
I. Lovrek, R.J. Howlett, and L.C. Jain (Eds.): KES 2008, Part III, LNAI 5179, pp. 548–555, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Application of the Fuzzy Min-Max Neural Networks to 
Medical Diagnosis 

Anas Quteishat and Chee Peng Lim∗ 

School of Electrical & Electronic Engineering 
University Science Malaysia, Malaysia 

cplim@eng.usm.my 

Abstract. In this paper, the Fuzzy Min-Max (FMM) neural network along with 
two modified FMM models are used for tackling medical diagnostic problems. 
The original FMM network establishes hyperboxes with fuzzy sets in its struc-
ture for classifying input patterns into different output categories.  While the 
first modified FMM model uses the membership function and the Euclidian dis-
tance to classify the input patterns, the second modified FMM model employs 
only the Euclidian distance for the same process.  Unlike the original FMM 
network, the two modified FMM models undergo a pruning process, after net-
work training, to remove hyperboxes with low confidence factors.  To assess 
the effectiveness of the three FMM networks in medical diagnosis, a set of real 
medical records from suspected Acute Coronary Syndrome (ACS) patients is 
collected and used for experimentation.  The bootstrap method is used to ana-
lyze the results statistically.  Implications of the experimental outcomes are dis-
cussed, and the potential of using the FMM networks a decision support tool for 
medical prognostic and diagnostic problems is demonstrated. 

1   Introduction 

In general, medical diagnosis is the process where physicians attempt to identify the 
disease a patient is suffering from based on the patient’s physical symptoms, clinical 
tests data, and other related signs and information.  In some cases, physicians may 
require additional opinion for disease diagnosis since some diseases have common 
symptoms and some are related to others.  However, it is not always easy to obtain a 
second opinion or to statistically analyze the symptoms.  This problem has inspired 
researchers to develop computerized medical diagnosis tools.  Since medical diagno-
sis can be viewed as a pattern classification problem, artificial neural networks (ANN) 
have shown potentials as a tool to diagnose (classify) patients based on their symp-
toms.  Indeed, ANNs have the ability to integrate data-based analytical techniques 
such as decision and classification theory, and to use knowledge-based approaches to 
provide useful information to support the decision making process [1]. From the lit-
erature, a lot of successful ANN applications to medical problems can be found.  
In [1], autonomously learning ANN models were used to classify real coronary care 
unit (CCU) patient records and trauma patient records into different categories.  In [2] 
a pulmonary disease diagnostic system was proposed.  The system used real clinical 
data to attempt to treat a whole category of distressed body organs.  A model selection 
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method that used the self-organizing map (SOM) for breast cancer diagnosis was 
demonstrated in [3]. In [4], the performances of a number of ANN models for breast 
cancer diagnosis were compared and analyzed.  A neuromuscular disorder diagnosis 
system that employed two different ANN models (supervised and unsupervised) for 
analyzing features selected from electromyography (EMG) was presented in [5]. 

In this paper, use of ANN models to support the decision making process of sus-
pected Acute Coronary Syndrome (ACS) patients is presented.  A rapid and timely 
diagnosis of patients with suspected ACS is necessary as it could potentially lead to 
mortality if proper medical treatment is not provided to ACS patients as soon as pos-
sible.  Specifically, the Fuzzy Min-Max (FMM) network [6], and two of its modified 
versions (MFMM1 and MFMM2) [7] were employed to classify in this work.  The 
results obtained are analyzed statistically using the bootstrap method. 

The paper is organized as follows.  Section 2 describes the original FMM network.  
The modified versions of FMM are explained in section 3.  The experiments using 
suspected ACS patient records along with the analysis for the results are presented 
section 4.  A summary of this work is presented in section 5. 

