UNIVERSITI SAINS MALAYSIA

First Semester Examination Academic Session 2008/2009

November 2008

EKC 511 – Advanced Separation Process

Duration: 3 hours

Please check that this examination paper consists of <u>FIVE</u> pages of printed material and <u>TWO</u> pages of Appendix before you begin the examination.

Instructions: Answer **FOUR** (4) questions.

1. [a] Why application of pervaporation in chemical industry usually hybrid with distillation and reactor? Using simple sketches, describe the hybrids of pervaporation-distillation and pervaporation-reactor, respectively. In each type of the hybrid process, you should give two different types of layout and able to distinguish among them.

[10 marks]

- [b] An ultrafiltrion tubular module is used to clarify apple juice. The ultrafiltration tubes have a diameter of 1 cm and a length of 2 m. The juice circulates inside the tubular membrane at a velocity of 1 m/s. Due to the presence of pectin in the surroundings of the tubular membrane wall, a gel layer is formed when the concentration of the pectin reaches a value of 5.5% (w/V). If the pectin content in the juice fed to the ultrafiltration module is 0.5% (w/V), determine:
 - [i] The flux equation for ultrafiltration.

[2 marks]

[ii] The number of the tubes needed if it is desired to-obtain 120 L/h of such juice.

[11 marks]

[iii] Since the presence of the pectin in the juice fed is unavoidable, suggest a method to reduce the forming of gel layer on the membrane wall.

[2 marks]

Data given for juice properties: density 1025 kg/m³ viscosity 1.4 kg/m.s solute diffusivity 9 x 10⁻¹¹ m²/s

2. [a] Describe why pillared clays and carbon nanotubes are becoming important adsorbents nowadays?

[10 marks]

[b] A thermal swing adsorption process is used to remove traces of toluene from n-heptane using silica gel as adsorbent. The adsorber operates at 1 atm. The feed is 0.0011 wt. fraction toluene and 0.9989 wt. fraction n-heptane at 0°C. Superficial velocity of the feed is 10 cm/min. The absorber is 2 m long and adsorption is taking place at 0°C. The feed step is continued until breakthrough occurs. To regenerate, use counterflow of pure n-heptane at 80°C. Superficial velocity during purge is 10 cm/min. Column is cooled to 0°C before the next adsoption cycle.

Assume that wall heat capacities can be ignored, heat of adsorption is negligible, no adsorption of n-heptane. Using the solute movement theory, determine:-

- [i] the breakthrough time for toluene during the feed step
- [ii] time for thermal wave to breakthrough
- [iii] time to remove all toluene from column
- [iv] the outlet concentration profile of the regeneration fluid

[15 marks]

Data given: At low concentration isotherms for toluene: Isotherms q = 17.46x at 0° C, and q = 1.23x at 80° C q and x are in g solute/g adsorbent and g solute/g fluid, respectively structural density of solid, $\rho_s = 2100 \text{ kg/m}^3$ fluid density, $\rho_f = 684 \text{ kg/m}^3$ heat capacity of the solid, $C_{p,s} = 2000 \text{ J/kg}^{\circ}\text{C}$ heat capacity of the fluid, $C_{p,f} = 1841 \text{ J/kg}^{\circ}\text{C}$ external porosity, $\varepsilon_e = 0.43$ internal or pore porosity, $\varepsilon_p = 0.48$ size exclusion parameter, $K_d = 1.0$

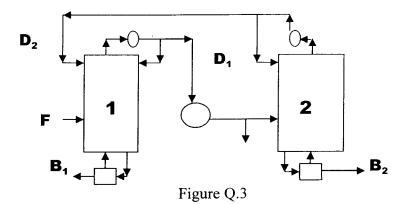
- 3. It is required to separate components A and B from a mixture F containing 30 mole % of A in order to obtain a concentrate of 95 mole% of A with not more than 4 mole % of A as bottoms. The feed flow-rate is 100 kmol/h. However, A and B form an azeotrope at approximately 64 mole % of A at atmospheric pressure making it impossible to separate under single atmospheric distillation processes. A two pressure distillation system as shown in Figure Q.3 is to be designed in order to achieve the separation. The column 1 is to operate at 1 atmosphere while the column 2 at 5 atmosphere. The equilibrium data for 1 atmosphere and 5 atmosphere are shown in Tables Q.3.i and ii respectively where x and y refers to the mole fraction of A. Estimate:
 - [a] Flow-rates B_1, B_2, D_1 and D_2

[10 marks]

[b] The number of plates in all sections of the column 1.

