapid oxidation of free undissociated 

thiols (Radi et al., 1991; Pfeiffer et al., 2000; Bonini and Augusto, 2001). 

 

In view of these reactions, it seems rather doubtful that the increased generation of NO in the 

setting of oxidative stress might be associated with antioxidative properties or might augment the 

antioxidative power of vascular wall. Nevertheless, the formation of ONOO– from superoxide 

competes with hydrogen peroxide (H2O2) formation catalyzed by superoxide dismutases (SODs), 

(Figure 1.7). 

 

Even though superoxide reacts just about 3–6 times faster with NO than with SOD, the 

formation of ONOO¯ is outcompeted if the concentration of SOD is much greater than that of NO, 

a situation that is frequently found in the intracellular space of vascular endothelial and smooth 

muscle cells (Koppenol, 1998). Accordingly, physiologic concentrations of vascular NO, as 

generated by eNOS or by therapeutic interventions, possibly exert antioxidative effects in the 

presence of physiologic concentrations of SODs (Beckman and Koppenol, 1996). On the contrary, 

very high concentrations of NO, as generated by iNOS, apparently promote ONOO– formation. 

 

Another antioxidative effect of NO is by means of the induction of extracellular SOD (ecSOD) 

which has been shown to rise in vitro and in vivo (Fukai et al., 2000). This powerful antioxidative 

enzyme is expressed in vascular smooth muscle cells and situated at the outer cell membrane. In 

the vascular wall 1/3–1/2 of the total SOD is the extracellular type of the enzyme (Stralin et al., 

1995). The up-regulation of ecSOD expression in vascular smooth muscle cells may signify an 

essential mechanism that averts superoxide-mediated degradation of endothelial NO as it traverses 

between the two cell types. Similarly, the formation of ONOO– will be less, because higher 
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amounts of SOD favors the dismutation of superoxide to H2O2 (Koppenol, 1998). Lately, it was 

stated that just a brief exposure of endothelial cells to the strong oxidant H2O2 can enhance the 

expression and activity of eNOS (Drummond et al., 2000), a mechanism that might account for the 

antioxidative effects of NO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.7: Reactions of O2

– • with SOD and NO. The reaction constants and the mean 
concentrations of intracellular and membrane-associated SOD and of NO in the vascular wall 
suggest that the formation of H2O2 is favored. In addition, an increase of SOD expression as 
induced by exercise and NO would further shift the balance to H2O2 formation. The role of H2O2 as 
a vascular oxidant is unclear. Both, vasoprotective actions and proatherosclerotic actions have been 
reported.  NO• = nitric oxide radical, O2

– • = superoxide anion, SOD = superoxide dismutase, 
OONO– = peroxynitrite, H2O2 = hydrogen peroxide, NADH = nicotinamide adenine dinucleotide, 
NADPH = nicotinamide adenine dinucleotide phosphate and eNOS = endothelial nitric oxide 
synthase. (Adapted from Gewaltig and Kojda, 2002) 
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1.1.5.1.b  Prostacyclins (PGI2) 

PGI2 is considered the main eicosanoid synthesized by endothelial cells (Moncada, 1977). The 

biosynthesis of PGI2 by endothelial cells is initiated either via a transmembrane transfer of 

prostaglandin endoperoxides from platelets (Bunting et al., 1976; Shafer et al., 1984) or by 

intracellular production from arachidonic acid (AA), which is released from endothelial 

phospholipids by an activated phospholipase (Hong and Deykin, 1982; Lambert et al., 1986). PGI2 

has a broad range of effects as it acquires antiplatelet, antiadhesive, vasodilatory and 

antiproliferative properties (Vane, 1978; FitzGerald and Patrono, 2001). The main biological 

actions of PGI2 are mediated by the PGI2 receptor (IP), which is a G-protein coupled receptor. PGI2 

appears to play an important protective role against elevated BP, as it has been shown that deletion 

of the IP promotes salt sensitive hypertension and cardiac fibrosis in mice (Francois, 2005). Several 

studies show that prostaglandins and PGI2 especially, excite baroreceptor neurons (BRNs), as well 

as cardiac vagal afferents (Xie et al., 1990; Brandle et al., 1994; Ustinova and Schultz, 1994; 

Schultz, 2001). Diminished synthesis of PGI2 may take part in acute and chronic baroreceptor 

resetting and the reduced baroreceptor sensitivity in hypertension (Xie et al., 1990; Wang et al., 

1993). PGI2 liberated by ischemic myocardium activates cardiac vagal afferents and depresses the 

baroreflex (Zucker et al., 1989). 

 

For so many years, endothelial cell generation of PGI2 was thought to be mediated by 

cyclooxgenase (COX) enzyme, COX-1, based on in vitro studies (Mitchell and Warner, 2006). Yet, 

studies have demonstrated that COX-2 is the foremost contributor to systemic PGI2 as assessed by 

urinary excretion of PGI2 metabolites, but the relative contributions of COX-1 and COX-2 [the 

action of both is inhibited by indomethacin (Ajay et al., 2007)], to endothelial PGI2 production in 

vivo stay a subject of debate, with most evidence pointing to COX-1 as the main enzyme isoform 

involved (Flavahan, 2007).  

 

The platelet-suppressant and vasodilator effects of PGI2 (Moncada and Vane, 1979; 

Gryglewski, 1980; Whittle and Moncada, 1984) are principally interceded by the stimulation of 
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