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ABSTRACT 

 

The presence of harmful organic compounds such as phenols and their derivatives in water 

supplies and from industrial effluents is a topic of global concern. In recent years, it has 

received considerable attention as an alternative for treating industrial waste water. 

Photocatalysis is an emerging promising technology as it will completely oxidize harmful 

organic compounds present in the waste stream without leaving behind any hazardous 

residues. In the present study, photocatalytic degradation of phenol was investigated using 

supported TiO2 photocatalyst based adsorbent as a semiconductor photocatalyst in a batch 

reactor. The synthesized photocatalyst composition was developed using TiO2 as photoactive 

component and zeolite as the adsorbents, all supported on silica gel using colloidal silica gel 

binder. The project included the search for the optimum composition of the supported catalyst 

and to study the reusability of prepared catalyst. The optimum formulation of supported 

catalyst was found to be (TiO2:ZSM-5:silica gel:colloidal silica gel=5:3:5:3) which gave the 

highest efficiency with 98% degradation of 50 mg/L phenol solution in six hours. The 

supported TiO2 was found to be stable for repeated use. 
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INTRODUCTION  

The release of those phenols and their derivatives in the environment is an ever 

increasing problem for the global concern. Due to their high solubility and stability in water, 

it is an onerous process to treat phenolic water to innocuous levels for many biological and 

chemical processes. Conventional water treatment technologies such as solvent extraction, 

activated carbon adsorption, and chemical treatment process such as oxidation by ozone (O3) 

often produce hazardous by-products and generate large amount of solid wastes, which 

require costly disposal or regeneration method [1,2]. Due to these reasons, considerable 

attention has been focused on complete oxidation of organic compounds to harmless products 

such as CO2 and H2O by the advanced oxidation process (AOP) and appears as the most 

emerging promising technologies. A great deal of attention has been devoted to titanium 

dioxide (TiO2) for use as photocatalysts due to the stability of its chemical structure, 

biocompatibility, physical, nontoxicity, low cost and it possesses high oxidizing power [3,4]. 

However, from an engineering point of view the immobilization of TiO2 onto support is 

preferable compare to the slurry system as to avoid costly and difficult separation and the 

recycling of the photocatalyst [5,6]. Among the various supports, silica gel is very promising 

as a support, since it has been used widely in the industry and it possesses good light 

transmission and adsorption of pollutants [7].  
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Nevertheless, there are problems that limit the TiO2 photocatalysis potential as 

wastewater treatment. According to Haque et. al. [8], the requirement for near UV light and a 

high energy is required to drive lamps as the intrinsic quantum yields of titania are low. We 

attempt to solve these problems by dispersing TiO2 onto a good adsorbent, since reactions 

predominantly occur on the surface. The adsorbents collect pollutants, even in the dark to the 

photocatalyst surface, which reducing the requirement of a high energy [9-11]. Among the 

various adsorbents, zeolite (ZSM-5) has been chosen for the several reasons: its unique Al-O 

units in zeolite framework are the photocatalytic active sites, it can delocalize band gap 

excited electrons of TiO2, thus reduce electron-hole recombination process on the surface and 

adsorption of intermediates [12,13]. 

With this goal in mind, special attention was given in this research in order to obtain 

the optimum composition of each component in this supported catalyst and to study the 

reusability of prepared catalyst. The prepared catalyst consists of the mixture of ZSM-5 and 

TiO2 supported onto the silica gel using colloidal silica gel as binder. 

 

MATERIALS AND METHODS 

 

Materials. Phenol ( ≥ 99.5 %) was selected as a model organic compound in the present study. 

It was purchased from Fisher Scientific and used as received. Powdered particles of Zeolite 

ZSM-5 (425 m
2
/g and Si/Al= 23) was purchased from Zeolyst International was treated by 

calcined at 500 ºC for an hour. Silica gel with a particle size of 0.2-0.5 mm was purchased 

from Acros Organic. Colloidal silica gel (30 wt. % silica suspension in water) was purchased 

from Sigma Aldrich and used as received. For the preparation of the TiO2, Titanium (IV) 

Isopropoxide (TTIP, 98 %) and ethanol (C2H5OH 95 %) were purchased from Acros Organic 

and TiO2 Degussa P25 powder (50 m
2
/g; 15-30 % rutile + 85-70% anatase) was purchased 

from Degussa, Germany. All the solutions were prepared using deionized water from Milli-Q 

system and controlled by its resistivity (18.2 MΩ). 