2   The Fuzzy Min-Max (FMM) Neural Network 

FMM is an incremental learning system.  It learns incrementally in a single pass 
through the data set.  It refines the existing pattern classes as new information is re-
ceived.  It also has the ability to add new pattern classes online.  In FMM, hyperboxes 
with fuzzy sets are formed to represent knowledge learned by the network.  Learning 
in FMM comprises a series of expansion and contraction processes that fine-tune its 
hyperboxes to establish boundaries between classes.  If overlapping hyperboxes of 
different classes occur in the input space, contraction is performed to eliminate the 
overlapping regions.  The membership function is defined with respect to the mini-
mum and maximum points of a hyperbox.  It describes the degree to which a pattern 
fits in the hyperbox.  The hyperboxes have a range from 0 to 1 along each dimension; 

hence the pattern space is an n-dimensional unit cube nI .  A pattern which is con-
tained in the hyperbox has a unity membership function. 

Mathematically, the definition of each hyperbox fuzzy set Bj [6] is defined by 

( ){ }jjjjj W,V,Xf,W,V,XB =        nIX ∈∀  (1) 

where )x,,x,x(X n21 ……=  is the input pattern, )v,,v,v(V jn2j1jj ……= , 

)w,,w,w(W jn2j1jj ……=  are the minimum and maximum points of jB , respectively 

and ( )jj W,V,Xf  is the membership function.  Figure 1 illustrates an example of the 

minimum and maximum points for a two-class problem where the universe of dis-

course is 3ℜ . 
Applying the definition of a hyperbox fuzzy set, the combined fuzzy set that classi-

fies the thK pattern class, kC , is defined as 
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Fig. 1. A min-max hyperbox { }jjj W,VB =  in 3ℜ  

where K is the index set of those hyperboxes associated with class k.  One important 
property of this approach is that the majority of the processing is concerned with 
finding and fine-tuning the class boundaries.  The learning algorithm of FMM allows 
overlapping of hyperboxes of the same class but eliminates overlapping of hyper-

boxes from different classes.  The membership function for the thj  hyperbox ( )hj Ab , 

1)A(b0 jj ≤≤ , measures the degree to which the thh  input pattern, hA , falls outside 

hyperbox jB [6].  As ( )hj Ab  approaches 1, the pattern is said to be more “contained” 

by the hyperbox.  The resulting membership function is [6]: 
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=
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(3) 

where, ( ) n
hn2h1hh Ia,...,a,aA ∈=  is the thh  input pattern, and γ  is a sensitivity pa-

rameter that regulates how fast the membership value decreases as the distance be-
tween hA  and jB  increases. 

The architecture of FMM consists of three layers of nodes, as shown in Figure 2. 
The first layer, FA, is the input layer that contains input nodes equal in number to the 
number of dimensions of the input pattern. Layer FC is the output layer.  It contains  
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Fig. 2. A three layer FMM network 
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nodes equal in number to the number of classes.  The middle or hidden layer, FB, is 
called the hyperbox layer.  Each FB node represents a hyperbox fuzzy set, where FA to 
FB connections are the min-max points.  The FB transfer function is the hyperbox 
membership function defined by (3).  The minimum and maximum points are stored 
in matrices V and W, respectively. 

Note that the above provides an overview of the FMM network.  Details of the 
FMM dynamics can be found in [6]. 

3   Modified Fuzzy Min-Max Neural Networks 

In FMM, the size of a hyperbox is controlled by θ , which is varied between 0 and 1.  
When θ  is small, more hyperboxes are created.  When θ  is large, the number of 
hyperboxes is small, and the size of hyperboxes is large.  Therefore, when θ  is large, 
a lot of hyperboxes may assume high membership function values for a new input 
pattern, in which the winner-take-all approach in determining the winning hyperbox 
may lead to inaccurate predictions by FMM. 