[15 marks]

Assume that the streams F and D_1 are boiling liquids and D_2 is a vapour at boiling point. The reflux ratio of the atmospheric pressure column is 1.5 times the minimum whereas are for the other column, the reflux ratio is 5 times the minimum. The compositions of streams D_1 and D_2 are 60 mole % and 50 mole % of A respectively.


Table Q.3.i: Equilibrium Data for A and B at 1 atmosphere

[;	ĸ	0	0.1	0.2	0.3	0.4	0.5	0.6	0.65	0.7	0.8	0.9	1
	y	0	0.17	0.31	0.43	0.52	0.59	0.637	0.65	0.68	0.69	0.83	. 1

Table Q.3.ii: Equilibrium Data for A and B at 5 atmospheres

х	0.4	0.6	0.8	0.9	0.95	1
у	0.4	0.52	0.65	0.75	0.85	1

x and y are mole fractions of A in the mixture.

[a] A typical supercritical fluid extraction system using a packed bed is shown in Figure Q.4.[a]. The solubilities of the solute on the fluid on the low pressure (P_L) and high pressure (P_H) sides are C_{sh} (g/kg) and C_{sl} (g/kg) respectively. r % of the fluid entering the regeneration unit can be assumed to be lost thereby requiring a make-up of fresh solvent for the system as shown in the Figure. The mass transfer area exposed to the supercritical fluid is A_{EX} and the mass transfer coefficient is k_c (m/s). The density of the supercritical fluid on the high pressure side is ρ_H . Show that, under mass transfer controlled conditions for extraction, the rate of extraction R (g/s) of solute in the product P1 can be expressed as:

4.

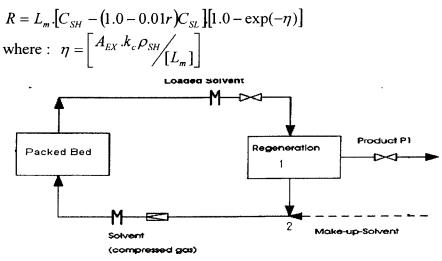


Figure Q.4.[a]

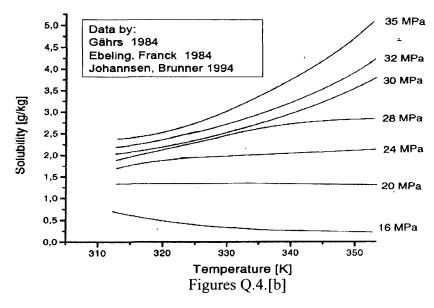
[10 marks]

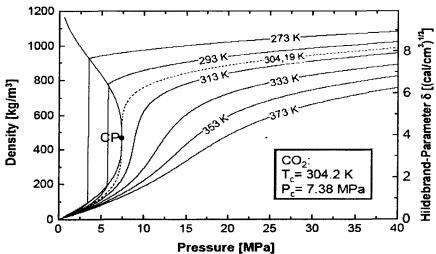
[b] A laboratory pilot extraction unit for extraction of caffeine from beans using supercritical CO₂ as represented in Figure Q.4.[a] has been used .The percentage yield of caffeine is shown in Table Q.4. The solubility data of caffeine in supercritical CO₂ and densities of supercritical CO₂ are shown in Figures Q.4.[b] and Q.4.[c]. The high and low operating pressures of the system are 32MPa and 16MPa. The operating temperature of both sides is kept constant at 340 K. Assume the CO₂ leaving the regenerator is saturated with caffeine at the regenerator pressure and temperature. The extraction bed makes use of 50kg of beans having 0.31 g/kg of beans. Flowrate of the supercritical fluid on the high pressure side is 0.02 m³/h. 5% of the carbon dioxide may be assumed to be lost on regeneration.

