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problem in teaching and learning Mathematics will be discussed. It's also good for Cooperative learning
approach.

All participants will get hand-outs and TI-Flash Debuggers software.
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EXAMPLES OF MATH ASSIGNMENTS USING M ATLAB AND INTERNET

Authors: Sarwar J. Abbasi, Kahkashan Iqbal
Affiliations: Karachi Institute of Economics & Technology, Department of Mathematics,
University of Karachi, Karachi, Pakistan

In 2007, we had concluded in [1] after studying a sampie of 75 students’ responses at under /and post
graduate levels in Karachi, Pakistan that math teaching can be made interesting by dedication of the math
teacher, by giving the students logical and concrete examples and by equipping students with know-how of
math software and technology. In this paper, we extend our work by combining the last two effective [1] ways.
That is, we examine some math assignments for creating good examples for students’ learning of Mathematics
while with the assistance of technology. These assignments were given to the engineering students of PAF-
KIET in the course of “Vector Analysis and Multivariable Calculus” at undergraduate level in supervision of the
second author. These examples include construction of polar flower, geometric designs by polar equations and
graphing space curves traced by the position vector r using Matlab and plotting z = f {x, y) surfaces using live
math software and internet. "
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THE FOURIER SPECTRAL METHOD FOR THE SIVASHINSKY EQUATION

Authors: Abdur Rashid, Ahmad Izani Md. Ismail
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Keywords: Sivashinsky equation, Fourier Spectral Method

In this paper, a Fourier spectral method for solving the Sivashinsky equation with periodic boundary conditions
is developed. We establish semi-discrete and fully discrete schemes of the Fourier spectral method. A fully
discrete scheme is constructed in such a way that the linear part is treated implicitly and the nonlinear part
explicitly. We use an energy estimation method to obtain error estimates for the approximate solutions. We
also perform some numerical experiments.
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THE IMPACT OF VIRTUAL MANIPULATIVES ON THIRD GRADERS — LEARNING OF PERIMETER AND
AREA

Authors: Yuan Yuan
Affiliations: Chung Yuan Christian University

Keywords: virtual manipulatives, third gradén perimeter, area

The researcher developed a web-based virtual manipulative (Magic Board) and used it to design an
instructional material for third grade teachersj| teaching of perimeter and area unit. A pretest-posttest quasi-
experimental design was used to examine the effectiveness of using this instructional material to introduce
concepts of perimeter and area. The study involved 63 students in two different classes of an efementary
school at Hsinchu city in Taiwan. The classes were randomly assighed to two methods of instruction; a virtual
manipulative group and a traditional group. Equivalency of treatment groups was determined by independent
t-test on pre-test scores. A posttest was conducted to measure immediate treatment effect. To measure
retention, the posttest was used again two weeks after the posttest was first administered to students. For an
in-depth comparison between the two groups, the classroom climate and interactions among students and
teachers were also investigated.
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The Fourier Spectral Method for the Sivashinsky

Equation

Abdur Rashid* and Ahmad Izani Bin Md. Ismailf

Abstract

In this paper, a Fourier spectral method for solving the Sivashinsky equation
with periodic boundary conditions is developed. We establish semi-discrete and
fully discrete schemes of the Fourier spectral method. A fully discrete scheme is
constructed in such a way that the linear part is treated implicitly and the nonlin-
ear part explicitly. We use an energy estimation method to obtain error estimates

for the approximate solutions. We also perform some numerical experiments.

Key words: Sivashinsky equation, Fourier spectral method.
2000 MR Subject Classification: 35Q35, 35B05, 58F39 76M22.

1 Introduction

Spectral methods provide a computational approach which has achieved substantial
popularity over the last three decades. They have gained recognition for highly accurate
computations of a wide class of physical problems in the field of computational fluid
dynamics. Fourier spectral methods, in particular, have become increasingly popular for
solving partial differential equations and they are also very useful in obtaining highly
accurate solutions to partial differential equations [6, 7, 8).