To enhance the effectiveness of FMM, useful modifications are proposed in [7].  
After the training stage, a pruning procedure is incorporated in FMM to reduce the 
number of hyperboxes, hence the network complexity.  To assist pruning, a confi-
dence factor is calculated using the method in [8].  A data set is divided into three: 
training set (for learning), prediction set (for pruning), and test set (for evaluation).  
The confidence factor for each hyperbox is based on its usage frequency and its pre-
dictive accuracy on the prediction set, as follows 

( ) jjj AU1CF γγ +−=  (4) 

where jU  is the usage of hyperbox j, jA  is the accuracy of hyperbox j, and  
[ ]1,0∈γ  is a weighing factor.  The value of jU  is defined as the number of patterns 

in the prediction set classified by any hyperbox j, divided by the maximum number of 
patterns in the prediction set classified by any hyperbox with the same classification 
class.  On the other hand, the value of jA  is defined as the number of correctly pre-
dicted set of patterns classified by any hyperbox j, divided by the maximum correctly 
classified patterns with the same classification class.  The confidence factor identifies 
hyperboxes that are frequently used and generally give high classification accuracy, 
as well as hyperboxes that are rarely used and, yet highly accurate.  Hyperboxes with 
a confidence factor lower than a user-defined threshold is pruned. 

Modification to the prediction process of FMM is also suggested.  In original 
FMM, the input patterns are classified based on the membership function calculated 
using equation (3).  The degree of membership for the input pattern is calculated 
against all hyperboxes created in the learning process.  The pattern is classified to the 
class associated with the hyperbox that has the highest membership function value. 

Based on the above modifications, two modified FMM (MFMM) models are pro-
posed [7].  The first modified FMM (MFMM1) model uses both the membership 
function and the Euclidean distance to predict its target output.  The second modified 
FMM (MFMM2) model uses the Euclidean distance alone to predict the target output. 
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For MFMM1, given a new input pattern, the membership function values of all hy-
perboxes are first calculated.  A pool of hyperboxes that have high membership func-
tion values is then selected.  The number of hyperboxes selected can be based on a 
user-defined threshold.  After that, the Euclidean distances between the selected hy-
perboxes and the input pattern are computed.  The hyperbox with the shortest Euclid-
ean distance is chosen as the winner.  Figure 3 shows the classification procedure of a 
two-dimensional input pattern using the proposed method.  Suppose hyperboxes 1 and 
2 are selected, and E1 and E2 are the distances between the input pattern and the cen-
troids of hyperboxes 1 and 2, respectively.  Since E2<E1, the input pattern is predicted 
to be in Class 2, even though it is contained in hyperbox 1.  This modified FMM net-
work, as shown in [7], is able to improve the classification results when the network 
has a small number of hyperboxes, and each with a large size (i.e. in situations where 
θ  is large). 

As for MFMM2, the Euclidian distance is calculated between the input pattern and 
all the hyperboxes.  The hyperbox with the shortest distance is used to classify the 
input pattern.  Details of the modifications can be found in [7]. 
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Fig. 3. The classification process of modified FMM models 

4   Diagnosis of Acute Coronary Syndrome (ACS) 

The ACS data set contained 118 real records of suspected heart attack patients admit-
ted to Penang Hospital, Malaysia.  After consulting with medical specialists, 16 fea-
tures comprising clinical historical data, physical examination, ECG, and cardiac 
enzymes, and Troponin-T tests, were extracted from each record for this study.  Out 
of the 16 features, 12 binary features were coded as 1, 0.25, and 0 for the presence, 
absence and missing values, respectively.  Four real-valued features were age, degree 
of pain, duration of pain, and cardiac enzymes data.  They were normalized between 
0.25 and 1, and 0 was used to represent missing values.  Among all the records, 103 
patients were with ACS and 15 patients without ACS.   

The experimental procedure was as follows.  The data set was divided into three 
sub-sets: 60 samples for training, 23 samples for prediction, and 35 samples for test.  
Since the prediction data set was not needed for FMM, 83 samples were used for 
FMM training.  The pruning threshold was set to 0.7 for both the modified FMM 
networks.  Based on the 16 features, the FMM networks were employed to determine 
whether the patient suffered from ACS or otherwise.  The experiments were repeated 
10 times, each time the training data set was presented in a different sequence, and the 
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average classification accuracy rates were computed.  To further assess the results 
statistically, the bootstrap methods [9] was employed.  The 95% confidence intervals 
of the results were estimated using 5000 bootstrap samples, and the p-value was used 
to quantify the performance statistically. 