 

Preparation of Catalyst. TiO2 nanoparticle was synthesized using sol-gel method as reported 

[14]. A mixture of 1 TTIP:2 C2H5OH:5 H2O was prepared for the sol-gel solution. A solution 

of TTIP in ethanol was prepared with molar ratio TTIP/C2H5OH = 1/2. The solution was 

stirred at room temperature for an hour. Subsequently water was added drop by drop under 

vigorous stirring. A molar ratio of H2O/TTIP = 5 was used. The gel obtained was dried at 

80ºC for 24 hours. The modified sol-gel solution was prepared by addition of a calculated 

amount of TiO2 Degussa P25 to the sol solution before dried in the oven at 80ºC for 24 hours. 

The powder was added slowly with vigorous stirring to prevent the formation of agglomerates. 

The TiO2 obtained then was immobilized according to literature method [8]. A known weight 

of TiO2 and ZSM-5 were mixed in the appropriate amount of colloidal silica gel. A known 

weight of silica gel then magnetically stirred into the mixture for about 30 minutes. The 

mixture was dried at ambient conditions and then dried in the oven at 100ºC. The granules 

obtained were gently crushed and screened, followed by washing with deionized water for 

several times. After the impregnation process have finished, the catalyst was calcined in the 

furnace at 600ºC for three hours. 

 

Experimental set up. Figure 1 shows the schematic diagram of the experimental set up. The 

batch photocatalytic reactor consists of a pyrex glass jacketed reactor with dimensions of 23 x 

10 cm x 8 cm (height x outside diameter x inside diameter) and at the top portion has ports for 

sampling, gas purging, thermocouple and UV lamp. The lamp and reactor were placed inside 

a wooden box painted black so that no stray light can enter the reactor. The reactor was placed 

on a magnetic stirrer for thorough mixing. A 15 W low pressure mercury lamp (PCQ lamp, 
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UVP, Inc) was located in the center of the reactor. A 1 cm diameter of quartz tube protected 

the lamp from solution contact. In order to conduct experiments at the controlled temperature 

and protect the lamp from overheating, the reactor was surrounded with a cooling jacket and a 

fan. 

 

 
 

Figure 1: Schematic Diagram of Batch Photocatalytic Reactor (cross section view). 

 

Photocatalytic Degradation of Phenol. An aqueous suspension of phenol (50 mg/l, 500 ml) 

containing the required quantity of supported photocatalyst was stirred for about 30 min in the 

dark to reach the adsorption/desorption equilibrium, followed by UV lamp illumination for 

degradation of phenol. During experiments, air was bubbled into the phenol solutions at a 

constant flow rate of 2 ml/min. This is the cheapest and simplest way to supply a sufficient 

amount of oxygen (O2) into the photocatalytic reactor. All reaction was carried out at 

atmospheric pressure and at room temperature. A base supported catalyst composition 

consisting of mixture of TiO2 and ZSM-5 supported on silica gel using colloidal silica gel as 

binder (TiO2:ZSM-5:silica gel:colloidal silica gel=1:1:1:2) was used as reference point in 

order to evaluate the optimum loading for each of the catalyst component. Samples of the 

suspension were removed at specific time intervals for analysis. The residual phenol 

concentration was monitored using a high-performance liquid chromatography (HPLC). The 

HPLC system used in the experiment comprised of Perkin-Elmer UV/VIS 200 HPLC 

Detector, a Luna 5 µm C18 (2) 100A column and a Perkin-Elmer 200 HPLC pump with an 

injector port. The mobile phase in this HPLC system consisted of 40 % acetonitrile and 60 % 

deionized water. The flow rate was adjusted to 1 ml/min. Full loop injection at 20 µL was 

conducted and the retention time of phenol was 3.81 min. Before HPLC analysis, all samples 

were filtered using WHATMAN filter (PTFE-membrane, 0.45 µm). 

 

RESULTS AND DISCUSSION 

 

Optimum Composition of Supported Photocatalyst. Selection of optimum catalyst 

composition is important in order to minimize excess of catalyst and for economic effect. 

Thus, each component loading in the supported photocatalyst were investigated. 
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TiO2 Loading. Experiment was carried out with different TiO2 loading; 0.05 g, 0.15 g, 0.25 g, 

0.35 g and 0.45 g, at fixed phenol concentration (50 mg/L). It was believed that increased in 

TiO2 loading, the photodegradation rate should be increased as well, owing to the higher holes 

and hydroxyl radicals were generated. However, it remains almost constant beyond certain 

level as shown in Figure 2. This performance is due to the fact that number of photons 

absorbed and the number of phenol molecules adsorbed were increased as the amount of TiO2 

loading increased. After above a certain level, excess of TiO2 particles occur. Thus, the UV 

light penetration was hindering by photocatalyst itself [15,16]. Besides, as the TiO2 loading 

increase, it could cause greater aggregation of TiO2 particles on the catalyst surface. Hence, 

reducing the specific surface area, consequently reduces the photodegradation efficiency.  