Table Q.4.

Time Hrs	2	4	6	8	10	12	14	16	18
Yield %	13.6	24.7	33.8	39	43	48	51	52.5	56

[i] Draw a plot indicating the total extract of caffeine (g) vs time


[5 marks]


[ii] Estimate the time at which the mass transfer in extraction deviates from the film mass transfer control to diffusion control conditions.

[5 marks]

[iii] The value of factor k_c . A_{EX} for the extraction bed. (Use equation derived in part [i] of this question

[5 marks]

Figures Q.4.[c]

Appendix

Useful formulas:

Reynolds numbers,
$$Re = \frac{\rho u_b d_t}{\mu}$$

Schmidt number,
$$Sc = \frac{\mu}{\rho D}$$

Sherwood number, Sh = $\frac{d_1 k}{D}$ = 0.023 Re^{0.83} Sc^{1/3}, turbulent flow

Concentration polarization module, $M = \frac{X_w}{X_r} = exp\left(\frac{J_{solv}}{k}\right)$

Where,

 ρ - density, kg/m³

u_b - bulk velocity in tube, m/s

d, - diameter of tube, m

 μ - viscosity, kg/m·s

D - diffusivity, m²/s

k - mass transfer coefficient, m/s

 x_w - wt. fraction solute at membrane wall

x_r - wt. fraction solute in retentate

J_{solv} - volumetric flux of solvent, m³/m²·s or L/m²·h

$$\begin{split} v_{inter} &= v_{super} \big/ \varepsilon_{e} \\ u_{s,i} &= \frac{v_{inter}}{1 + \frac{\left(1 - \varepsilon_{e}\right)}{\varepsilon_{e}} \varepsilon_{p} K_{d,i} + \frac{\left(1 - \varepsilon_{e}\right) \left(1 - \varepsilon_{p}\right)}{\varepsilon_{e}} \frac{\rho_{s}}{\rho_{f}} K_{A,x}'} \\ u_{th} &= \frac{v_{inter} \rho_{f} C_{p,f}}{\left\{ \left[1 + \left(\frac{1 - \varepsilon_{e}}{\varepsilon_{e}}\right) \varepsilon_{p}\right] \rho_{f} C_{p,f} + \frac{\left(1 - \varepsilon_{e}\right) \left(1 - \varepsilon_{p}\right)}{\varepsilon_{e}} C_{p,s} \rho_{s} + \frac{W}{\varepsilon_{e} A_{c}} C_{p,w} \right\}} \\ \frac{c(T_{2})}{c(T_{1})} &= \left[\frac{1}{u_{s}(T_{1})} - \frac{1}{u_{th}}\right] \bigg/ \left[\frac{1}{u_{s}(T_{2})} - \frac{1}{u_{th}}\right] \end{split}$$

where

 v_{inter} – interstitial velocity, m/s, cm/s, or cm/min

 v_{super} – superficial velocity, m/s, cm/s, or cm/min

 $u_{s,i}$ - average solute velocity of adsorbate, i, m/s, cm/s, or cm/min

 u_{th} - thermal wave velocity, m/s, cm/s, or cm/min

 $K_{d,i}$ – size exclusion parameter of adsorbate, i, dimensionless

 $K'_{A,x}$ -linearized adsorption equilibrium constant, for system in wt. fraction, $q_A = K'_{A,x}x_A$

W - weight of column per lenght, kg/m

 A_c – cross sectional area of column, m^2

 $C_{p,w}$ - heat capacity of the wall, $J/kg^{\circ}C$

 $c(T_I)$ -concentration at temperature T_I , wt. fraction

 $c(T_2)$ – concentration at temperature T_2 , wt. fraction

 $u_s(T_I)$ – average solute velocity at femperature T_I , m/s, cm/s, or cm/min

 $u_s(T_2)$ – average solute velocity at temperature T_2 , m/s, cm/s, or cm/min