The purpose of this paper is to develop a Fourier spectral spectral method for numer-
ically solving the Sivashinsky equation with periodic boundary conditions. We consider

the following nonlinear evolution equation in one space dimension,(see [1, 2, 3]).

ou Ou 0

o ot o

[(2 - u)g—ﬂ +au=0, (1.1)

where o > 0 is constant.
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In particular we consider the mathematical modal of the Sivashinsky equation for the

Fourier spectral approximation of the following initial-boundary value problem as follows:

ou O _ 9 f(w)
A zeq,  te(T], (12
ou Ju
Bu Fu
@(—L,t) = s t >0, (1.4)
u(x, (}) = 'U/()(x), € Q. (15)

where f(u) = 3u® — 2u, ug is a given function, T > 0, and Q = (- L, L).

The Sivashinsky equation arises in the modelling of directional solidification of a dilute
binary alloy [1]. The dependent variable u(z, t) is the location of the solid-liquid interface,
and the equation may be formally derived asymptotically from the one-sided model for
directional solidification in which diffusion of the solute in the solid is neglected and
thermal conductivities, densities and specific heats of the liquid and solid are assumed to
be equal.

Numerical methods for Sivashinsiky equation can be found in many references (see [4,
5] and the references listed therein). Omrani [5] studied the error estimates of semi discrete
finite element method and fully discrete scheme based on the backward Galerkin scheme,
a linearized backward Euler’s method and Crank Nickoloson Galerkin scheme for the
Sivashinsky equation. In [4] Omrani used the finite difference method for the approximate
solution of the Sivashinsky equation. Cohen and Peletier {10] calculated the number of
steady states for Sivashinsky equation . Daniel [9] reduced the Sivashinsky equation into
ordinary differential equation and found the solution in spherical coordinates.

There have been some studies of the solution of the Sivashinsiky equation using nu-
merical and approximate methods. However as far as we are aware, there are no studies of
the solution of the Sivashinsky equation using the Fourier spectral method. In this paper,
we develop a Fourier spectral method for the Sivashinsky equation (1.1). We establish -
their semi discrete and fully discrete schemes.

The layout of the paper is as follows: We introduce notation and lemmas in section
2, In section 3, we consider a semi discrete Fourier spectral approximation. In section 4,
we consider a fully discrete implicit scheme and prove convergence to the solution of the

associated continuous problem. In section 5, we perform some numerical experiments.

2 Notations and Lemmas

We denote by (-,-) and || - ||o the inner product and the norm of L2(£2) defined by
(o) = [ wala)ds, ol = (u,u),
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where Q = (0,1). Let N be a positive integer and Vi be the set of all trigonometric

polynomials of degree at most N, that is
1 .
Vy =span{ ——e™%L . _N/2<{< N 2}.

The L? orthogonal projection operator Py : L?(2) — Vy is a mapping such that for any
u € L3(Q),
(u — Pyu,v) =0, Vv € Vy.

Let L>(Q) denote the Lebesgue space with norm ||u|| = ess sup,eqlu(z)| and H* ()
1/2
denote the periodic Sobolev space with the norm ||ull,, = (Z‘ tl<m [[Dfullg) . Denote

T
2 . gm = dulz ™m . u 2 ,
L* (0, T; HI(Q)) _{ (z,t) € HT (Q),/o I umdt<+oo}

L*®(0,T; H(Q)) = {u(m,t) € H(); sup lull?, < +oo} .
0<t<T
Lemma 1. [6] For any real 0 < u < o, and u € HJ (), then
lu = Prully < eN*=2ul,,

For the discretization in time t, let 7 be the mesh spacing of the variable ¢ and we set

)

For simplicity u(z,t) is denoted by u(t) or u usually. We define the following difference
quotient:

uglt) = %[u(t + 1) = ut - 7)), at) = %[u(t + )+ ult — 7)),

3 Semi-discrete approximation

Now we construct an approximate solution for the periodic initial value problem
(1.2)-(1.5) as follows: Find uy(t) € Vy, such that

Oun Puy Pwy Pwy
{ (—E,U)N> + a(un, wn) + (_8232 e > = (f(uN),—_a.’L'z , Ywny €Vy
un(z,0) = Pyu(0)
(3.1)

Now we estimate the error ||u(t) — un(t)llo. Denote ey = Pyu(t) — un(t), we have
from (1.2) and (3.1),

e 2 2 2
{ (%él,wzv) + alen, wn) + (%—,%) = (f(u) - f(uN),aa%), Ywy € Vi
un(z,0) = Pyu(0)
(3.2)