 

 
 

Figure 2: Degradation of Phenol at different TiO2 Loading. Conditions: Air Flow 

Rate=2 L/min, Initial Concentration=50 mg/L). 

 

Adsorbent Loading. The composition of adsorbent loading were varied from 0.05 g, 0.15 g, 

0.25 g, 0.35 g to 0.45 g of ZSM-5. Figure 3 shows that 0.15 g of ZSM-5 exhibits the optimum 

adsorbent loading. At first 30 min in the dark, increase in the ZSM-5 loading will lead to 

increase in phenol degradation. After the illumination of UV lamp, the photodegradation take 

place which indicates that increase the addition of ZSM-5 over 0.25 g will reduce the 

degradation of phenol. Degradation of phenol become slower since the surface of ZSM-5 

increase, thus increase the diffusion pathway for phenol molecules [17].  

 

Binder Loading. One approach to immobilize the photocatalyst is by a binding method. The 

important needs for binder is it possess a good adherence between the catalyst and support 

over a prolonged period of time without losing its photocatalytic activity. According to the 

result studied by Haque et.al. [8], colloidal silica gel binder exhibits the best contaminant 

degradation efficiency. Figure 4 demonstrates the reusability of the prepared catalyst on the 

different amount of colloidal silica gel binder obtained after four experimental runs. After 

each run, it was observed that the color of the supported catalyst turned to dark brown. The 

change in color of photocatalyst is due to the accumulation of intermediates on the active sites 

of TiO2 surface [18]. Hence, attribute to the reducing of photocatalytic activity in reuse 

catalyst. The result in Figure 4 indicates that the reusability of the supported catalyst with 

0.25 and 0.50 g colloidal silica gel can almost execute as well as that with 0.75 g colloidal 
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silica gel. Nevertheless, increase the amount binder beyond that limit cause the decreasing in 

the photocatalytic activity. Since the result revealed that the photocatalytic activity among 

0.25 to 0.75 g of colloidal silica gel are slightly differ each other, 0.25 g amount has been 

chosen as an essential aspect of the cost effectiveness. 

 

 
 

Figure 3: Degradation of Phenol at different Adsorbent Loading. Conditions: Air flow 

rate=2 L/min, Initial concentration=50 mg/L). 
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Figure 4: Comparison of Photocatalytic Activity of Supported Catalyst at different 

Loading of Binder for four times used. Conditions: Air Flow Rate= 2 L/min, Initial 

Concentration=50 mg/L) 

 

Support Loading. To evaluate the effect of support loading on the degradation of phenol, 

several kinds of catalyst were prepared; 0.05 g, 0.15 g, 0.25 g, 0.35 g and 0.45 g silica gel was 

used. The other compositions were fixed with the base supported catalyst composition. 

According to the Figure 5, the adsorption of phenol on the catalyst in the dark increased with 

the increase of silica gel content in the catalyst. However, under the illumination, increase the 

0

10

20

30

40

50

60

70

80

90

100

-30 0 30 60 90 120 150 180 210 240 270 300 330 360

t (min)

%
 P

h
en

o
l

0.45 g ZSM5

0.35 g ZSM5

0.25 g ZSM5

0.15 g ZSM5

0.05 g ZSM5

%
 P

h
en

o
l 

t (min) 



International Conference on Environment 2008 (ICENV 2008) 

silica gel loading lead to the improvement in of the phenol degradation until it reaches an 

optimum level at 0.15 g silica gel. Further addition of silica gel decreases the phenol 

degradation. Silica gel also possesses the adsorption ability of the contaminant [7]. This is 

also consistent with our earlier report in the adsorbent loading section that increase in the 

adsorption will lead to the decrease in the photocatalytic degradation.  

 

 
Figure 5: Degradation of Phenol at different Support Loading. Conditions: Air Flow 

Rate=2 L/min, Initial Concentration=50 mg/L) 

 

CONCLUSIONS 

TiO2 supported photocatalyst was successfully synthesized using the sol-gel method. 

The performance study of the synthesized photocatalyst under UV irradiation was performed 

in a batch reactor for the degradation of phenol. A series of experiments were conducted to 

investigate the optimum composition for each component in this catalyst. The optimum 

formulation for the synthesized photocatalyst which consist the mixture of TiO2 and ZSM-5 

supported on silica gel using colloidal silica gel as binder was found to be (TiO2:ZSM-5:silica 

gel:colloidal silica gel=5:3:5:3). After four times of repeated use, the system showed only a 

slight decrease in activity. Therefore, the supported photocatalyst synthesized in this study 

have been proven to be stable for repeated usage.  
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