4.1   Results and Discussion 

Figure 4 shows the average accuracy rates versus the hyperbox size, θ .  The per-
formance of the three networks was almost similar for small hyperbox sizes (θ  < 
0.1).  However, as the hyperbox size increased, the FMM performance started to de-
grade.  Compared with FMM, both modified FMM networks degraded in a slower 
manner.  In general, MFMM1 yielded the best test accuracy rates, as shown in Figure 
4.  The highest result of MFMM1 was 85.43%. 

The error bars in Figure 4 are the 95% confidence intervals of the average accuracy 
rates.  Notice that the error bars of FMM did not overlap with those of MFMM1 and 
MFMM2, indicating that the FMM performances were statistically inferior to those of 
modified FMM networks. 
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Fig. 4. Average test accuracy rate versus hyperbox size for the ACS data set 

To further compare the performances of different FMM networks, the p-value hy-
pothesis test was conducted.  The null hypothesis stated that the average accuracy 
rates between FMM versus MFMM1, FMM versus MFMM2, and MFMM1 versus 
MFMM2 were equal (at the 95% confidence level).  As shown in of Table 2 (column 
2), the p-values of FMM versus MFMM1 are lower than the significance level 
( 05.0=α ) for 15.0≥θ .  This means that the null hypothesis is rejected.  In other 
words, there is a significant difference in terms of the test accuracy rates between 
FMM and MFMM1 for 15.0≥θ .  The same trend (except for 65.055.0 ≤≤ θ ) can 
be observed in Table 2 (column 3) for performance comparison between FMM and 
MFMM2.  However, all the p-values between MFMM1 and MFMM2 are higher than 
0.05, as shown in Table 2 (column 4), indicating that the performances of the two 
modified FMM networks are statistically equal at the 95% confidence level.  
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Table 1. The p-values for performance comparison between different FMM networks 

Hyperbox size, θ  FMM vs. MFMM1 FMM vs. MFMM2 MFMM1 vs. MFMM2 

0.05 0.8026 0.6016 0.562 

0.1 0.0594 0.4322 0.0538 

0.15 0 0.0004 0.266 

0.2 0 0.0002 0.8034 

0.25 0 0.0416 0.0278 

0.3 0.004 0.011 0.43 

0.35 0.0006 0.0256 0.2398 

0.4 0.0138 0.0398 0.645 

0.45 0.0094 0.005 0.9158 

0.5 0.0082 0.0074 0.7446 

0.55 0.0224 0.0962 0.5724 

0.6 0.048 0.2962 0.4606 

0.65 0.0298 0.3032 0.2598 

0.7 0.001 0.0104 0.6104 

0.75 0.027 0.0174 0.7416 

5   Summary 

This paper has presented an application of the FMM neural networks as a medical 
diagnosis tool.  Two useful modifications have been incorporated into the FMM net-
work: use of a pruning procedure to remove hyperboxes with low confidence factor 
from the network, and use of the Euclidian distance in the prediction process.  Based 
on the modifications, two modified FMM networks have been introduced: MFMM1 
uses both the membership value and the Euclidian distance for classifying the input 
pattern, while MFMM2 uses only the Euclidian distance for classification. 

To assess the applicability of the FMM networks to medical diagnosis, a set of real 
patient records has been collected, and the FMM networks have been used to classify 
the patients into ACS and non-ACS categories.  Stability of the results has been as-
sessed and quantified using the bootstrap method.  The results obtained have demon-
strated that the modifications on the FMM network have improved the performances 
when the hyperbox size is high.   

Future work will focus on using more data sets from different medical domains to 
further ascertain the capability and effectiveness of the modified FMM networks, so 
that they can be employed as a useful and usable decision support tool for medical 
prognostic and diagnostic tasks. 
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