Choosing wy = ey in (3.2) and by applying the Cauchy-Schwartz inequality as well as

the algebraic inequality, we obtain

1d 2 3261\7 2 3261\1
gt tenti+ |G| +atents = (- st G
< )l | S48 (33)
<) = fmllo | 57 | ~
Pen ||
2 N
< = Sl + | G |
But
(f(w) = flun) = ¢r(uy — O(u —un))(u —un), 0<O<1
Since
lullo ¢, lunlleo < e
we have
¢r(uy — 0(u —un)) < ¢,
Thus
u) — flu < -
[1f(w) = fun)llo < 11(u —un)llo (3.4
<c(ll(w—unllo+ llenllo) -
Substituting the value of (3.3) and (3.4) in (3.2), we obtain
d
Zlenl3 < ullenl + call(u — Puw)l3 (35)
where ¢; and ¢, are constants independent of N. By Gronwall’s lemma, we have
t
el < New @)+ [ uts) = Pru(s)lids (36)

Thus we obtain the following theorem

Theorem 1. Let ug € Hi(Q) and u(t) be the solution for periodic initial value problem
(1.2-1.5). If un(t) is the solution of the semi-discrete approzimation (8.1), then there

exists a constant c independent of N, such that

¢ 1/2
lu(®) —un(@)llo < cN 7™ (IIU(t)llm + (/0 IIU(S)IlfndS) ) :

4 A fully discrete scheme

In this section we give a fully discrete scheme of the Fourier spectral method for

Sivashinsky equation. Using the modified leap-frog scheme such that the linear part is



treated implicitly and the nonlinear part explicitly, we obtain the fully discrete spectral
scheme for solving (1.1): find un(t) € Sy, such that

—~ BZEN 82wN 62wN
(ung wy) + oy, wy) + ( 922 ’W) = (f(UN); W)’ Vwy € Vy 1)
un(z,0) = Pyu(0), un(z,7) = Py (U(O) + ‘T%%(O)) X

Let
e=u—uy=(u— Pyu)+ (Pyu—un) =&+,

where

£ =u— Pyu, Y = Pyu — uy,

Subtracting (1.2) from (4.1), we obtain
r —~
~ %Y Pwn Pwy ou
(Vg wn) + (T/’,WN) + (5:;2‘7 72:2-) = (f(UN) - f(u)a—ng) + (a - Pnugw
- 0? 0?
\ +a(u — Py, wN) + (éﬁ(u — PNﬁ), gﬁw), Ywy € Vy

|50 = Pau0) - un(0), () = P () - (w(0) +75©) ).

(4.2)
Taking w = 2¢(¢) in (4.2), we obtain
2
(R (0IR); + 20 [9(0)] < ¢ (nf(aN) Fall + || 5 = Pauelt)
0 (4.3)
~z || & :
+ |lu — Pyal|, + “3 2(u — Pyu ) .
0
We estimate the right hand side of (4.3)
I (un) = Fully < ellu —unllp) < c(liéllo + [121lo) (4.4)

The second term on the right hand side of equation (4.3) can be estimated as below:

2

50 = Pt < |50~ (0

2

+ [lug(t) = Prug(t)llg, (4.5)

0
By using Taylor’s Theorem with integral remainder
i+ 2 12
< c’r / ,
t—T1
1

llug(®) = Prug(®)lg = 5= l(u(t + 7) = Pyu(t +7)) = (u(t = 7) = Pyu(t = 7))l

83

u«(t) 55

(8)

= ol +7) ~ &t~ 7l



By using Taylor’s Theorem with integral remainder

t+7

% (o

9 1/2
ds
0

Pu
'(%—3(3)

e+ )~ =l < (/

-

Substituting the above estimate in to (4.5), we obtained

c t+r 2\ /2 t4r 2 1/2
< - / ds + er/? / ds (4.6)
o T \Jt-r 0 t—7 0

The third and fourth term on the right hand side of (4.3) can be estimated in a similar

&3

Ou
(73;('*1) - Bt s)

manner

I~ Pally < 5(IEGE+7) — €6~ )lo) +

1 1
) = qult-+7) = ue =)

1 tHT i 52, 2 1/2
lu = Padlly < Z(IECE +7) — (¢ = 7o) + er ([ T ods) (@)
and
5 1 7152 |12 1/2
|5zt 2| < Gahece ) = ete = )+ er (/ )| ) «8)

By applying Lemma 1, we obtain
€@ < eN™™ (u(t +7) + u(t = 7))
Putting the above estimates into (4.4), (4.6), (4.7) and (4.8) in to (4.3), we obtain

(R OIR); + 20 [70)], < N (el + el + 2ol

t+r ag
+?/t_., Bt()

= ([

By summing up (4.9) for all t € S; and # <t — 7, we obtain

" ds o (lu(+ DI+l =D (49)

)*)

2 2

+

Pu

82
W(S)

(92u
5 —5(8)

Et'g(s) .

"

T2

Iw@5 < 115 + I (r)I§ + er N2 (Z_: ||?7(t')||§) +ec (S) 0
=7 ’ 4.10)
T u 2 3 2 2
Fort ( / ( Z0)| |50 |5 ) ) .
and
(M5 < er'llulleeresy  N9OF < N2 |lu(0)I7,

By applying Gronwall’s Lemma, we have the following theorem
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Theorem 2. Assume 7 is sufficiently small m > 2 and the solution of (1.2)-(1.5) satisfies

ue L2(0,T; Hm(Q))ﬂ(3’2 (0, T; L( Q)) e L*(0,T; L*(), aaz‘ L*(0,T; L}(Q)) (‘]

H?(0,T; L*( ) 2l (0,T; L2(Q)) where uy is the solution of ({.1). Then there ez-
ists a constant c, mdependent of T and N such that

”U(t) - 'LLN(t)”(] S C (N—mKl + ‘TQKQ)

where

t—r 1/2
K, = (IIU(O)H;‘L +Y llﬂ(t')lli)

o ([ (0] -2

5 Numerical Results

2

82

Bu
ETp -5 (8)

82
e ),

iz (5)

)e)

In this section, we present some numerical results of our scheme for Sivashinsky equa-
tion (1.2)-(1.5). The numerical computations were carried out in MATLAB. We employ
the standard spectral method (discrete Fourier transform) for the spatial discretization
of the equation, while for the time integration, we use modified leapfrog scheme in such
a way that linear terms are treated implicitly and the nonlinear terms explicitly.

We work on the periodic domain 2 = (—L, L). First we introduce some notation for
the discrete Fourier transformation. We assume that the domain in space is equidiscretized
with spacing h = 57, where the integer N is even. The spatial grid points are given by
z; = L{jh — ) /7 of the domain Q with 7 = 0,1, ..., N. The formula for discrete Fourier

transform is
1 N
U = < Zuje'“”", k=-N/2+1.,-1,0,1,..,N/2, (5.1)

and the inverse discrete Fourier transform is given by

N/2

> wme™,  j=0,1,..,N (5.2)
~N/2+1

We set the parameters to be N = 32, T = 1.0 and the step length along time direction
is taken to be 7 = 0.001. We consider the Sivashinsky equation (1.2) with initial condition

u(z,0) = cos (-;E) .

The exact solution of the equation (1.2)-(1.5) is unknown. Therefore we present the
graph of the approximate solution in Figure 1, Figure 2, and in Figure 3 with different

values of @. Momani [11] has used Adomain’s decomposition method for the same problem

7



with a = 0.5 and the results indicate that the wave solution bifurcate into three waves.
However the Fourier spectral method, we have delvoped does not indicate this (see Figure
2). Otherwise there is good agrement between the results of Fourier spectral method and
the Adomain’s decomposition method.

15 . T . : . . . T -
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05 -

Figure 1: The graph of the approximate solution at t=0 (solid line) and t=1 (dotted line)
at a=0.1

6 Conclusion

A Fourier spectral method for the one dimensional Sivashinsky equation has been
proposed and the solution obtained for different values of the parameter «. Error estimates
for semi-discrete and fully discrete schemes are obtained by the energy estimation method.
Thus, the proposed method is an efficient technique for the numerical solutions of partial

differential equations.
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